CSC102-S010-L4 &ye 1l

CSC 102 Lecture Notes Week 4
Converting between Java Types
Inheritance

I. Relevant reading.
A. HorstmanrChapter 10, Sections 10.1 - 10.7
B. HorstmanrChapter 9, Sections 9.1 - 9.3 (again)

II. Converting between class and interface types.
A. Classeand interfaces defirgpes.

B. Anobject of one type can be a@nted to another with east.
1. Thesyntax of a cast in ¥a is the same as it is in C:

a. Thename of a type is enclosed in parentheses and put in front of a variable or other value to be cast.
b. For example:

Shape s = new Rectangl e; /1 Put a rectangle into a general Shape variable
Rectangle r = (Rectangle) s; /1 Put that object into a Rectangle variable

2. Castsare not alvays legd, since not all types can be meaningfully weted to each other.
a. It's good practice to check that what you're trying to castgd.le
b. For example, the following is notdd

Shape s = new Rect angl e;
Circle c = (Crcle) s;

c. Understandingvhat'’s legd in the way of casting is the subject of Lab 7.

C. You can determine the type of an object using tet anceof operator.

1. Itproduces a boolean value.

2. E.g.,given the preceding variable declarations, here are a couple examples af mstrenceof :

r instanceof Shape [l true
r instanceof Circle /1 false

3. Asnoted abwe, it's good practice to check before casting Yoid errors; heres an &le of doing this
usingi nst anceof

Shape s = get SoneShape(); /] Call a nethod that returns any shape,
/1 e.g., froma user’s input

/1 Check what type of shape it is, before doing a cast
if (s instanceof Rectangle) {

Systemout.println("width =" + ((Rectangle) s).getWdth());

else if (s instanceof Circle) {
Systemout.println("radius =" + ((Circle) s).getRadius());
}

D. A method related to instance ofdbj ect . get C ass
1. Itreturns the class value of an object, as in

CSC102-S010-L4 &ye 2

Now on to he new subject of inheritance in Java,
as coveared in Horstmann Chapter 10

Ill. Introduction to Java inheritance.
A. In Jara, a dass carext end another class.

B. Suchextension defines aimheritance relationship.
1. Theclass being extended is called tia@ent class, or theuperclass of the inheritance relationship.
2. Theclass doing the extending is called théd class, or theubclass of the inheritance relationship.

C. Ina UML diagram, inheritance is sthum with a hollav triangular array, with the arrowhead pointing at the
parent class, and solid lines between the child and parent classes.

D. We'll see some examples coming right up.

IV. Aninitial example, from book Chapter 10 (Section 10.1).

A. Thebook has a good illustration of basic inheritance ideas Beitk Account example
i mport java.text.Decimal Format;

/****

*

* Class BankAccount is a sinple banking exanpl e based on the exanple of the
* sanme name from Horstmann Chapter 10. It has a bal ance that can be changed
* py deposit and withdrawal nethods. It also provides a nmethod to get the

* current bal ance.

*

*

/
public class BankAccount {

/** The current bal ance of this bank account. */
private doubl e bal ance;

/**
* Construct a bank account with a zero bal ance.
*/
publ i ¢ BankAccount () {
bal ance = 0;

}

/**
* Construct a bank account with the given initial balance.
>/
publ i ¢ BankAccount (doubl e bal ance) {
t hi s. bal ance = bal ance;

}

/**
* Deposit the given amount of noney into this bank account.
>/
public void deposit(double amunt) ({
if (amount < 0) {
throw new ||| egal Argunent Excepti on();
}

bal ance = bal ance + anount;

CSC102-S010-L4

}

/**

* Wthdraw t he gi ven anount of noney fromthis bank account.

*/
public void withdrawdoubl e amount) {

if ((balance - ampunt < 0) || (amount < 0)) {

t hrow new || | egal Argunment Excepti on();

}

bal ance = bal ance - anopunt;

}

/**
* Get the current bal ance of this bank account.
*/
publ i c doubl e getBal ance() {
return bal ance;

}

/**

* Transfer the given anobunt fromthis account to the given other account.

