
CSC103-S010-L2 Page 1

CSC 102 Lecture Notes Week 2
Introduction to Incremental Development and Systematic Testing

More Jav a Basics

Revised 12 April

I. Relevant reading.

A. Horstmannchapters 1 - 6 (continued from last week).

B. Writeupsfor Lab 3, Lab 4, and Program 1.

C. Various cited material in the writeups.

II. The basic idea of incremental development and systematic testing.

A. Theidea ofincremental developmentis to develop a program in a step-by-step process.

1. You can start by laying out an overall design of the program
a. firstdetermine the classes you’ll need in the program
b. then determine the methods you’ll need within the classes.

2. Thenyou can develop the methods one at a time, starting with the simplest and most basic methods first,
progressing to the more complicated methods one-by-one.

B. Theidea ofsystematic testingis to make sure that the classes get tested thoroughly and completely.

1. Aneffective way to do this is to test each method as it’s being developed.

2. Testing a method entails calling it a bunch of times to make sure it does what it’s supposed to do.

3. Thedefinition of "what it’s supposed to do" comes from the program specification.

III. Typical design of Jav a testing programs.

A. It’s common Java practice to organize classes in pairs -- one class to be tested, another class to do the testing.

B. For example, for the first program we have the classFraction to be tested, and the classFractionTest
that will do the testing.

C. It is a very common Java naming convention to have the name of the testing class be the same as the name of
the class being tested, with the suffix "Test" added to the name.

IV. A basic plan for testing a class.

A. Theoverall goal is to test all of the public methods.

B. To get this done, the following is a typical order of method implementation and testing:

1. Implementany necessary access methods in the class being tested.
a. Suchmethods are necessary to provide access to private data fields, so the testing methods can check

that results are correct.
b. For example in the case of theFraction class, implementgetNumerator andgetDemonima-

tor first.

2. Test the class constructors first.
a. Thismakes sense since you need to construct objects before you can test the methods in those objects.
b. In the case theFraction class, the first tests you’ll do are for the threeFaction constructors --

testDefaultConstructor(), testNumeratorConstructor(), testNumeratorDe-
nominatorConstructor().

3. Next you can test methods that work with values without modifying them.
a. It’s reasonable to test these methods next because in many cases they may get used by other methods

in the class.
b. The idea is to test methods first that other methods may rely on.

CSC103-S010-L2 Page 2

c. In the case of theFraction class, you can writetestToString andtestEquals after you
have fully tested all three of the constructors.

4. Finally, test methods that perform computations on class data.
a. It makes some sense to test these methods later, since they are often more complicated, and my rely on

previously tested methods.
b. The idea here is develop and test incrementally from simple methods to more difficult ones.
c. In the case of theFraction class, testing of the computational methods is done bytestAdd(),

testSub(), testMul(), andtestDiv().

V. What’s in a testing method?

A. Testing a method is done in a sequence oftest cases.

B. Eachtest caseinvolves:

1. Selectinginput(s) for the method to be tested.

2. Determiningwhat you expect the method to output given the selected inputs.

3. Callingthe method with the inputs to see if it actually outputs what you expect.

C. Theare a number of different ways to implement this kind of testing; one common approach goes like this:
1. Setup the necessary inputs, including constructing objects if necessary.
2. Callthe method.
3. Useanif statement to compare the actual output with expected output and print an error message if they

don’t agree.

D. Here’s aconcrete example of three test cases fortestNumeratorDenominatorConstructor(), in a
very simple version of theTestFraction class:

/****
* Class SimpleFractionTest is a very small example illustrating what your
* FractionTest class can look like for Programming Assignment 1.
*/

public class SimpleFractionTest {

/**
* Call the test method for testNumeratorDenominator. In the complete
* FractionTest you’re writing, this main method calls all of the faction
* test methods.
*/

public static void main(String[] args) {
testNumeratorDenominatorConstructor();

}

/**
* Test the full initializing constructor of the Fraction class with three
* sample test cases. In the full version of this test method you’ll need
* some additional test cases. Use the guidelines in Lecture Notes 2 to
* help figure out what the additional test case should be.
*/

private static void testNumeratorDenominatorConstructor() {

Fraction f; // value produced by the constructor
int n; // convenience varible for the numerator value
int d = 0; // convenience varible for the denominator value

// Test Case 1: check the boundary case of a zero numerator "0/1".
f = new Fraction(0,1);
if ((n = f.getNumerator()) != 0 || (d = f.getDenominator()) != 1) {

System.out.println("Got " + n + "/" + d + ", expected 0/1");
}

// Test Case 2: check a simple case the doesn’t need reduction.

