CSC103-S010-L2 &ye 1l

CSC 102 L ecture Notes Week 2
Introduction to Incremental Development and Systematic Testing
More Java Basics

Revised 12 April

I. Relevant reading.
A. Horstmanrchapters 1 - 6 (continued from last week).
B. Writeupsfor Lab 3, Lab 4, and Program 1.

C. Various cited material in the writeups.

II. Thebasicidea of incremental development and systematic testing.

A. Theidea ofincremental developmeist to develop a program in a step-by-step process.
1. You can start by laying out anavall design of the program
a. firstdetermine the classes you'll need in the program
b. then determine the methods you'll need within the classes.
2. Thenyou can deelop the methods one at a time, starting with the simplest and most basic methods first,
progressing to the more complicated methods one-by-one.

B. Theidea ofsystematic testinig to male wure that the classes get tested thoroughly and completely.
1. Aneffective way to do this is to test each method asliing deeloped.
2. Testing a method entails calling it a bunch of times toasaie it does what & supposed to do.
3. Thedefinition of "what its supposed to do" comes from the program specification.

lll. Typical design of Java testing programs.
A. It's cmommon Jea practice to oganize classes in pairs -- one class to be tested, another class to do the testing.

B. For example, for the first program wevieahe clasg-r act i on to be tested, and the cldasact i onTest
that will do the testing.

C. ltis a very common ¥a raming conention to hae the name of the testing class be the same as the name of
the class being tested, with the suffbe$t " added to the name.

IV. A basic plan for testing a class.
A. Theoverall goal is to test all of the public methods.

B. To get this done, the following is a typical order of method implementation and testing:

1. Implementry necessary access methods in the class being tested.
a. Suchmethods are necessary to provide access vet@riata fields, so the testing methods can check
that results are correct.
b. For example in the case of tReact i on class, implemenget Nurrer at or andget Denoni na-
t or first.

2. Test the class constructors first.
a. Thismakes sense since you need to construct objects before you can test the methods in those objects.
b. In the case th&r act i on class, the first tests you'll do are for the thFeet i on constructors --
t est Def aul t Constructor (), test Numer at or Constructor (), test Nunerat or De-
nom nat or Const ruct or ().
3. Next you can test methods that work with values without modifying them.
a. It's reasonable to test these methods next because inaases thg may get used by other methods
in the class.
b. The idea is to test methods first that other methods may rely on.

CSC103-S010-L2 &ye 2

c. Inthe case of thé&racti on class, you can writtest ToStri ng andt est Equal s after you

have fully tested all three of the constructors.
4. Finally, test methods that perform computations on class data.

a. Itmakes some sense to test these methods $atee the are often more complicated, and my rely on
previously tested methods.

b. The idea here is gelop and test incrementally from simple methods to more difficult ones.

c. Inthe case of th€racti on class, testing of the computational methods is donedst Add() ,
test Sub(),test Ml (),andtestDi v().

V. What’sin atesting method?

A.
B.

Testing a method is done in a sequendesifcases

Eachtest casenvolves:

1. Selectingnput(s) for the method to be tested.

2. Determiningvhat you expect the method to outputepithe selected inputs.

3. Callingthe method with the inputs to see if it actually outputs what you expect.

Theare a number of different ways to implement this kind of testing; one common approacheayts lik

1. Setup the necessary inputs, including constructing objects if necessary.

2. Callthe method.

3. Useani f statement to compare the actual output with expected output and print an error messgge if the
don't agree.

Heres aconcrete example of three test cased > Numrer at or Denomi nat or Const ructor (), ina
very simple version of th&est Fr act i on class:

/****
* Class SinpleFractionTest is a very small exanple illustrating what your
* FractionTest class can |look |ike for Progranm ng Assignment 1.
>/
public class SinpleFractionTest {
/**
* Call the test method for testNuneratorDenoninator. In the conplete

* FractionTest you're witing, this main method calls all of the faction
* test methods.
>/
public static void main(String[] args) {
t est Nuner at or Denomi nat or Constructor () ;

}

/**
* Test the full initializing constructor of the Fraction class with three
* sanple test cases. In the full version of this test nethod you' Il need

* sone additional test cases. Use the guidelines in Lecture Notes 2 to
* help figure out what the additional test case shoul d be.