*/
public void transfer(doubl e amount, BankAccount
wi t hdr aw(amount) ;
ot her . deposi t (anmount) ;

ot her) {

B. Supposé¢hat we want to define a couple specialized forms of bank account:
1. Asavings account, which earns interest.
2. Achecking account, which clggs a transaction fee after a certain number of transactivastwirred

in a given period of time.

C. We'll use Jads inheritance to define theseaiorms of account.

V. Implementing subclasses (Sections 10.2 - 10.4).

A. Usinginheritance, the preceding forms of account can be implemented as follows:

/****

*

* A Savi ngsAccount extends a BankAccount by adding functionality for an

* account to earn interest.

A Savi ngsAccount has an interest rate,

* method to conpute the interest and add it to the account bal ance.

*

*/

public class Savi ngsAccount extends BankAccount {

private doubl e interestRate;

/**

* Construct a savings account with the given interest

>/
publ i ¢ Savi ngsAccount (double rate) {
interestRate = rate;

}

/**

* Add the earned interest to this account.
*/

public void addlnterest() {

rate.

with a

CSC102-S010-L4 &e 4

doubl e interest = getBalance() * interestRate / 100;
deposit (interest);

}
}
/****
*
* A Checki ngAccount extends a BankAccount by adding functionality for
* transaction fee charges. CheckingAccount specializes the BankAccount
* deposit and withdraw nethods to performtransacti on counting.
* Checki ngAccount al so provides , and a nethod to deduct the chareges fromthe
* account.
*/

public class Checki ngAccount extends BankAccount {

/** Nunmber of transactions before transaction fees start */
private static final int FREE _TRANSACTI ONS = 3;

/** Dol |l ar amount of transaction fee (what a rip off) */
private static final double TRANSACTI ON_FEE = 2. 0;

/** Count of transactions since |ast fee deduction */
private int transactionCount;

/**

* Construct a checking account with the given bal ance.
* @araminitial Bal ance the initial balance
*/

publ i ¢ Checki ngAccount (doubl e initial Bal ance) {

/1 Construct the superclass.
super (initial Bal ance);

// Initialize transaction count in this subclass.
transacti onCount = O;

}
/**

* Deposit the given amount of noney into this checking account and
* increment the transaction count by 1.

*/

public void deposit(double amunt) {

/1 Call the parent class deposit nethod to update the bal ance.
super . deposi t (anount);

// Increnment this transaction count
transacti onCount ++;

}
/**

* Wthdraw the gi ven anount of noney fromthis checki ng account and
* increment the transaction count by 1.

*/

public void withdrawdoubl e amount) {

/1 Call the parent class withdraw nmethod to update the bal ance.
super.w t hdraw(anount) ;

CSC102-S010-L4 &ye 5

/1 Increment this transaction count
transacti onCount ++;

}

/**
* Deduct the accumul ated fees and reset the transaction count.
*/
public void deduct Fees() {
if (transactionCount > FREE_TRANSACTI ONS) ({
doubl e fees = TRANSACTI ON_FEE *
(transacti onCount - FREE_TRANSACTI ONS) ;
super. w t hdraw(f ees);

}

transacti onCount = O;

I
/1 Note that getBal ance is not specialized, since it works the sanme for a

/1 checking account as for a regul ar bank account.
I

}

B. Hereis a UML diagram of the three classes:

BankAccount

double balance

BankAccount()
BankAccount(double)
deposit(double)
withdraw(double)

double getBalance()
transfer(double, BankAccount)

T

SavingsAccount CheckingAccount

double interestRate int FREE_TRANSACTIONS =3
double TRANSACTION_FEE = 2.0

SavingsAccount(double) int transactionCount

addlInterest()
CheckingAccount(double)
deposit(double)
withdraw(double)
deductFees()

C. Soméamportant observations about this inheritance hierarchy:

1. Both Savi ngsAccount and Checki ngAccount inherit BankAccount . get Bal ance and
BankAccount . t r ansf er without overriding them; this means thget Bal ance andtr ansf er
are automatically defined for both subclasses.