CSC103-S010-L2 Page 3

f = new Fraction(1,2);
if ((n = f.getNumerator()) != 1 || (d = f.getDenominator()) != 2) {

System.out.println("Got " + n + "/" + d + ", expected 1/2");
}

// Test Case 3: check a case that needs some reduction.
f = new Fraction(4,8);
if ((n = f.getNumerator()) != 1 || (d = f.getDenominator()) != 2) {

System.out.println("Got " + n + "/" + d + ", expected 1/2");
}

}

}

E. Andif the following simplification of this code isn’t screaming at you, it should be:

/****
* Class SimpleFractionTest is a very small example illustrating what your
* FractionTest class can look like for Programming Assignment 1.
*/

public class SimpleFractionTest {

/**
* Call the test method for testNumeratorDenominator. In the complete
* FractionTest you’re writing, this main method calls all of the faction
* test methods.
*/

public static void main(String[] args) {
testNumeratorDenominatorConstructor();

}

/**
* Test the full initializing constructor of the Fraction class with three
* sample test cases. In the full version of this test method you’ll need
* some additional test cases. Use the guidelines in Lecture Notes 2 to
* help figure out what the additional test case should be.
*/

private static void testNumeratorDenominatorConstructor() {

Fraction f; // value produced by the constructor

// Test Case 1: check the boundary case of a zero numerator "0/1".
test(0, 1, 0, 1);

// Test Case 2: check a simple case the doesn’t need reduction.
test(1, 2, 1, 2);

// Test Case 3: check a case that needs some reduction.
test(4, 8, 1, 2);

}

/**
* Output an error if the given Fraction f does not have the given
* values for nExpected and dExpected for its numerator and denominator.
*/

private static void test(int nIn, int dIn, int nExpected, int dExpected) {
int n; // convenience variable for the numerator value
int d = 0; // convenience variable for the denominator value
Fraction f = new Fraction(nIn, dIn);

if ((n = f.getNumerator()) != nExpected ||
(d = f.getDenominator()) != dExpected) {

CSC103-S010-L2 Page 4

System.out.println("Got " + n + "/" + d +
" expected " + nExpected + "/" + dExpected);

}
}

}

VI. Some initial thoughts on choosing good inputs.

A. In the description above of systematic testing, we said that it needs to bethoroughandcomplete.

B. Oneof the key aspects of this is selecting good inputs for test cases.

C. It turns out that this is a really large subject in computer science that we’ll only just start looking at in 102.

D. For starters, here are a few well-accepted guidelines for selecting good test inputs:

1. Test ranges of input values.
a. "Smallest"possible value.
b. "Largest" possiblevalue.
c. Values in between.
d. I.e.,test at theboundariesand selected points between.

2. For mid-range values,
a. Choosetypical or normal values for inputs, based on the program specification.
b. Chooserepresentativevalues, to avoid redundancy (more on this coming weeks).

3. Asyou test methods:
a. Test different combinations of inputs.
b. Test with inputs that cover all parts of your code.
c. Test with inputs that exercise the "tricky parts" of your code (there’s actually a science to this, but it

sometimes feels like an art).
d. Test with inputs that cause exceptions.

That’s it for our the introduction to testing.
We’ll have plenty more to say about it as the quarter goes on.

In the meantime for these notes, we’ll resume our discussion on
the basics of object-oriented programming in Java.

VII. Datavalues in Java.

A. Thereare two kinds of data in a Java program --primitive dataandclass objects.

B. For the programs we’ll write in 102, the primitive types we’ll use areint, double, boolean, andchar.

1. Thereare additional primitive types namedfloat, byte, short, andlong.

2. Table 1 in Chapter 4 (page 129) describes all of these primitive types.

C. Anything other than a primitive data value is represented as anobject.

1. Anobject is the value of a type defined as a class, i.e., a type that is not one of the eight primitives.

2. Arrayvalues are also non-primitive, and hence array values are objects.

D. Objectsare created with thenew operator.

1. Specifically, whenever new is executed, a brand new object is created.

2. Asspecial cases, string and array objects can be created without usingnew.
a. Literalstring objects can be created using double quotes, in the normal way.
b. Array objects can be created using curly braces, as in C.
c. We’ll look more closely at string and array literals later in these notes.