>/

private static void testNumeratorDenoni nat or Constructor() {

Fraction f; /1 val ue produced by the constructor
int n; /1 conveni ence varible for the nunerator val ue
int d = 0; /1 conveni ence varible for the denom nator val ue

/1 Test Case 1: check the boundary case of a zero nunerator "0/1".

f = new Fraction(0,1);

if ((n =f.getNunerator()) !=0
System out . printl n(" Got +

}

|| (d = f.getDenom nator()) != 1) {
n+"/" +d+ ", expected 0/1");

/1 Test Case 2: check a sinple case the doesn't need reduction.

CSC103-S010-L2

}

f = new Fraction(1,2);

if ((n =f.getNunerator()) !=1 || (d = f.getDenom nator()) !'= 2) {
Systemout.printin("Gt " +n + "/" +d + ", expected 1/2");

}

/1 Test Case 3: check a case that needs sone reduction.

f = new Fraction(4,8);

if ((n =f.getNunerator()) !=1 || (d = f.getDenom nator()) '= 2) {
Systemout.printin("Gt " +n + "/" +d + ", expected 1/2");

}

E. Andif the following simplification of this code isndcreaming at you, it should be:

/****

* Class SinpleFractionTest

is avery small

exanple illustrating what your

* FractionTest class can |ook |ike for Progranm ng Assignnment 1.

*/

public class SinpleFractionTest {

In the conplete
of the faction

/**
* Call the test nethod for testNumeratorDenoni nator.
* FractionTest you're witing, this main method calls all
* test methods.
>/
public static void main(String[] args) {
t est Nuner at or Denomi nat or Constructor () ;
}
/**

* Test the full
* sanple test cases. In the full
* sone additional test cases.
* help figure out what the additional
>/

initializing constructor of the Fraction class with three
version of this test nmethod you'll
Use the guidelines in Lecture Notes 2 to
test case shoul d be.

need

private static void testNumeratorDenoni nat or Constructor() {

check the boundary case of a zero nunerator "0/1".

check a sinple case the doesn't need reduction.

Fraction f; /1 val ue produced by the constructor
// Test Case 1:
test(0, 1, 0, 1);
// Test Case 2:
test(1, 2, 1, 2);
/! Test Case 3: check a case that needs sone reduction.
test(4, 8, 1, 2);
}
/**

* Qutput an error

if the given Fraction f does not

have the given

* val ues for nExpected and dExpected for its nunerator and denom nator.

>/

private static void test(int nln, int din, int nExpected, int dExpected) {
int n; /1 conveni ence variable for the nunerator val ue
int d =0 /1 conveni ence variable for the denom nator val ue
Fraction f = new Fraction(nln, din);
if ((n=f.getNunerator()) != nExpected ||

(d = f.getDenom nator())

I = dExpected) {

CSC103-S010-L2 &e 4

Systemout.printin("Gt " +n + "/" +d +
" expected " + nExpected + "/" + dExpected);

VI. Someinitial thoughts on choosing good inputs.
A. Inthe description ah@ d systematic testing, we said that it needs téhoeoughandcomplete
Oneof the ley aspects of this is selecting good inputs for test cases.

B.
C. Itturns out that this is a really large subject in computer science that we’ll only just start looking at in 102.
D.

For starters, here are anfavell-accepted guidelines for selecting good test inputs:
1. Test ranges of input values.
a. "Smallest’possible value.
b. "Largest" possiblealue.
c. Values in between.
d. l.e.,test at thdboundariesand selected points between.
2. For mid-range values,
a. Chooseypical or normal values for inputs, based on the program specification.
b. Chooserepresentativevalues, to &oid redundang (more on this coming weeks).
3. Asyou test methods:
a. Test different combinations of inputs.
b. Test with inputs that a@r all parts of your code.

c. Test with inputs thatx@rcise the "tricly parts" of your code (therg’actually a science to this, but it
sometimes feels lkan at).

d. Test with inputs that cause exceptions.