2. Savi ngsAccount does not werride deposit orw t hdr aw, which means these twmethods are
also automatically defined f@avi ngsAccount .

3. Checki ngAccount does werride deposit andwi t hdr aw, which means these twmethods are

CSC102-S010-L4 &ye 6

specialized foilChecki ngAccount ; but note that the specialized implementations gafer , which
usesBank Account s implementation, plus adds some additional behavior.

4. Bothsubclasses inherit tHgank Account . bal ance data field; haever, snce that field igpri vat e
in BankAccount , the subclasses cannot access it direbtiiycan access it indirectly by calling the par
ent class methods.

5. Bothsubclasses add one or morevgte data fields of their own, which exist in the subclasses, but not in
the parent class.

6. Bothsubclasses define an initializing constructdrich they implement in different ways.

VI. A careful look at the subclass constructors.
publ i ¢ Checki ngAccount (doubl e initial Bal ance) ({

/1 Construct the supercl ass.

/1

/1 NOTE: We explicitly call the parent constructor via super. This neans
I the initial balance is set.

/1

super (i nitial Bal ance);

/1 Initialize transaction count in this subclass.

/1
/] NOTE: Since transactionCount is a non-inherited data field, we need to
I do its initialization explicitly here (there’s no way that the
I parent class can initialize it).
/1
transacti onCount = O;
}
publ i ¢ Savi ngsAccount (double rate) {
/1
I/l Initialize the non-inherited data field.
/1
/1 NOTE: In contrast to the CheckingAccount constructor, this constructor
I does not explicitly call super. This neans that the default
I paraneterl ess version of the parent constructor is automatically
I called. This is a general rule of Java. 1.e., when a child
I constructor does not explicitly call its parent constructor via
I super, Java calls the default version of the parent constructor on
I the child s behalf. |In such cases, the parent class MJST define a
I default constructor, otherw se the conpiler gives an error.
/1

interestRate = rate;

VII. A careful look at Checki ngAccount . deposi t.
public void deposit(double anpbunt) ({

11

/1 Call the parent class deposit nethod to update the bal ance

11

/1 NOTE: Calling this.deposit here is a big nistake (see Page 428); we need
I to use super.deposit to access the parent version of the deposit

CSC102-S010-L4

11
11
11
11
11
11
11
11
11
11
11
11

nmet hod.

NOTE ALSO W cannot use the following in this version of deposit
because bal ance is a private data field of BankAccount:

bal ance = bal ance + anount;

The bal ance field is inherited by Checki ngAccount, but its
nane is not visible due to its private protection. Hence,
we need to call the public method BankAccount. deposit to

ef fect the change to bal ance.

super . deposi t (amount) ;

11
11
11
11
11
11

Increment this transaction count.

NOTE: Here we are referring to this.transacti onCount, since there is no

such data field in the parent class.

transacti onCount ++;

VIIl. HeresasimpleBankAccount tester class, a la Section 10.6 of the book.

/****

*
*
*
*
*
*
*

/

This is a sinple testing programfor the chapter
and its subcl asses.

publ i c cl ass BankAccount Chapt er 10Tester {

public static void main(String[] args) {

/*
* Create a savings and checki ng account.
*/

10 exanpl es of BankAccount

Thi s programincl udes code fromthe book’s
Account Tester class, plus sone additional code to discuss during 102
| ecture.

