CSC102-S010-L.3 &ye 1l

CSC 102 Lecture Notes Week 3
Lab and Program Discussion
Program Design
Arraysand ArrayLists

Relevant reading.

A. Horstmanrchapters 7, 8, and 9.

B. Writeupsfor Labs 5 and 6 (discussed on Monday).
C. Writeupfor Program 2 (discussed on Wednesday).

D. Citedmaterial in writeups.

Goover Labs5and 6.
A. Hereis a summary of thedy gpals of the labs, as detailed in the writeups:
* get some initial practice using te r ayLi st class
« understand primitie wrapperclasses
* get some more practice with tBeanner class
* write overloadedmethods
* start to learn about ¥a Generics

B. Hereare a couple sample runs of what Lab 5 can look like; as described in the writeup, the exact format of

input and output are up to you.

1. Sampleun with correct user input:

Enter integers, doubles, bools, or Strings; Enter "quit" when done:
12-106 4 2.5 15.6 12.2 true false true hi there
quit
M nunum i nteger is: -10
Aver age double is: 10.1
Nunber of trues is: 2
Nunber of Strings is: 2

2. Heres a ample run tha$ missing some input, causing the program towhan exception:

Enter integers, doubles, bools, or Strings; Enter "quit" when done:
qui t
Exception in thread "mai n" java.l ang. | ndexCut Of BoundsException: Index: 0, Size: 0
at java.util.ArraylList. RangeCheck(Arrayli st.java: 547)
at java.util.ArraylList.get(ArraylList.java: 322)
at Filter.mnimumnt(Filter.java: 35)
at Lab5Dri ver. mai n(Lab5Driver.java: 44)

a. Your solution to Lab 5 can throexceptions lile this, but you should lva a bok at what the>exep-
tion says.

b. Coming up soon, you'll learn koto catchexceptions lile tis, so your programs % a nore robust
user interface.

C. Thedifference between labs 5 and 6 is that lab 5 uses four different ArrayLists to store input data, whereas in

lab 6 you use only one ArrayList that can hold foufedént types of elementaNe'll discuss this further
belov under the subject of ya generics

CSC102-S010-L.3 &ye 2

Now on to Arrays and ArrayLists, in Horstmann Chapter 7

Java and C arrays have much in common.

A. They hold multiple elementef the same type.

B. They are afixed sizeeg.,i nt a[] = new int[10]
C. Theareindexableeg.,a[i].

D. They aremutableeg.,a[i] = 10.

. ArraylLi st s arelikearrays, but nicer.

1. They can hold multiple elements of the same tyqredifferent types.
2. The haveaflexible sizeeg.,
ArrayLi st<Integer> al = new ArraylLi st<lnteger>();

3. The areindexable but you need to use tlget method instead of square brackets, e.g.,

al .get(i);
instead of
al[i]

4. They are mutable but you need to use the set method instead of square brackets in an assignment statement,
e.g.,
al .set(i, 10);
instead of
al[i] = 10;

5. The are growable using theadd method, e.gal . add(11) .

V. Here'sasummary of the primary advantages of Arr ayLi st over arrays.

VI.

A. Flexible size.
B. Lotsof useful methods.
C. Enhanced or loop, e.g.,
for (int i : al) { ...}

Let'slook at an example, in 102/ exanpl es/ Arr aysAndArraylLi sts. j ava
which we’ll walk through during lecture.

i mport java.util.Arrays;
i mport java.util.ArraylList;

/****

*

* This class illustrates some of the basic ideas for arrays and Arrayli sts.
* In 102, you'll primarily be using ArraylLists instead of arrays, but use of
* arrays may be convenient in some cases. NOTE: In |abs and progranm ng

* assignnents where it says you nust use an Arraylist, using an plain array
* will not do.

*

/
public class ArraysAndArrayLists {

public static void main(String[] args) {

CSC102-S010-L.3

VII.

/1 Alocate a 10-el ement array.
int a[] = new int[10];

/1 Alocate a flexible-size ArraylList.
Arraylist<lnteger> al = new ArrayLi st<Ilnteger>();

/1 Assign the values 0 through 90 to both the array and ArraylLi st.

for (int i =0; i <10; i++) {
a[i] =1 * 10;
al .add(i * 10);

}

/1 Print out the elements of the array, using a standard for | oop.

for (int i =0; i <10; i++) {
Systemout.print(a[i] + " ");

}

Systemout. println();

/1 Print out the elements of the Arraylist, using standard for | oop.

for (int i =0; i <10; i++) {
Systemout.print(al.get(i) + " ");

}
Systemout. printin();

/1 Increnent each element of the array and ArraylList by 1.

for (int i =0; i <10; i++) {
afi]++;
al .set(i, al.get(i) + 1);
}
I

/1 Print out the elements of the array and ArrayList in different ways.

