
CSC102-S010-L1 Page 1

CSC 102 Lecture Notes Week 1
Introduction to the Course

Introduction to J av a

I. Relevant reading.

A. Horstmannchapters 1 - 6

B. Writeupsfor Labs 1 and 2

C. Various cited material in writeups

II. Go over t he syllabus.

III. Go over L ab 1.

IV. Go over L ab 2.

V. Introducing Jav ato C programmers.

A. Thefundamental aspects of the two languages are very similar.

1. Syntactically, Java and C look very similar.

2. Thereis not a lot of initial "culture shock" in terms of the basic programming constructs you learned in
CSC 101.

3. Stylistically, Java is generally more verbose than C.

B. Many of the basics in C and Java that are much the same.

1. Primitive data types ofint, double, char.

2. Theway primitive variables and parameters are declared, e.g.,

int i;
double x,y,z;
char c1, c2;

3. Mostof conditional and loop statements --if, while, for, switch.

a. Thereare a couple extended forms offor loops, but everything that’s in C is in Java.

b. Java has the concept ofiterators, about which we’ll be learning a bit later in the quarter.

c. For now, you can use what you know about conditionals and loops straight from C.

C. Thecore fundamentals of C functions and Java methods are the same.

1. Aswe’ll see shortly, there are some important and significant differences between C and Java in the area
of function/method definition and invocation.

2. For starters, what you know about C functions carries over into Java.

D. BothC and Java use amain function (method) as the starting point for a program.

VI. Beyond the basics, Jav ahas some fundamentally new features not found in C, most significantly:

A. classes -- for organizing programs

B. access control -- to support data abstraction

C. exceptions -- for better error handling

D. inheritance -- to make things "object-oriented"

E. GUI support -- for better user interaction

CSC102-S010-L1 Page 2

VII. Java methods compared to C functions.

A. Methodsand functions do fundamentally the same things:

1. They’re called to perform a computation.

2. They can be sent parameters.

3. They can return a value.

4. They can use local variables in their computation.

B. Themajor difference between a method and a function is that the methodbelongs to the class in which it is
defined.

C. This"belonging to" affects that way Java methods are invoked, how the methods access data, and how the
methods return their results.

D. To illustrate these effects, consider the following C and Java implementations of the rectangle data structure
discussed in chapter 2 of the book.

Rectangle.java:
/****
*
* A simple Java program that defines a rectangle data structure and two methods
* that operate on rectangles.
*
*/

public class Rectangle {
int x;
int y;
int width;
int height;

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}

void move(int x_increment, int y_increment) {
x = x + x_increment;
y = y + y_increment;

}

boolean equals(Rectangle r) {
return x == r.x &&

y == r.y &&
width == r.width &&
height == r.height;

}

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 200);
Rectangle r2 = new Rectangle(20, 30, 100, 200);
boolean eq;

eq = r1.equals(r2);
if (eq == false) {

System.out.println("r1 not = r2");

CSC102-S010-L1 Page 3

}
else {

System.out.println("r1 = r2");
}

r1.move(10, 10);
eq = r1.equals(r2);
if (eq == false) {

System.out.println("r1 not = r2");
}
else {

System.out.println("r1 = r2");
}

}

}

rectangle.c:
/****
*
* A simple C program that defines a rectangle data structure and two functions
* that operate on rectangles.
*
*/

#include <stdio.h>

struct Rectangle {
int x;
int y;
int width;
int height;

};

struct Rectangle move(struct Rectangle r, int x_increment, int y_increment) {
r.x = r.x + x_increment;
r.y = r.y + y_increment;
return r;

}

unsigned char equals(struct Rectangle r1, struct Rectangle r2) {
return r1.x == r2.x &&

r1.y == r2.y &&
r1.width == r2.width &&
r1.height == r2.height;

}

int main() {
struct Rectangle r1 = {10, 20, 100, 200};
struct Rectangle r2 = {20, 30, 100, 200};
unsigned char eq;

eq = equals(r1, r2);
if (eq == 0) {

printf("r1 not = r20);
}
else {

printf("r1 = r20);

CSC102-S010-L1 Page 4

}

r1 = move(r1, 10, 10);
eq = equals(r1, r2);
if (eq == 0) {

printf("r1 not = r20);
}
else {

printf("r1 = r20);
}

}

E. The following are particularly noteworth y differences between the two programs:
1. Theroot name of the Java file and the class it contains must be spelled exactly the same; no similar

restriction exists for C programs.