That’sit for our the introduction to testing.
WE' Il have plenty moreto say about it asthe quarter goes on.
I n the meantime for these notes, we'll resume our discussion on
the basics of object-oriented programming in Java.

VIl. Datavaues in Jsa.
A. Thereare two kinds of data in a Ja program --primitive dataandclass objects
B. For the programs we’ll write in 102, the primriéti types we’ll use arent , doubl e, bool ean, andchar .

1. Thereare additional primitie types named | oat , byt e, short, andl ong.
2. Table 1 in Chapter 4 (page 129) describes all of these ménjipes.

C. Anything other than a primite data value is represented asodnject

1. Anobject is the value of a type defined as a class, i.e., a type that is not one of the eigh¢grimiti
2. Arrayvalues are also non-primit, and hence array values are objects.

D. Objectsare created with theew operator.
1. Specificallywhenever newis executed, a brand meobject is created.

2. Asspecial cases, string and array objects can be created withouhasing
a. Literalstring objects can be created using double quotes, in the normal way.
b. Array objects can be created using curly braces, as in C.
c. We'll look more closely at string and array literals later in these notes.

VIll. Wheredata are stored.

CSC103-S010-L2 &ye 5

A. Primitive cata values are stored directly within the variable or parameter to whichréhassigned.
1. For example, consider the following prinvié ceclarations:
int i = 120;
double d = 120. 65;

bool ean b = fal se;
char ¢ = 'x’

2. Thesare pictured in memory lithis:

120. 65

b fal se

a .
x
- o

c

B. Objectdata are stored asferenceswithin the variable or parameter to whichytaee assigned.
1. For example, consider these non-primeteclarations:

String s = "xyz";
int[] a={1, 2, 3};
Rectangl e r = new Rectangl e(10, 20, 100, 200);

2. Thesare pictured in memory lithis:

—

Rect angl e

X 1

y

N
o o

wi dt h 100

hei ght 200

Rectangl e(int,int,int,int)
voi d nmove(int,int)
bool ean equal s(Rect angl e)

IX. How objectsare created.
A. A class object is created using tihew operatoy followed immediately by a call to a class constructor.
B. A constructor is a special form of method that is called wheermedass object is created.
. Syntacticallya constructor is declared kka nethod, using the same name as the class, without return value.
. The"return" of a constructor is a class object, which contains its data fields and methods.
l.e.,a constructor returns thiehi s object for a class.

mTm oo

Constructors can beverloaded there can be more than one definition of the same constrastbng as the
input parameters are different.

CSC103-S010-L2 &ye 6

1. Atypical case is to @ two overloads of a constructor -- one with no parameters, and another with one
parameter for each data field.

2. Azero-argument constructor is often calledefaultconstructor

a. Infact, if a class has nokplicitly declared ay constructor at all, Ja defines a zero-argument con-
structorby default, i.e., Jaa automatically declares a default constructor.

b. Bven though Jaa will automatically declare a zero-argument default constrpitticrconsidered good
programming practice \ahys to declare onexplicitly, so it an be documented, and so it can-per
form ary necessary default data initializations.

c. Furthermoreif you define ag constructor(s) at all, ¥a desnt give you the default constructor for
free aly more, so you'll need to define it yourselfThink about this a bit.

3. Aconstructor with one argument for each data field is calleitzadizing constructor.

a. Agood example is the constructor for RRect angl e:

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y =vy;
this.width = width;
thi s. hei ght = hei ght;
}

b. We'll say more about this in upcoming discussions.