11

/1 Use the Arrays.toString library method on the array.
Systemout.printin(Arrays.toString(a));

/1 Use (indirectly) the ArrayList.toString method.
Systemout.printlin(al);

/1 Use the specialized formof for |oop on Arraylists.
for (int i : al) {
Systemout.print(i + " ");

}
Systemout. printin();

[l Try to print the array directly; what’s going on here?
Systemout.printin(a + " -- Say what ?");

Java Generics

A. Considerclosely the ArrayList definition in the preceding example:

ArrayLi st<Integer> al = new ArraylLi st<Integer>();

B. Theangle brackets arouricht eger denote gjenericdefinition.

C. Thismeans that the type of &nr ayLi st’s isgeneric, that is, an ArrayList can hold piype of object.

CSC102-S010-L.3 &e 4

D. E.g.,we can hae Arr ayLi st s of | nt egers orDoubl es or

E. Themost generic type dfrr ayLi st holdsQbj ect s, e.g.,
ArrayLi st<Cbject> al = new ArrayLi st<Ohject>();

F. The transition from lab 5 to lab 6 goes from using four type-speiificayLi st s to onefully generic
ArraylLi st of Obj ects.
1. Thelab 6 writeup explains the details ofihto do tis.
2. Section7.2 of the book has further discussion of declaring generic ArrayLists.

VIIl. Wrapper classes (Section 7.3 of the book).

A. Therules of Jaa sy that ArrayLists can only hold objects, not prikétiypes.
1. Thismeans that the following definition results in a compiler error:
Arraylist<int> al;

2. Asmarter Jea compiler might be able to cope with a definitiorelikis.
a. Anin-depth explanation of whit can't is beyond the scope of CSC 102.
b. If you're curious, you can Google around for some discussion of the subject; for example, try the

Google searchwhy is java stupid about primitive types in collectians”
To get around the problem of no primvigs in ArrayLists, the primitre types hae "wrapper" classes.
. For example, thé nt eger class wraps the primi@i nt .

. Suchwrapper classes are used in ArrayLists and other @diections.

m©oOoOw

Insummaryyou alvays declare and create ArrayListsditis
ArraylLi st<lnteger> = new Arrayli st <I nteger>

as opposed to this
Arraylist<int> = new Arrayli st<int>

F. Tomale life a little less painful in dealing with wrapper classesaJa&rsion 5 introduced features called
"auto-boxing" and "unboxing".

1. For example, you can add what lookseli gimitivei nt vaue of 10 like this
al . add(10);
and Jaa will "auto-box" it to this
al . add(new I nteger(10));
2. "Unboxing"is also automatic, as in
int i = al.get(x);
being equiaent to

int i = al.get(x).intValue();

G. Section’.3 of the book discusses this subject further.

IX. Introduction to Java interfaces (Chapter 9).
A. An interface defines a form of completely abstract class.
B. Theinterface definition has just methods, with no data fields.

C. Allinterface methods afally abstract

CSC102-S010-L.3 &ye 5

1. They havenames and signatures, but no implementations

2. A methodsignatureconsists of
a. Thetypes of its parameters, in the orderythee declared.
b. The return type.
c. E.g.the signature of

doubl e methodX(int i, String s, boolean b);
is
(int, String, boolean) -> double
which reads "A method dofnt , St ri ng, bool ean returningdoubl e".
3. Thedeclaration of an interface method ends with just'ariot a body of code in{" . . . }"

X. What interfaces are good for.

A. Theprimary use for an inteate is defining common behavior for classes; the upcoming example will illus-

trate this idea.

B. Interfaces can be particularly useful when the bihiaonly needs a fe@ methods to define; this will be illus-
trated by some of thelibrary interfaces that we’ll be looking at in the coming weeks.

C. Having common behaor defined in an interface allows classes that use an interface to work to deal easily

with different types of data; this is calledlymorphism and upcoming examples will shhchow it's useful.

XI. A good example of where an interface could be useful is provided by the Program 3 Shape interface.

A. | want to write a drawing program, that will display geometric shapes on a screen; these are sheguéariik
gles, circles, etc.

B. Sofar in my 102 programming examplesyé& figured out hev to code a rectangle, so Wwoabout | define a
drawing like this:
public class Draw ng {
Arrayli st <Rect angl e> canvas;
public static void main(...) {
/I Draw some stfibn the canvas
}

}

But this is really boring, since all | can drés rectangles.

C. Whatl actually need is something &khis:

public class Draw ng {
ArraylLi st <Shape> canvas;

public static void main(...) {
/I Draw some stfibn the canvas

}
}

D. Soit looks like | could use &hape class.

E. So,what do geometric shapesvkan common that will go in thiShape class?
1. Numberof points?(not really)

CSC102-S010-L.3

2. Moving around?based on poinjs
3. Sizes%computed differently)

F. Shapes could be a class, but
1. They may not hae any ommon data.
2. They probably hae dfferent method implementations.

G. Enterinterfaces.

XIl. Comparison of classes and interfaces.