Savi ngsAccount nmonsSavi ngs = new Savi ngsAccount (0. 5);
Checki ngAccount harrysChecki ng = new Checki ngAccount (100);

/*

* Make a savi ngs deposit.
*/

nmonsSavi ngs. deposi t (10000) ;

/*
* Transfer sonme funds, then withdraw.
*/

nmonsSavi ngs. transfer (2000, harrysChecking);

har r ysChecki ng. wi t hdr awm(1500) ;
har r ysChecki ng. wi t hdr aw(80) ;

/*
* Transfer and wi t hdraw sone nore.
*/

nmonsSavi ngs. transfer (1000, harrysChecking);

har r ysChecki ng. wi t hdr awm(400) ;

CSC102-S010-L4 &ye 8

/*

* Conpute interest for the savings account, deduct fees for the
* checki ng.

*/

nmonsSavi ngs. addl nterest () ;

har r ysChecki ng. deduct Fees();

/*
* Print sone results.
*/
Systemout. println();
System out. println("Mms savings bal ance:
+ nomsSavi ngs. get Bal ance());
System out . printl n("Expect ed: 7035.0");
Systemout. println();

Systemout.println("Harry s checki ng bal ance:
+ harrysChecki ng. get Bal ance());

System out . printl n("Expect ed: 1116.0");
/*

* Here are some illustrations of polynorphism

*/

BankAccount monsSavi ngsB = nonsSavi ngs;
Ohj ect nmonsSavi ngsO = nmonsSavi ngs;
Systemout. println();
System out . print("Savi ngs bal ances: " +
((Savi ngsAccount) nonsSavi ngsO) . get Bal ance() + " ");
System out . println(((Savi ngsAccount) nmonsSavi ngsO) . get Bal ance());
System out . printl n("Expect ed: 7035.0 7035.0");

/*

* Here are some calls that generate errors. Convince yourself that
* you understand why. (They' re conmented out so the programw ||
* conpile.)

*/

/1 Savi ngsAccount enptySavings = new Savi ngsAccount ();

/1 Checki ngAccount enptyChecki ng = new Checki ngAccount () ;

/1 momsSavi ngs = (Savi hgsAccount) harrysChecki ng;

/1 Checki ngAccount nomsChecki ng = (Checki ngAccount) nonsSavi ngs;
BankAccount monR = nonsSavi ngs;

/1 Checki ngAccount nonmsChecki ng = (Checki ngAccount) nong;

~

* 0% ko kX 2k X X X *

An inportant point of nethod overriding is that the appropriate
version of an overridden nethod be called. For exanple, when we
call deposit on a Checki ngAccount object, we want to be sure to get
the version of deposit declared in Checki ngAccount, not the nore
general version in BankAccount. And we want this even if we are
referring to a Checki ngAccount from a BankAccount vari abl e.

HOWEVER, suppose we'd like to call the general version of a nethod
explicitly? How could we do this?

/

BankAccount checki ng = (BankAccount) new Checki ngAccount (100);

checki ng. deposi t (100); // Wich deposit are we calling here?

((BankAccount) checking).deposit(200); // Wat about here?

CSC102-S010-L4 &ye 9

IX. Updating BankAccount to I mplement the Compar able Interface
A. TheConpar abl e interface is used in ¥a when a objects need to be comopared in meaningful ways.

B. For example in Program 3, you are asked twehae absracBhape class implemenConpar abl e so the
two shapes can be compared.

C. Thereare number of Ja libray classes that rely on the fact that a class implements Comparable, in particular
class that providsor t i ng methods.

D. Heres an &le of hav theBankAccount class can impleme@onpar abl e:
/ * %k k%

*

* This is a version of the BankAccount class that inplenments the Conparable
* interface. It has exactly two differences with the original definition of
BankAccount :

*

*

* (1) inplenentation of Conparabl e<BankAccount >
* (2) addition of the conpareTo nethod
*

*

*

*

See | ecture notes Week 4 for sone di scussion.

