
CSC102-S010-L3 Page 1

CSC 102 Lecture Notes Week 3
Lab and Program Discussion

Program Design
Arrays and ArrayLists

I. Relevant reading.

A. Horstmannchapters 7, 8, and 9.

B. Writeupsfor Labs 5 and 6 (discussed on Monday).

C. Writeupfor Program 2 (discussed on Wednesday).

D. Citedmaterial in writeups.

II. Go over Labs 5 and 6.

A. Hereis a summary of the key goals of the labs, as detailed in the writeups:

• get some initial practice using theArrayList class

• understand primitivewrapperclasses

• get some more practice with theScanner class

• write overloadedmethods

• start to learn about JavaGenerics

B. Hereare a couple sample runs of what Lab 5 can look like; as described in the writeup, the exact format of
input and output are up to you.

1. Samplerun with correct user input:

Enter integers, doubles, bools, or Strings; Enter "quit" when done:
1 2 -10 6 4 2.5 15.6 12.2 true false true hi there
quit

Minumum integer is: -10
Average double is: 10.1

Number of trues is: 2
Number of Strings is: 2

2. Here’s a sample run that’s missing some input, causing the program to throw an exception:

Enter integers, doubles, bools, or Strings; Enter "quit" when done:
quit
Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0

at java.util.ArrayList.RangeCheck(ArrayList.java:547)
at java.util.ArrayList.get(ArrayList.java:322)
at Filter.minimumInt(Filter.java:35)
at Lab5Driver.main(Lab5Driver.java:44)

a. Your solution to Lab 5 can throw exceptions like this, but you should have a look at what the excep-
tion says.

b. Coming up soon, you’ll learn how to catchexceptions like this, so your programs have a more robust
user interface.

C. Thedifference between labs 5 and 6 is that lab 5 uses four different ArrayLists to store input data, whereas in
lab 6 you use only one ArrayList that can hold four different types of elements.We’l l discuss this further
below under the subject of javagenerics.

CSC102-S010-L3 Page 2

Now on to Arrays and ArrayLists, in Horstmann Chapter 7

III. Java and C arrays have much in common.

A. They hold multiple elementsof the same type.

B. They are afixed size, e.g.,int a[] = new int[10]

C. Theareindexable, e.g.,a[i].

D. They aremutable, e.g.,a[i] = 10.

IV. ArrayLists are like arrays, but nicer.
1. They can hold multiple elements of the same type,or different types.

2. They hav eaflexible size, e.g.,

ArrayList<Integer> al = new ArrayList<Integer>();

3. They are indexable, but you need to use theget method instead of square brackets, e.g.,

al.get(i);

instead of

al[i]

4. They are mutable, but you need to use the set method instead of square brackets in an assignment statement,
e.g.,

al.set(i, 10);

instead of

al[i] = 10;

5. They aregrowableusing theadd method, e.g.,al.add(11).

V. Here’s a summary of the primary advantages of ArrayList over arrays:

A. Flexible size.

B. Lotsof useful methods.

C. Enhancedfor loop, e.g.,

for (int i : al) { ... }

VI. Let’s look at an example, in 102/examples/ArraysAndArrayLists.java
which we’ll walk through during lecture.

import java.util.Arrays;
import java.util.ArrayList;

/****
*
* This class illustrates some of the basic ideas for arrays and ArrayLists.
* In 102, you’ll primarily be using ArrayLists instead of arrays, but use of
* arrays may be convenient in some cases. NOTE: In labs and programming
* assignments where it says you must use an ArrayList, using an plain array
* will not do.
*/

public class ArraysAndArrayLists {

public static void main(String[] args) {

CSC102-S010-L3 Page 3

// Allocate a 10-element array.
int a[] = new int[10];

// Allocate a flexible-size ArrayList.
ArrayList<Integer> al = new ArrayList<Integer>();

// Assign the values 0 through 90 to both the array and ArrayList.
for (int i = 0; i < 10; i++) {

a[i] = i * 10;
al.add(i * 10);

}

// Print out the elements of the array, using a standard for loop.
for (int i = 0; i < 10; i++) {

System.out.print(a[i] + " ");
}
System.out.println();

// Print out the elements of the ArrayList, using standard for loop.
for (int i = 0; i < 10; i++) {

System.out.print(al.get(i) + " ");
}
System.out.println();

// Increment each element of the array and ArrayList by 1.
for (int i = 0; i < 10; i++) {

a[i]++;
al.set(i, al.get(i) + 1);

}

//
// Print out the elements of the array and ArrayList in different ways.
//

// Use the Arrays.toString library method on the array.
System.out.println(Arrays.toString(a));