X. Classmember visibility.

A. Java provides three heels of visibility for methods and data fields within a class:
1. public -- visible in aty other class
2. protected -- visible in a restricted subset of other classes
3. private -- not visible in ag other class

B. For the next fes weeks in 102, we will foller the following visibility rules:

1. Thefollowing are declaregubl i c:
a. allclasses, i.e., the public modifier goes at the beginning of all class definitions
b. dl constructors
c. allmethods in the API that other classes use

2. Thefollowing are declaregri vat e:
a. alldata fields, i.e., instance variables
b. dl methods that are used in the class, but not provided in the API

3. For naw, we will not use thepr ot ect ed form of visibility.

4. Notethat methods and data fields without aplieit publ i ¢ or pri vat e declaration are not alled,;
this form of visibility is called "package protected", which is not something we want right no

5. Notealso that method local variables are not declangoll i ¢ or pri vat e, since thg are only visible
inside the method in which there declared.

XI. Accessor and mutator methods.
A. Given our requirement that data fields are allvgie, accessing and changing class data fields must be pro-
vided by publicaccessoandmutatormethods.
1. Thesare introduced in Section 2.7 of the book.
2. For example, simple accessor and mutator methods fdRetbeangl e class discussed in notes buid

look like this:

public class Rectangle {
int x;
int vy;
int wdth;

i nt height;

CSC103-S010-L2

11
/1 Sinple accessor nethods are typically called "getters"
11

/**

* Return the x coordinate val ue.

*

/

public int getX() {
return x;

}

/**

* Return the y coordinate val ue.
*/
public int getY() {

return vy;

}

/**

* Return the w dth.

*/

public int getWdth() {
return wdth;

}

/**

* Return the height.

*/

public int getHeight() {
return height;

}

11
/1 Sinple mutator nethods are typically called "setters".
11

/**
* Set the x coordinate to the given int val ue.
*/
public void setX(int x) {
this.x = x;

}

/**

* Set the y coordinate to the given int val ue.

*/

public void setY(int y) {
this.y =vy;

}

/**

* Set the width to the given int val ue.
*/
public void setWdth(int wdth) {
this.width = w dth;
}

/**

* Set the height to the given int val ue.
*/

public void setHeight(int height) {

CSC103-S010-L2 &ye 8

B

t hi s. hei ght = hei ght;

/1 ... other methods of the Rectangle class, as shown in ../Rectangle.java

}

. Whenlooking at one-line getter and setter methods ftiks, you might say "W¥ not just male the data

fields public, since this these methods are makingeftgetivelypublic anyway?"

C. We will address this question a bit later in the quandren we discusdata abstraction, and explain wiy

XII.

access and mutation through methods is a better idea than public data.

How data are compared for equality.

A. Comparingvaues for equality is @y important topic in anprogramming language, and particularly so in an

B.

object-oriented language.
Primitive data values are compared with the=" operator just as thg are in C.
1. For example, gien the primitive \ariable definitions ahe,

int i = 120;

double d = 120. 65;

bool ean b = fal se;
char ¢ = "x';

the following are some sample comparisons:

i == 120; [/l true

i == 120. 65; [/l fal se

i == d; [/l fal se

i == c; [/l true
== ¢; [/l fal se

c == b; /1 conpilation error: inconpatible types

i == b; /1 conpilation error: inconpatible types
== b; /1 conpilation error: inconpatible types

2. Notethat ints, doubles, and chars are type compatible for comparison purpatsast bone of these
three types is compatible with boolean.

3. Also,have a dose look at the true/false values of these primidjuality expressions (in the // comments)
and convince yourself that you understand vehgding on.

Non-primitve dject values can be compared with, or with the. equal s method.