A. Heres what aShape interface looks like, and oit can be implemented byRect angl e class:

public interface Shape {
public void nove(Point delta);
public double getArea();

/I moe later
}
public class Rectangle inplenments Shape {
int x,y, height,w dth;

public void nmove(Point delta) {

}
public doubl e getArea() {

}
}

B. Supposénstead of defininghape as an interface, we defined it as a class, tils:
public class Shape {
/I Leave out data fields
public void nmove(Point delta) {

/I no default implementation

public doubl e getArea() {
return O; /I pretty useless

}

/I maybe mae later

}

public class Rectangl e extends Shape {
int x,y, height,w dth;

public void nmove(Point delta) {

}
public doubl e getArea() {

}

CSC102-S010-L.3 &ye 7

C.

The comments in the class definition suggestyvam interface definition may be the better choice for
Shapes than a class.

1. "Maybe" a better choice will be a subject of further discussion next week.

2. Infact, the subject of Program 3 will specifically address the issue of choosing between aoeirgerf
class definition of shapes.

XIll. Summary of what it takesto implement an interface.

Usethe lkeyword i npl enment s.

A
B. Implementall interface methods.
C.
D

. Methodnames and signatures in interface and implementationerastly match

Declardnterface methodpubl i c.

XIV. Polymorphism (Section 9.3).

A.
B.
C.

It's Greek for "multiple shapes".
In a program, it means a method candakferent "shapes", i.e., types, of data.

Inthe example ahe, theDr awi ng class has an ArrayList &hape for its drawing cawves.
1. Itcan mae hapes around on the aa@a without knowing what particular type of objecsitioving.

2. Thisis possible because tighape interface requires that all of its implementing classes provide their
own definition of thenove method.

3. Thatis, all of the methods of @hape arepolymorphic
4. Thisis a powerful feature of interfaces about which we'ltdharore to say in upcoming weeks.

Now on to a Bt of Program Design, from Horstmann Chapter 8

XV. Introduction to software design.

A.
B.
C.

XVI.

A.
B.

Designis anabstractionof the implementation.
Abstractionmeans "lege aut some details".

We'll focus on three levels of design in CSC 102

1. Detailed-- leave aut method bodies, i.e., all of the code between the curly braces that implement meth-
ods.

2. Intermediate-- leave aut private data and prate methods.
3. High-level-- leare aut all methods entirely.e., just design with the names of classes.

. Design can be expressed in a number of different languages.

1. TheJava mde itself, with some details omitted.
2. Jaadoc web pages, which are generated from the code.
3. Diagramsn UML, the Unified Modeling Language.

A Very Brief Introduction to UML.
UML is a graphic form of design.

It can be covenient to shw "the big picture" for a program.

CSC102-S010-L.3 &ye 8

C. For 102, we’'ll use a very small subset of UML.

D. Elementof a UML class diagram are the following:
1. aone-part box, containing the name of a class

2. athree-part box, containing:
a. classiame on the top
b. data fields next
c. method®n the bottom

3. Connectiorines of different forms, including
a. solidlines with triangular arrows showwheritance (which topic will coser in upcoming lectures)
b. dashed lines with open arrows shdependencies

E. SomeUML details:
1. Dataare OK with or without field names.
2. Methodsare OK with or without signatures.

3. Clasgliagrams versus object diagrams
a. Classxames are underlined in object diagram.
b. Also, object diagrams stxahe actual values of data fields.
c. Sedhe example just belg plus examples in the book.

4. Thereare further details in the book, which we will discuss next week.
a. Inpractice, UML usage varies from person to person.
b. This is OK, since UML allows for some flexibility.
c. Next week well clarify the UML notation to be used in 102, including the small additions we're mak-
ing to the bools motation.

XVII. A Very Small UML Example.
A. Considetthe clasfect angl e. j ava.
1. We've en the code already:

/****

*

* A sinple Java programthat defines a rectangle data structure
* and met hods that operate on rectangles.

*

*/
public class Rectangle {
int x;
int vy;
int width;
i nt height;

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y =vy;
this.width = width;
thi s. hei ght = hei ght;
}

voi d nove(int x_increment, int y_increnment) {
X X + X_increnent;
y y + y_increnent;

}

bool ean equal s(Rectangle r) {

CSC102-S010-L.3

return x == r.x &&
y ==r.y &&

width == r.width &&
hei ght == r. hei ght;

}

public int getX() {
return x;

}

public int getY() {
return vy;

}

public int getWdth() {
return width;

}

public int getHeight() {
return height;

}
}

2. We've dso seen the yadoc.

3. Heres a UML class diagram:

Rectangle

int X

inty

int width
int height

Rectangle(int,int,int,int)
void move(int,int)

boolean equals(Rectangle)
int getX()

int getY()

int getWidth()

int getHeight()

4. Heres a WML object diagram:

Rectangle

x =10

y =10

width = 100
height = 200

Rectangle(int,int,int,int)
void move(int,int)

boolean equals(Rectangle)
int getX()

int getY()

int getWidth()

int getHeight()