// Use (indirectly) the ArrayList.toString method.
System.out.println(al);

// Use the specialized form of for loop on ArrayLists.
for (int i : al) {

System.out.print(i + " ");
}
System.out.println();

// Try to print the array directly; what’s going on here?
System.out.println(a + " -- Say what?");

}
}

VII. Java Generics

A. Considerclosely the ArrayList definition in the preceding example:

ArrayList<Integer> al = new ArrayList<Integer>();

B. Theangle brackets aroundInteger denote agenericdefinition.

C. Thismeans that the type of anArrayList’s is generic, that is, an ArrayList can hold any type of object.

CSC102-S010-L3 Page 4

D. E.g.,we can haveArrayLists of Integers or Doubles or

E. Themost generic type ofArrayList holdsObjects, e.g.,

ArrayList<Object> al = new ArrayList<Object>();

F. The transition from lab 5 to lab 6 goes from using four type-specificArrayLists to one fully generic
ArrayList of Objects.
1. Thelab 6 writeup explains the details of how to do this.
2. Section7.2 of the book has further discussion of declaring generic ArrayLists.

VIII. Wrapper classes (Section 7.3 of the book).

A. Therules of Java say that ArrayLists can only hold objects, not primitive types.

1. Thismeans that the following definition results in a compiler error:

ArrayList<int> al;

2. A smarter Java compiler might be able to cope with a definition like this.

a. Anin-depth explanation of why it can’t is beyond the scope of CSC 102.

b. If you’re curious, you can Google around for some discussion of the subject; for example, try the
Google search"why is java stupid about primitive types in collections".

B. To get around the problem of no primitives in ArrayLists, the primitive types have "wrapper" classes.

C. For example, theInteger class wraps the primitiveint.

D. Suchwrapper classes are used in ArrayLists and other Java collections.

E. Insummary, you always declare and create ArrayLists like this

ArrayList<Integer> = new ArrayList<Integer>

as opposed to this

ArrayList<int> = new ArrayList<int>

F. To make life a little less painful in dealing with wrapper classes, Java version 5 introduced features called
"auto-boxing" and "unboxing".

1. For example, you can add what looks like a primitiveint value of 10 like this

al.add(10);

and Java will "auto-box" it to this

al.add(new Integer(10));

2. "Unboxing"is also automatic, as in

int i = al.get(x);

being equivalent to

int i = al.get(x).intValue();

G. Section7.3 of the book discusses this subject further.

IX. Introduction to Jav a interfaces (Chapter 9).

A. An interface defines a form of completely abstract class.

B. Theinterface definition has just methods, with no data fields.

C. All interface methods arefully abstract.

CSC102-S010-L3 Page 5

1. They hav enames and signatures, but no implementations

2. A methodsignatureconsists of
a. Thetypes of its parameters, in the order they are declared.
b. The return type.
c. E.g.,the signature of

double methodX(int i, String s, boolean b);

is

(int, String, boolean) -> double

which reads "A method ofint , String , boolean returningdouble".

3. Thedeclaration of an interface method ends with just a ";", not a body of code in "{ . . . }".

X. What interfaces are good for.

A. Theprimary use for an interface is defining common behavior for classes; the upcoming example will illus-
trate this idea.

B. Interfaces can be particularly useful when the behavior only needs a few methods to define; this will be illus-
trated by some of the Java library interfaces that we’ll be looking at in the coming weeks.

C. Having common behavior defined in an interface allows classes that use an interface to work to deal easily
with different types of data; this is calledpolymorphism, and upcoming examples will show how it’s useful.

XI. A good example of where an interface could be useful is provided by the Program 3 Shape interface.

A. I want to write a drawing program, that will display geometric shapes on a screen; these are shapes like rectan-
gles, circles, etc.

B. So far in my 102 programming examples, I’ve figured out how to code a rectangle, so how about I define a
drawing like this:

public class Drawing {

ArrayList<Rectangle> canvas;

public static void main(...) {
// Draw some stuff on the canvas

}
}

But this is really boring, since all I can draw is rectangles.

C. WhatI actually need is something like this:

public class Drawing {

ArrayList<Shape> canvas;

public static void main(...) {
// Draw some stuff on the canvas

}
}

D. Soit looks like I could use aShape class.

E. So,what do geometric shapes have in common that will go in thisShape class?

1. Numberof points?(not really)

CSC102-S010-L3 Page 6

2. Moving around?(based on points)

3. Sizes?(computed differently)

F. Shapes could be a class, but

1. They may not have any common data.

2. They probably have different method implementations.

G. Enterinterfaces.

XII. Comparison of classes and interfaces.

A. Here’s what aShape interface looks like, and how it can be implemented by aRectangle class:

public interface Shape {
public void move(Point delta);
public double getArea();

. . . // more later
}

public class Rectangle implements Shape {

int x,y,height,width;

public void move(Point delta) {
...