1. For example, consider the non-priméivariable definitions abhe for Strings, array a, and Rectangle

String s = "xyz";
int[] a=1{1, 2, 3};
Rectangl e r = new Rectangl e(10, 20, 100, 200);

2. Thefollowing are some sample comparisons for these variables:

s == "xyz"; [/l true
s == "abc"; [/l fal se

int[] a2 = {1, 2, 3};
a == az2; [/l fal se
a. equal s(a2); /1 false (.equals on arrays defaults to ==

Rect angl e r2 = new Rectangl e(10, 20, 100, 200);
r == r2; [/l fal se
r.equal s(r2); /1 true (this works given Rectangle.equals)

3. Thefollowing is a picture of memory that helps explain whating on in the preceding example.

CSC103-S010-L2 &ye 9

"xyz" "abc"
\ /
X | y | z| a| b | c|
S - 1 ™ 1
2
] Rect angl e

X

y 2
wi dt h 100
hei ght 200

!!

1

Rectangl e(int,int,int,int)
voi d nmove(int,int)
bool ean equal s(Rect angl e)

r2

/

Rect angl e

X 10

y 20

w dt h 100

hei ght 200

Rectangl e(int,int,int,int)
voi d move(int,int)
bool ean equal s(Rect angl e)

D. When==is used to compare objects, it comparesobject eferencesNOT contents of the objects; this is
shallow comparison.
1. Whatit means to compare tweferences is to compare the locations to whicl taer, not the contents
at those locations.
2. Hencejwo references are= if they refer to the same exact object in memory.
3. Two references are net= if they refer to different objectsyen if the contents of the objects is the same.

4. Thesare things you should ha dserved in Lab 3.

E. When. equal s is used to compare objects, it is up to the implementor oédfuml s method to define
exactly what equality means.
1. For the hiilt-in Java Sring classequal s is defined as characterwise equality; this is an exampleepf
equality
2. For theRect angl e class defined in the last notesjual s is defined as a comparison of all four

CSC103-S010-L2 &ye 10

Rect angl e data fields; this is also an exampledeép equality.
F. Inthe preceding examples, the expression
r ==r2

is false, because thedwariables refer to different objects.
G. Incontrast, the expression

r.equal s(r2)

is true, because thHeect angl e class implements the equals method to compasedetangles component-
wise, i.e., lile this:

bool ean equal s(Rectangle r) {
return x == r.x &&
y ==r.y &&
width == r.width &&
hei ght == r. hei ght;
}

H. Itis important to note that thequal s method must be explicitly implemented in a class in order for it to
behae dfferently from==.

1. Bydefault, the implementation efjual s uses the== operatoron references.

2. Hencejf a class does not define its own versioreglial s, the == operator and thequal s method
behae exactly the same for values of that class.

3. Thesare also things you shouldvearoticed in Lab 3.
4. We'll see more examples of exactly what this means as the quarter progresses

XIll. Details of Java String data and string comparison.
A. Java grings are defined by the libra8t r i ng class.

B. ThisStri ng class provides a useful set of methods for string manipulation, includingrigdeoncatena-
tion, and cowersions.

C. Section.5 of the book is a good summary.

o

TheJava library documentation for thét r i ng class has the complete specification.
E. Thefollowing example program illustrates some further details of comparing strings for equality.

/****
*

* Exanpl es of how equality works for literal string values. See Lecture Notes

* 2 for some explanatory discussion.
*

*
/
public class StringEquality {

public static void main(String[] args) {

String s1 = "xyz";

String s2 = "xyz";

String s3 = new String("xyz");

String s4 = new String("xyz");
Systemout.println(sl == s2); /'l true
Systemout.println(sl == s3); /1 false
Systemout. println(s3 == s4); /1 false
System out. println(sl. equal s(s2)); /'l true

System out. printl n(sl. equal s(s3)); /'l true

CSC103-S010-L2 &ye 11

System out . printl n(s3. equal s(s4)); /'l true
}
}
1. A double quoted string literal isvedys the same object in avdaprogram, which explains whs1 ==
S2 is true.

2. Asnoted abwe, the St r i ng class implementsqual s as elementwise comparison of characters, which
explains wty al three calls tcSt ri ng. equal s return true.