2. In terms of data structuring, the instance variables (aka, data members) of a Java class are the same as the
data fields of a C struct.

3. Java class values are created and initialized withconstructor methods; e.g., compare

Rectangle r1 = new Rectangle(10, 20, 100, 200);

with

struct Rectangle r1 = {10, 20, 100, 200};

4. SinceJava methodsbelong to their classes, the class itself is available as an implicit input and output to
ev ery method; e.g., compare

void move(int x_increment, int y_increment) {
x = x + x_increment;
y = y + y_increment;

}

with

struct Rectangle move(struct Rectangle r, int x_increment, int y_increment) {
r.x = r.x + x_increment;
r.y = r.y + y_increment;
return r;

}

and compare

boolean equals(Rectangle r) {
return x == r.x &&

y == r.y &&
width == r.width &&
height == r.height;

}

with

unsigned char equals(struct Rectangle r1, struct Rectangle r2) {
return r1.x == r2.x &&

r1.y == r2.y &&
r1.width == r2.width &&
r1.height == r2.height;

}

CSC102-S010-L1 Page 5

F. In general, a methodm from a classc in Java is inv oked like this

c.m(...)

where the comparable invocation in C is a functionf called with a struct parameters, like this

f(s, ...)

G. A Java method will frequently compute its result by modifying class instance variables, where in C the com-
puted value needs to be returned from the function, or the function needs to modify global variables.

H. Whennecessary, the Java keyword this is used to refer explicitly to the class object.

1. Unlessthere is a naming conflict,this is animplicit parameter to all methods in a class, and there is no
need to mention it explicitly.

2. For example, following definition of theRectangle.move method is equivalent to one above

void move(int x_increment, int y_increment) {
this.x = this.x + x_increment;
this.y = this.y + y_increment;

}

3. Theexplicit use ofthis is only necessary when the name a class variable is the same as a method param-
eter or local variable, as in the definition of theRectangle initializing constructor:

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}

wherethis is necessary because the names of the constructor parameters are the same as the names of
the class data fields.

4. An alternate way to deal with this naming issue would be to give the constructor parameters different
names, as in

Rectangle(int x_val, int y_val, int width_val, int height_val) {
x = x_val;
y = y_val;
width = width_val;
height = height_val;

}

VIII. Summary of chapters 1-6 of the text, including key topics for 102, andnon-topics for 102.

A. Chapter1 is a review of material from CSC 101, plus a very high-level introduction to Java.

1. Sections1.1 through 1.3 are the 101 review material; you can skim through these.

2. Sections1.4 through 1.6 are the high-level introduction to Java; the work you did in Lab 1 covered this
material; the book’s coverage is worth a read.

3. Sections1.7 and 1.8 are more review of 101 material; they are a pretty lucid discussion of program errors
and algorithms that are worth a quick read.

B. Chapter2 is a good introductory treatment of Java classes and objects.

1. Sections2.1 through 2.10 are directly relevant to Lab 2 and Program 1.

2. Sections2.11 through 2.13 cover graphics concepts that are relevant to Program 2; you can skip them for
now, and we’ll come back to them in a week or so.

C. Chapter3 is also a good introduction to class implementation and testing.

1. Sections3.1 through 3.8 are directly relevant to Labs 2 and, as well as Program 1.

CSC102-S010-L1 Page 6

2. Section3.9 covers graphics concepts that are not immediately relevant to 102; we will not be doing graphi-
cal user interfaces (GUIs) until program 4, so you can skip for now this and other sections of the book that
discuss GUI concepts.

D. Chapter4 covers fundamental data types in Java.

1. Theseinclude numbers, constants, and strings.

2. It also has an introduction to theScanner class, which is relevant to lab 2.

E. Chapters5 and 6 cover Java conditionals (ifs) and loops (whiles andfors).

1. Thesefeatures are quite similar to what’s available in C, with some fancy looping bits that we’ll cover later
in the quarter.

2. Conditionalsand loops are basic to just about any program, so this material is relevant all just about all of
the labs and programs, starting with Lab 2 and Program 1.

IX. Someinitial discussion of programming assignment 1.

A. To aid in your C-to-Java transition, there is C version of theFraction.java
class declaration in the 102 class directoryprograms/1, in a file namedfraction.h.

B. Thisexample provides a comparative C definition ofFraction.java that you may find helpful.

C. Thework you will do in Lab 2 is also designed to help with understanding th structure of Java programs like
the one you’re implementing in programming assignment 1.