}

public double getArea() {
...

}
}

B. Supposeinstead of definingShape as an interface, we defined it as a class, like this:

public class Shape {

// Leave out data fields

public void move(Point delta) {
// no default implementation

}
public double getArea() {

return 0; // pretty useless
}

. . . // maybe more later
}

public class Rectangle extends Shape {

int x,y,height,width;

public void move(Point delta) {
...

}

public double getArea() {
...

}
}

CSC102-S010-L3 Page 7

C. The comments in the class definition suggest why an interface definition may be the better choice for
Shapes than a class.

1. "Maybe" a better choice will be a subject of further discussion next week.

2. In fact, the subject of Program 3 will specifically address the issue of choosing between an interface or
class definition of shapes.

XIII. Summary of what it takes to implement an interface.

A. Usethe keyword implements.

B. Implementall interface methods.

C. Declareinterface methodspublic.

D. Methodnames and signatures in interface and implementation mustexactly match.

XIV. Polymorphism (Section 9.3).

A. It’s Greek for "multiple shapes".

B. In a program, it means a method can take different "shapes", i.e., types, of data.

C. In the example above, theDrawing class has an ArrayList ofShape for its drawing canvas.

1. It can move shapes around on the canvas without knowing what particular type of object it’s moving.

2. This is possible because theShape interface requires that all of its implementing classes provide their
own definition of themove method.

3. Thatis, all of the methods of aShape arepolymorphic.

4. Thisis a powerful feature of interfaces about which we’ll have more to say in upcoming weeks.

Now on to a Bit of Program Design, from Horstmann Chapter 8

XV. Introduction to software design.

A. Designis anabstractionof the implementation.

B. Abstractionmeans "leave out some details".

C. We’ll focus on three levels of design in CSC 102
1. Detailed-- leave out method bodies, i.e., all of the code between the curly braces that implement meth-

ods.

2. Intermediate-- leave out private data and private methods.

3. High-level -- leave out all methods entirely, i.e., just design with the names of classes.

D. Design can be expressed in a number of different languages.
1. TheJava code itself, with some details omitted.

2. Javadoc web pages, which are generated from the code.

3. Diagramsin UML, the Unified Modeling Language.

XVI. A Very Brief Introduction to UML.

A. UML is a graphic form of design.

B. It can be convenient to show "the big picture" for a program.

CSC102-S010-L3 Page 8

C. For 102, we’ll use a very small subset of UML.

D. Elementsof a UML class diagram are the following:

1. aone-part box, containing the name of a class

2. athree-part box, containing:
a. classname on the top
b. data fields next
c. methodson the bottom

3. Connectionlines of different forms, including
a. solidlines with triangular arrows showinheritance(which topic will cover in upcoming lectures)
b. dashed lines with open arrows showdependencies

E. SomeUML details:

1. Dataare OK with or without field names.

2. Methodsare OK with or without signatures.

3. Classdiagrams versus object diagrams
a. Classnames are underlined in object diagram.
b. Also, object diagrams show the actual values of data fields.
c. Seethe example just below, plus examples in the book.

4. Thereare further details in the book, which we will discuss next week.
a. Inpractice, UML usage varies from person to person.
b. This is OK, since UML allows for some flexibility.
c. Next week we’ll clarify the UML notation to be used in 102, including the small additions we’re mak-

ing to the book’s notation.

XVII. A Very Small UML Example.

A. Considerthe classRectangle.java.

1. We’ve seen the code already:

/****
*
* A simple Java program that defines a rectangle data structure
* and methods that operate on rectangles.
*
*/

public class Rectangle {
int x;
int y;
int width;
int height;

Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}

void move(int x_increment, int y_increment) {
x = x + x_increment;
y = y + y_increment;

}

boolean equals(Rectangle r) {

CSC102-S010-L3 Page 9

return x == r.x &&
y == r.y &&
width == r.width &&
height == r.height;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public int getWidth() {
return width;

}

public int getHeight() {
return height;

}
}

2. We’ve also seen the Javadoc.

3. Here’s a UML class diagram:

int x
int y
int width
int height

Rectangle(int,int,int,int)
void move(int,int)
boolean equals(Rectangle)
int getX()
int getY()
int getWidth()
int getHeight()

Rectangle

4. Here’s a UML object diagram:

x = 10
y = 10
width = 100
height = 200

Rectangle(int,int,int,int)
void move(int,int)
boolean equals(Rectangle)
int getX()
int getY()
int getWidth()
int getHeight()

Rectangle