3. Heres a pcture of hav memory is laid out for this program.

Xyz

sl

s2 X

> - new String("xyz")
-<+— new String("xyz"
W[—— DI o)

XIV. Someinitial discussion of Java arraysand array comparison.

A. Java arays are general-purpose structures that can contain elemenystyfperbut all elements of grarray
are the same type.

B. Thereis no built-in class named\' r ay" that is comparable to the built-8t r i ng class.
1. Theres a utility named ava. uti | . Arrays, more about which we’ll say in next weskbtes.
2. Butnote carefully thafr r ays is not a type; again, more about this coming soon.

C. Thereis also a subtle difference betwe®tr i ng and array literals

1. Asnoted earliera double-quoted string literalabys refers to the same objectwever mary times that
literal appears in a program.

2. Incontrast, a curly-braced array literal createsva areay object gery time it is used.

D. Anotherconsequence of there not being a type-defidingay class is that there is naiili-in equal s
method for all arrays.

1. Thisis the reasoa. equal s(a2) is false in the preceding example.

2. Hencegqual s for ary two arays alays defaults ta==, that is, reference comparisamt elementwise
comparison.

3. To get elementwise equality for arrays, you must write your own for loop, as illustrated kample
next week.

4. Thereis also a hilt-in Arrays class in Jea that has an equals method; we will discuss this class a bit
later in the quarter.

5. Dont worry if you're confused and/or frustrated by these details of arrays; so are just\wvgudtieer
Java pogrammer!

6. A good deal of the frustration iwv&come by using thér r ayLi st class, about which will say much
more in upcoming lectures.

XV. Miscellaneous Java topics covered in the book, but not fully discussed in lecture.

A. Terminology synonyms:
1. method= function

CSC103-S010-L2 &ye 12

2. reference= pointer
3. keyword=reserved word
4. data field= instance variable

B. Definingconstants.
1. Constantare defined in da a&f i nal data fields.
2. E.g,
private final int MAX_TRANSACTI ONS = 100;

C. Stringconcatenation, particularly for printing @St r i ng methods.
1. The'+' on strings performs string concatenation.
2. E.g."x" + "y" + "Zz" resultsin the strinfjxyz" .
3. Corveniently, the '+’ operator automatically ceerts non-strings to strings for concatenation purposes.
4. For example, if the values of integer variakileandj are10 and20 respectrely, then the expression
"The value of i and j are " + i " and " + j
is the string' The value of i and j are 10 and 20."
5. Thesare things related to some of the questions in Lab 3.

D. Thebare bones basics of exception handling.
1. Inthe labs and programs so,fae’ve tbuched on the idea of exception handling.

2. Usingexceptions in Jea has two parts:
a. Whema method detects an erfarcant hr owan exception.
b. When someone calling that method wants to handle the exception, ittusgs@at ch statement

3. Inprogram 1, you need to usér owanl | | egal Ar gunent Except i on if someone tries to construct
aFracti on with a non-positie cenominator.

4. To handlean ception, for example in a testing program, you use the following formmy-@fatch state-
ment:

try {

method call that could throw an exception
cat ch (ExceptionNamee) {
code that handles the exception, e.g., by printing an error messa

}

a. We don't get to thet r y- cat ch exception handling statement until chapter 11 of the book.
b. In your version ofFracti onTest. j ava, you can use the following form of code for test cases
where theFr act i on constructor throws ahl | egal Ar gunent Excepti on:

try {
/1 Test that exception is thrown with a zero denom nator val ue.
new Fraction(1, 0);

catch (111 egal Argunment Exception e) {
Systemout.printin("l11egal Argunment Exception thrown as expected");
}

E. Introduction to program debugging.
A. Chapter6 of the book touches on the subject.
B. ThejGrasp and Eclipse environments provide very good debugging tools.

C. Inan upcoming lecture and/or lab, we’ll run a demo of debugging a very simple infinite loop program, in
102/ exanpl es/ I nfi niteLoop. j ava

CSC103-S010-L2 &ye 13