VIII. Where data are stored.

CSC103-S010-L2 Page 5

A. Primitive data values are stored directly within the variable or parameter to which they are assigned.

1. For example, consider the following primitive declarations:

int i = 120;
double d = 120.65;
boolean b = false;
char c = ’x’

2. Theseare pictured in memory like this:

i

d

b

c

120

120.65

false

’x’

B. Objectdata are stored asreferenceswithin the variable or parameter to which they are assigned.

1. For example, consider these non-primitive declarations:

String s = "xyz";
int[] a = {1, 2, 3};
Rectangle r = new Rectangle(10, 20, 100, 200);

2. Theseare pictured in memory like this:

1

2

3

s

a

r

x y z

10

20

100

x

y

width

height 200

Rectangle(int,int,int,int)
void move(int,int)
boolean equals(Rectangle)

Rectangle

IX. How objects are created.

A. A class object is created using thenew operator, followed immediately by a call to a class constructor.

B. A constructor is a special form of method that is called whenever a class object is created.

C. Syntactically, a constructor is declared like a method, using the same name as the class, without return value.

D. The"return" of a constructor is a class object, which contains its data fields and methods.

E. I.e.,a constructor returns thethis object for a class.

F. Constructors can beoverloaded, there can be more than one definition of the same constructor, as long as the
input parameters are different.

CSC103-S010-L2 Page 6

1. A typical case is to have two overloads of a constructor -- one with no parameters, and another with one
parameter for each data field.

2. A zero-argument constructor is often called adefaultconstructor
a. In fact, if a class has not explicitly declared any constructor at all, Java defines a zero-argument con-

structorby default, i.e., Java automatically declares a default constructor.
b. Even though Java will automatically declare a zero-argument default constructor, it is considered good

programming practice always to declare one explicitly, so it can be documented, and so it can per-
form any necessary default data initializations.

c. Furthermore,if you define any constructor(s) at all, Java doesn’t giv e you the default constructor for
free any more, so you’ll need to define it yourself. (Think about this a bit.)

3. A constructor with one argument for each data field is called aninitializing constructor.
a. Agood example is the constructor for theRectangle:

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}

b. We’ll say more about this in upcoming discussions.

X. Class member visibility.

A. Java provides three levels of visibility for methods and data fields within a class:

1. public -- visible in any other class

2. protected -- visible in a restricted subset of other classes

3. private -- not visible in any other class

B. For the next few weeks in 102, we will follow the following visibility rules:

1. Thefollowing are declaredpublic:
a. allclasses, i.e., the public modifier goes at the beginning of all class definitions
b. all constructors
c. allmethods in the API that other classes use

2. Thefollowing are declaredprivate:
a. alldata fields, i.e., instance variables
b. all methods that are used in the class, but not provided in the API

3. For now, we will not use theprotected form of visibility.

4. Notethat methods and data fields without an explicit public or private declaration are not allowed;
this form of visibility is called "package protected", which is not something we want right now.

5. Notealso that method local variables are not declaredpublic or private, since they are only visible
inside the method in which they are declared.

XI. Accessor and mutator methods.

A. Given our requirement that data fields are all private, accessing and changing class data fields must be pro-
vided by publicaccessorandmutatormethods.

1. Theseare introduced in Section 2.7 of the book.

2. For example, simple accessor and mutator methods for theRectangle class discussed in notes 1 would
look like this:

public class Rectangle {
int x;
int y;
int width;
int height;

CSC103-S010-L2 Page 7

//
// Simple accessor methods are typically called "getters"
//

/**
* Return the x coordinate value.
*/
public int getX() {

return x;
}

/**
* Return the y coordinate value.
*/
public int getY() {

return y;
}

/**
* Return the width.
*/
public int getWidth() {

return width;
}

/**
* Return the height.
*/
public int getHeight() {

return height;
}

//
// Simple mutator methods are typically called "setters".
//

/**
* Set the x coordinate to the given int value.
*/
public void setX(int x) {

this.x = x;
}

/**
* Set the y coordinate to the given int value.
*/
public void setY(int y) {

this.y = y;
}

/**
* Set the width to the given int value.
*/
public void setWidth(int width) {

this.width = width;
}

/**
* Set the height to the given int value.
*/
public void setHeight(int height) {

CSC103-S010-L2 Page 8

this.height = height;
}

// ... other methods of the Rectangle class, as shown in ../Rectangle.java

}

B. Whenlooking at one-line getter and setter methods like this, you might say "Why not just make the data
fields public, since this these methods are making dataeffectivelypublic anyway?"

