CSC102-S013-L6 &e 1

CSC 102 Lectue Notes Week 6
GUIs (Graphical User Interfaces) using the Processing IDE
Linked Lists and Abstract Data Types

I. Relevant reading.

A. Chapterl4, Sections 1,6,7 -- Introduction to Sorting and Searching
B. Chapterl5, Sections 1-3 -- Abstract Data Types

C. Processin®evelopment Environment documentation

Lab 11 and Program 4 Discussions see the writeups
A. Lab11
B. Program4

C. Ourin-class discussion of these will include some running examples using Processing.

Introduction to Data Structures (Ch 15)
A. Arraysand ArrayLists aredy data structures.
B. Therearemany more.

C. Theprimary purpose of a data structure is supporefficient computation.

IV. Let's consider a newLi nkedLi st data structure (Sections 15.1, 15.2).

A. Arrayli st elements are in a sequential block.
B. Li nkedLi st elements are in separatedes with links referring to neighboring elements.

C. Heres ome code, froml02/ exanpl es/ ArraylLi st AndLi nkedLi st Exanpl e. j ava

import java.util.*;

/****

*

* This is a very sinple exanple of a 5-elenent list of integers, declared as

* pboth an ArrayList and a LinkedList. The interesting thing is the picture of
* how nenory | ooks inside the data abstractions:

* <p>
* <ing src = "ArrayAndLi nkedLi st Pi ctures.jpg">

* <p>
* This exanple uses a couple handy utility nethods that convert between lists
* and arrays -- <tt>asList</tt> and <tt>toArray</tt>. These are defined in

* the class java.util.Arrays. Check out its javadoc <a href=

* http://java.sun.conijavase/ 6/docs/api/java/util/Arrays. htm > here .

*

*

/
public class ArrayLi st AndLi nkedLi st Exanpl e {
public static void main(String[] args) {

/* Declare and initialize the ArrayList. */
ArraylList<integer> al =
new ArraylLi st<lnteger>(Arrays. asLi st (10, 20, 30, 40.50));

/* Declare and initialize the LinkedList. */
Li nkedLi st<lnteger> || =
new Li nkedLi st <l nteger>(Arrays. asLi st (10, 20, 30, 40. 50));

/* Show that the lists are equal as arrays. */
Systemout. println(Arrays. equal s(al.toArray(), Il.toArray()));

CSC102-S013-L6 &ye 2

D. Heres a pcture of what the internal data structures look lik this example:

ArrayList: LinkedList:
al |

0] 10 [o |

[1] 20

[2] 30

[3] 20 20] 4 |

[4] 50 K‘_/
30 | C
0] | |
50 | nul | |

V. Abstract Data Types ADTs (Sec 15.3)
A. "Abstract" means thatdetails are left out.”
B. Whats left out of an ADT is public access to class data structures, e.g.s\@i@t/n in the picture abe.
C. E.g.the user of &i nkedLi st or ArrayLi st cannot directly access the internal data.
D. Publicmethods provide efficient access, based on data structures used (but hidden) in the class.

VI. Measuring data structure dficiency.

A. Even though the internal data structures are hidden from outside access, understanding the structures is
important to understanding the operational efficjarfcan ADT.

B. Theefficieng/ of ADT operations is expressed in terms of operati@sigion time, based on the number of
structure elements,
1. Broadly efficiengy is measured as aorder of magnitude of n.
2. Thenotational shorthand I¥(f(n))", for some functiorf; this is called "big-Oh" notation.

C. Hereare some common names used to refer to differedslef efficient, from most to least efficient:
* O(1) -- constant time
* O(n) -- linear time
* O(log(n)) -- log time
« O(n?) -- quadratic time

D. Hereare comparate dficiencies for ky gerations in amr r ayLi st versusLi nkedLi st (see Table 3,
Page 649 of the book):

CSC102-S013-L6 &ye 3

Operation Arrayli st Li nkedLi st Discussion

random access 0(1) o(n) Random access into an array is O(1) because an array
is structured lie underlying computer memory for
which random access is inherentlyi@ént. Incon-

trast, random access to a linked list is O(n) because
you alvays need to find the nth element by starting at
the beginning of the list and counting up to the nth el-
ement, which onwerage takes O(n) time.

find next o(1) 0(1) Finding the net element is O(1) for both types of
list. For an arrayit’s just random access to the i+1
when you're at the ith elementor the linked list,
next is a matter of following just omext reference

add/remwe an) 0(1) Adding and removing are O(n) for an array because
the both irolve moving blocks of elements to mak
room for an added element or rerimg an &isting
element, which onwerage takes O(n) timeFor a
linked list, adding and reming are O(1) since tlye
only involve changing a fied number of node refer
ences.

E. Understandinghese efficiencies wolves understanding the data structures of Ahe ayLi st and
Li nkedLi st ADTSs, as pictured alwe, and discussed in Chapter 15 of the book.

F. Well go over some examples during lecture in class, and further in the Week 7 Notes.

VII. Sorting, Chapter 14, Section 1
A. Thebasic idea:
1. searchthrough a list, comparing items
2. putthe smaller ones earlier in the list, the larger ones later
3. whenevaything is in its correct place, you're done
B. Formally,"everything isin its correct place” is defined as:
forall i, suchthati >= Oandi < list.size- 1
ligt[i] < list[i+1]

VIIl. Selection Sort (Section 14.1)

Thefirst section of Chapter 14 in the book is an very good example of sorting.
It shows the actions of one of the simpler forms of sort cafledtion sort.

We'll go over this example in class.

Thebook’s amde example is in 102/examples/book/ch14/selsort

moowp»

You'll also implement a version of selection sort in lab 12.

IX. Searching, Chapter 14, Sections 6 and 7.

A. You've dready done some basic forms of search in CSC 101, where you use a loop to look for an element in
an arrayeg.,
/****
* A quick exanple of search for the elenent of an array.
*/
public class BasicLi near ArraySearch {

CSC102-S013-L6 &e 4

/**

* Search an int array for a particular nunber. Return the first index
* of the nunber if it’s found, -1 if not found.

*/
public static int searchArray(int a[], int n) {

for (int i=0; i<a.length; i++) {

if (a[i] == n) return i;

return -1;
}
/**
* Search for a nunber that’'s found and another that’s not found.
*/

public static void main(String[] args) {
int a[] = {10, 20, 30, 40, 50};
Systemout. println("searchArray(a, 40)
Systemout. println("searchArray(a, 45)

' + searchArray(a, 40));
' + searchArray(a, 45));

}

1. Thisform of search takes O(n) time since errage you need to look through half of the elements.
2. Inthe worst case, when the element you're searching for is at the end of the/@uraged to search
through all of the elements.

B. A more efficient form of search is possible when the elements of a list are soredalleit binary search

X. Binary Search (Section 14.7)
A. Thebasic idea:
1. startthe search in the middle of a sorted list

2. if the item you're looking for is less than the item at the middle, continue the search in the first half of the
list, otherwise in the second half

3. continuethis process until youe looked through all the possible elements, which will be at mogtdbg
them(think about this)
B. Sectionl4.7 of the book has a good example of this and we'liMgpibin class during lecture.
C. Thebook’s mde example is in 102/examples/book/chl4/binsearch

