
CSC132-S013-L5 Page 1

CSC 102 Lecture Notes Week 5
Shallowness and Deepness

Exceptions
File I/O

I. Relevant reading.

A. HorstmannChapter 10, Special Topic 10.6; Chapter 11

B. Referencescited in lab and program writeups

II. Shallow and deep, equality and copying

A. In lecture week 2, we discussed the idea ofshallowversusdeepequality.

B. Thisidea extends to copying objects as well.

C. TheWeek 5 lecture examples include the following files that illustrate the differences between shallow and
deep implementations of important methods:

1. ShallowCircle.java -- the perils of shallowness

2. DeepCircle.java -- the benefits of deepness

3. CircleTester.java -- explaining what goes on

D. Figure1 is picture of memory after line 23 ofCircleTester.java has executed.

E. Hereare some key points about this picture, and the subsequent execution ofCircleTester.java:

1. TheShallowCircle constructor copies the reference to itsPoint parameter; in contrast, theDeep-
Circle constructor makes a new copy of thePoint parameter.

2. TheShallowCircle.getCenter method returns a reference to itsPoint data field; in contrast,
DeepCircle.getCenter returns a copy of itsPoint data field.

3. The ShallowCircle.equals method comparesPoint references; in contrast,DeepCir-
cle.equals does a deep comparison by callingPoint.equals.

III. Labs 9 and 10-- see the writeups

A. TheLab 9 topic isexception handling

B. TheLab 10 topic isfile I/O

IV. Exceptions (Sections 11.2, 11.3)

A. You’ve usedthrow already.

B. For lab 9, and beyond, you’ll usetry-catchto handleexceptions.

C. You’ll also write some exception classes of your own.

V. The basic idea of exception handling.

A. Normally, a method returns to its caller.

B. Exceptionally, a method canthrow an exception.

C. Theexception must becaught in order for the program to continue normally.

D. If a program doesn’t catch the exception, Java’s runtime will, and your program will then be terminated.

E. To handle an exception, and avoid program termination, you usetry-catch.



CSC132-S013-L5 Page 2

p

10x

y

Point(int,int)

Point

other methods ...

20

sc1

5.0

center

radius

ShallowCircle(Point,double)
Point getCenter()
boolean equals(Object)

ShallowCircle

sc2

5.0

center

radius

ShallowCircle(Point,double)
Point getCenter()
boolean equals(Object)

ShallowCircle

dc1

5.0

center

radius

ShallowCircle(Point,double)
Point getCenter()
boolean equals(Object)

dc2

5.0

center

radius

ShallowCircle(Point,double)
Point getCenter()
boolean equals(Object)

DeepCircle

10x

y

Point(int,int)

Point

other methods ...

20

10x

y

Point(int,int)

Point

other methods ...

20

return value of sc1.getCenter()

return value of dc1.getCenter()

10x

y

Point(int,int)

Point

other methods ...

20

DeepCircle

Figure 1: State of memory after line 23 of CircleTester.java.



CSC132-S013-L5 Page 3

VI. The syntax of Jav a’s try-catch

try {
... code that may throw

} catch (Exception variable) {
... code to handle exception

}

VII. The Throwable hierarchy (Section 11.3)

A. Exceptionsin Java must be defined within theIThrowable class hierarchy.

B. Here’s an excerpt:

Throwable
Error

IOError
VirtualMachineError

...
Exception

IOException
RuntimeException

IndexOutOfBoundsException
NullPointerException

...
...

C. There’s a very nice picture of this on page 482 of Chapter 11 of the book.

VIII. Checked and Unchecked Exceptions (11.4)

A. TheJava compiler requires handling of checked exceptions.

B. Unchecked exceptions can be ignored.

C. TheclassesError andRuntime exception are unchecked, along with their subclasses.

D. In the words of Java’s authors:

1. ClassError represents

"serious problems that a reasonable application should not try to catch"

2. ClassException represents

"a form of Throwable that indicates conditions that a reasonable application might want to catch"

3. ClassRuntimeException represents

"exceptions that can be thrown during the normal operation of the Java Virtual Machine"

IX. Examples of exceptions

A. A dumb one, a la lab 8 --DumbPrint.java

B. An uncaught banking exception --BankAccountExceptionTester.java

C. A caught banking exception --BankAccountCaughtExceptionTester.java

D. A caught banking exception, withfinally --
BankAccountCaughtFinallyExceptionTester.java

E. A programmer-defined banking exception --NegativeBalanceException.java



CSC132-S013-L5 Page 4

X. Thr ows clause in methods (11.5)

A. A method that throws a checked exception must declare this withthrows in its method header.

B. Thisallows the compiler to know that the exception is thrown.

XI. Programmer-defined exceptions (11.7)

A. Somewhere in theBankAccount program:

if (amount > balance) {
throw new

InsufficientFundsException(...);
}

B. Definethe exception extension:

public class InsufficientFundsExcpetion
extends IllegalArgumentException {

public InsufficientFundsException(
String message) {

super(message);
}

}

XII. File I/O (Sections 11.1 and 11.2)

A. We’ve seen already how to read from and write to the standard I/O stream that’s the UNIX terminal.

B. You can also read from and write to files.

C. With a bit of care, doing this is pretty easy.

D. Hereare the highlights:

1. UseaScanner to read from a file, calling its constructor like this:

Scanner s = new Scanner(new File(filename))

wherefilenameis aString.

2. Notewell the use ofnew File (...) instead of just the name of the file as a string.

3. Onceyou have theScanner open on the file, you can use it just like you’ve done in previous
labs.

4. UseaPrintStream to output to a file, calling its constructor like this:

PrintStream ps = new PrintStream(filename)

wherefilenameis aString

5. Notethat you don’t call new File(...) around thefilename.

6. Thereare a variety of print methods available fromPrintStream; see its library documenta-
tion for details.

7. Whenyou’re done with the output, be sure to call thePrintStream.close() method, or
else your output will not be properly concluded.



CSC132-S013-L5 Page 5