C. We will address this question a bit later in the quarter, when we discussdata abstraction, and explain why
access and mutation through methods is a better idea than public data.

XII. How data are compared for equality.

A. Comparingvalues for equality is very important topic in any programming language, and particularly so in an
object-oriented language.

B. Primitive data values are compared with the "==" operator, just as they are in C.

1. For example, given the primitive variable definitions above,

int i = 120;
double d = 120.65;
boolean b = false;
char c = ’x’;

the following are some sample comparisons:

i == 120; // true
i == 120.65; // false
i == d; // false
i == c; // true
d == c; // false
c == b; // compilation error: incompatible types
i == b; // compilation error: incompatible types
d == b; // compilation error: incompatible types

2. Notethat ints, doubles, and chars are type compatible for comparison purposes, but not none of these
three types is compatible with boolean.

3. Also,have a close look at the true/false values of these primitive equality expressions (in the // comments)
and convince yourself that you understand what’s going on.

C. Non-primitive object values can be compared with==, or with the.equals method.

1. For example, consider the non-primitive variable definitions above for Strings, arraya, and Rectangler

String s = "xyz";
int[] a = {1, 2, 3};
Rectangle r = new Rectangle(10, 20, 100, 200);

2. Thefollowing are some sample comparisons for these variables:

s == "xyz"; // true
s == "abc"; // false

int[] a2 = {1, 2, 3};
a == a2; // false
a.equals(a2); // false (.equals on arrays defaults to ==)

Rectangle r2 = new Rectangle(10, 20, 100, 200);
r == r2; // false
r.equals(r2); // true (this works given Rectangle.equals)

3. Thefollowing is a picture of memory that helps explain what’s going on in the preceding example.

CSC103-S010-L2 Page 9

1

2

3

s

a

r

x y z

10

20

100

x

y

width

height 200

Rectangle(int,int,int,int)
void move(int,int)
boolean equals(Rectangle)

Rectangle

"abc"

a b c

"xyz"

10

20

100

x

y

width

height 200

Rectangle(int,int,int,int)
void move(int,int)
boolean equals(Rectangle)

Rectangle

r2

1

2

3
a2

D. When== is used to compare objects, it comparesthe object references, NOT contents of the objects; this is
shallow comparison.

1. Whatit means to compare two references is to compare the locations to which they refer, not the contents
at those locations.

2. Hence,two references are== if they refer to the same exact object in memory.

3. Two references are not== if they refer to different objects, even if the contents of the objects is the same.

4. Theseare things you should have observed in Lab 3.

E. When.equals is used to compare objects, it is up to the implementor of theequals method to define
exactly what equality means.

1. For the built-in Java String class,equals is defined as characterwise equality; this is an example ofdeep
equality

2. For theRectangle class defined in the last notes,equals is defined as a comparison of all four

CSC103-S010-L2 Page 10

Rectangle data fields; this is also an example ofdeep equality.

F. In the preceding examples, the expression

r == r2

is false, because the two variables refer to different objects.

G. Incontrast, the expression

r.equals(r2)

is true, because theRectangle class implements the equals method to compare two rectangles component-
wise, i.e., like this:

boolean equals(Rectangle r) {
return x == r.x &&

y == r.y &&
width == r.width &&
height == r.height;

}

H. It is important to note that theequals method must be explicitly implemented in a class in order for it to
behave differently from==.

1. Bydefault, the implementation ofequals uses the== operatoron references.

2. Hence,if a class does not define its own version ofequals, the== operator and theequals method
behave exactly the same for values of that class.

3. Theseare also things you should have noticed in Lab 3.

4. We’ll see more examples of exactly what this means as the quarter progresses

XIII. Details of Jav a String data and string comparison.

A. Java strings are defined by the libraryString class.

B. ThisString class provides a useful set of methods for string manipulation, including indexing, concatena-
tion, and conversions.