/
public class BankAccount inplenents Conparabl e<BankAccount > {

/**

* Compare this account with the given other account, using balance as the
* basis of conparison.
*/
public int conpareTo(BankAccount other) {
i f (balance < other.balance) return -1,
if (bal ance == other.balance) return O;
return 1;

}

1. Byimplementingcomnpar eTo, a list of bank accounts can be sorted using thia llarary methodCol -
| ections.sort.
2. Anexample of this is illustrated in the enhanced bank account examples discussed next.

X. Enhnaced bank account examples.

A. The 102/ exanpl es web page has some further enhancments tB#mkAccount class, along with
some additional classes that illustrate the uses of inheritance and interfaces.

B. We'll discuss these examples in class, and you canthie source code for details.

XI. Polymorphsim revisited (Sections 9.3 and 10.6).
A. In last weeks notes, we defined a polymorphic method as one that takes parameters of an interface type.

B. Now we can update the definition to say that a polymorphic methodyisnathod that has one or more of
the following properties:

CSC102-S010-L4 &ye 10

1. ittakes one or parameters of an interface type
2. ittakes one or parameters of an extended class type, i.e., a class that has been extended at least once
3. itis defined in an implemented interface or an extended class

C. For example,BankAccount . transfer (doubl e, BankAccount) is polymorphic in its second
parameterwhich may be sent objects of tyBankAccount , or its two subtypes.

D. BankAccount . get Bal ance() is polymorphic because it is defined in an extended class, and can be
invoked from objects of typ@ankAccount , Savi nhgsAccount , or Checki hgAccount

XIl. Access Control (Section 10.7).
A. For nav in 102, the following rules remain in force:
1. Methodghat are to imoked outside the class apubl i c.
2. All data fields areri vat e.
3. All methods that are notioked from outside of the class goei vat e.

B. We will cover this subject further as the quarter progresses.

XIll. Obj ect : Thebook’streatment of the Cosmic Superclass (Section 10.8).
A. java. |l ang. Qbj ect is the class from which all othendadasses inherit.
B. Wheneer you declare a class, it automatically exte@dgect .

C. Aswe've dscussed in past lecturgg,bect has a number of methods that are consideradngaily appli-
cable to all objects, including,

1. String toString() -- Returnsa string representation of the object; remember thatoSt ri ng does
not print anything itself, it just returns a string that can be printed

2. bool ean equal s(hj ect ot her Obj ect) -- Testswhether the object equals another object
3. Obj ect cl one() -- Makesa full copy of an object

D. Thebook suggests thatsta good idea to werride these methods in all of your classes, which it often is.

1. HOWEVER, you do not need to define these methods for the classes you write in CSC 102, unless a
writeup explicitly instructs you to do so.

2. Sectiond 0.8.1 through 10.8.3 of the book describe in detail the oserrides are implemented, and dis-
cusses related issuessiwtorth a read.

3. We'll return to this subject matter in upcoming lectures.

XIV. Some Special Topics from the book, which you should read.
A. Abstract classes (Special topic 10.1)
B. Final methods and classes (Special topic 10.2)

C. Protected access (Special topic 10.8)t remember that for mowe’ll not useprotected access in 102 labs
or programs.

XV. Here'sasummary of the differences between interfaces and abstract classes.

Interface Abstract Class

keyword interface abstract cl ass

CSC102-S010-L4 &ye 11

inherits-from keyword | i npl ements | ext ends

data fields none alloved

methods all abstract can be declarablst r act
method bodies none alloved

multiple inheritance yes no

XVI. Some design alternatives for bank accounts.
A. Hereare some questionsgading the vay BankAccount and its subclasses\ebeen designed sarf and
how that design could be altered or carried further:

1. WhentheBankAccount class implements théal uabl e interface, does it mean that its subclasses inher
ited the implementation?

2. CouldBankAccount have keen defined as an intade instead of a class? If so, whatvhaould the
extending classes kia © be dianged into implementing classes?

3. CouldBankAccount have been defined as a (partially) abstract class? If so, what methods wouldeit mak
sense to define as abstract?

B. You should think about the answers to these questions.