C. Section4.5 of the book is a good summary.

D. TheJava library documentation for theString class has the complete specification.

E. Thefollowing example program illustrates some further details of comparing strings for equality.

/****
*
* Examples of how equality works for literal string values. See Lecture Notes
* 2 for some explanatory discussion.
*
*/

public class StringEquality {

public static void main(String[] args) {

String s1 = "xyz";
String s2 = "xyz";
String s3 = new String("xyz");
String s4 = new String("xyz");

System.out.println(s1 == s2); // true
System.out.println(s1 == s3); // false
System.out.println(s3 == s4); // false

System.out.println(s1.equals(s2)); // true
System.out.println(s1.equals(s3)); // true

CSC103-S010-L2 Page 11

System.out.println(s3.equals(s4)); // true

}

}

1. A double quoted string literal is always the same object in a Java program, which explains why s1 ==
s2 is true.

2. Asnoted above, theString class implementsequals as elementwise comparison of characters, which
explains why all three calls toString.equals return true.

3. Here’s a picture of how memory is laid out for this program.

s1

s2

s3

x y z

"xyz"

s4

x y z

x y z

new String("xyz")

new String("xyz")

XIV. Some initial discussion of Jav a arrays and array comparison.

A. Java arrays are general-purpose structures that can contain elements of any type, but all elements of any array
are the same type.

B. Thereis no built-in class named "Array" that is comparable to the built-inString class.

1. Thereis a utility namedjava.util.Arrays, more about which we’ll say in next week’s notes.

2. Butnote carefully thatArrays is not a type; again, more about this coming soon.

C. Thereis also a subtle difference betweenString and array literals

1. Asnoted earlier, a double-quoted string literal always refers to the same object, however many times that
literal appears in a program.

2. Incontrast, a curly-braced array literal creates a new array object every time it is used.

D. Anotherconsequence of there not being a type-definingArray class is that there is no built-in equals
method for all arrays.

1. Thisis the reasona.equals(a2) is false in the preceding example.

2. Hence,equals for any two arrays always defaults to==, that is, reference comparison,not elementwise
comparison.

3. To get elementwise equality for arrays, you must write your own for loop, as illustrated in an example
next week.

4. Thereis also a built-in Arrays class in Java that has an equals method; we will discuss this class a bit
later in the quarter.

5. Don’t worry if you’re confused and/or frustrated by these details of arrays; so are just about every other
Java programmer!

6. A good deal of the frustration is overcome by using theArrayList class, about which will say much
more in upcoming lectures.

XV. Miscellaneous Jav a topics covered in the book, but not fully discussed in lecture.

A. Terminology synonyms:

1. method= function

CSC103-S010-L2 Page 12

2. reference= pointer

3. keyword= reserved word

4. data field= instance variable

B. Definingconstants.

1. Constantsare defined in Java asfinal data fields.

2. E.g.,

private final int MAX_TRANSACTIONS = 100;

C. Stringconcatenation, particularly for printing viatoString methods.

1. The’+’ on strings performs string concatenation.

2. E.g.,"x" + "y" + "z" results in the string"xyz".

3. Conveniently, the ’+’ operator automatically converts non-strings to strings for concatenation purposes.

4. For example, if the values of integer variablesi andj are10 and20 respectively, then the expression

"The value of i and j are " + i " and " + j "."

is the string"The value of i and j are 10 and 20."

5. Theseare things related to some of the questions in Lab 3.

D. Thebare bones basics of exception handling.

1. In the labs and programs so far, we’ve touched on the idea of exception handling.

2. Usingexceptions in Java has two parts:
a. Whena method detects an error, it canthrow an exception.
b. When someone calling that method wants to handle the exception, it uses atry-catch statement

3. In program 1, you need to usethrow anIllegalArgumentException if someone tries to construct
aFraction with a non-positive denominator.

4. To handlean exception, for example in a testing program, you use the following form oftry-catchstate-
ment:

try {
. . .
method call that could throw an exception
. . .

catch (ExceptionNamee) {
. . .
code that handles the exception, e.g., by printing an error message
. . .

}

a. We don’t get to thetry-catch exception handling statement until chapter 11 of the book.
b. In your version ofFractionTest.java, you can use the following form of code for test cases

where theFraction constructor throws anIllegalArgumentException:

try {
// Test that exception is thrown with a zero denominator value.
new Fraction(1, 0);

}
catch (IllegalArgumentException e) {

System.out.println("IllegalArgumentException thrown as expected");
}

E. Introduction to program debugging.

A. Chapter6 of the book touches on the subject.

B. ThejGrasp and Eclipse environments provide very good debugging tools.

C. In an upcoming lecture and/or lab, we’ll run a demo of debugging a very simple infinite loop program, in
102/examples/InfiniteLoop.java

CSC103-S010-L2 Page 13

