CSC102-S010-L.8 &ye 1l

CSC 102 Lecture Notes Week 8
Moreon Linked Listsand Iterators
Introduction to Recursion
More on Searching and Sorting

I. Relevant reading.
A. Chapterl3 -- Recursion
B. Chapterl4 -- Sorting and Searching (again)
C. Chapten5 -- Data Structures (again)

[I. Announcemnents
A. Programg will be released on Friday 24 May.
B. Thel00% Program 5 due date is Friday 24 May.

C. Arny lingering Program 4 demos will be done this week in lab.

lll. Linked List and Iterator |mplementations
A. Thereis a very good example of linked list implementation from chapter 15 of book.
B. It's anline in 102/examples/book/ch15/impllist/

. It shows the implementation of methods for a singly-linked non-generic list.

. It also shows implementation of an iterator for this structure.

We'll walk through the example in detail during lecture on Monday.

Mmoo

It's drectly relevant to the work you'll do in Program 6.

IV. Midterm Review

A. OnWednesday of this week, we’ll walk through the full solution to the midterm, and discuss.

V. Introduction torecursion (Ch 13).
A. It's a seful problem solving technique.
B. It makes some problem solutions much easigrarticular problems that inwolve accessing linked data.

C. Itneeds to be part of a programmsétbol bag".

VI. Thefundamental idea of recursion.
A. Subdvide a large problem into separate parts.
B. Solwe me simple part of the problem.

C. Applythe solution to the rest of the problem.

VII. A simple searching example
A. Supposeve want a lisel ement Of method.
1. itreturns true if a list contains a particular element

2. itreturns false if not

CSC102-S010-L.8 &ye 2

B. Aniterative solution uses a familiar for loop, e.g.,
import java.util.*;

/****

*

* This class illustrates an iterative elementOf nethod. Conpare it to the
* recursive solution in ./RecursiveEl ement . j ava.

>/

public class IterativeEl ementOf {

/**

* Return true if the given elenent is in the given list, false if not.

* The nmethod uses a standard formof for |oop to exam ne each el enent of

* the list, returning true if we find the element we’'re | ooking for, false
* if we run off the end of the list.

*/

static <E> bool ean el enentOf (List<E> list, E elenent) {

for (int i =0; i < |list.size(); i++) {
if (element.equals(list.get(i))) {
return true;
}

}

return false;

}

C. Arecursive solution goes lik this:
1. If the list is emptyreturn false.
2. Ifthe element is first in the list, return true.
3. Otherwisesearch the rest of the listcursively.

D. Heres the code, which does the same work as the precedingviéevatsion:
import java.util.*;

/****

*

* This class illustrates a recursive elenent nethod. Conpare it to the

* jterative solution in ./IterativeEl ement.java.
*

*/
public class RecursiveEl ementf {

/**

* Return true if the given elenent is in the given list, false if not.

* The method uses a recursive search algorithm consisting of the

* following three steps:

*

* (1) If the list is enpty, return fal se.

*

* (2) If the element we’'re looking for is the first in the Iist,

* return true.

*

* (3) Oherwi se, search for the element recursively in the rest of the
* list, i.e, the sublist fromthe second through the |ast el enent.
*/

<E> bool ean el ement Of (Li st<E> list, E elenent) {

CSC102-S010-L.8

/*

* Step 1.

*/

if (list.size() == 0) {
return fal se;

}

/*

* Step 2.

*/

if (list.get(0).equals(elenment)) {
return true;

}

/*

* Step 3.

*/

return elementOf (i st.subList(1, list.size()), elenment);

VIIl. Analysisof el ement OF performance.

ArrayList and a LinkedList:

1. Theiterative lution works well on an ArrayList, in O(n) time.
2. Theiterative solution works poorly on a LinkedList, in Qrtime.
3. Therecursive lution works well an ArrayList, in O(n) time.

4. Therecursve lution works well on a LinkedList, in O(n) time.

B. Question: how do you explain these behaviors?

... thinking . ..

A. Heres a simmary of the performance for the itevatiand recursie lutions toel ement O on an

. OK, so youve thought about it for a couple secondsyéa bok at Figure 1, and consider the fallag

points:
1. Theget (i nt) operation is constant ¢&r r ayLi st s, whereas it linear onLi nkedLi st s.

2. Theget Fi rst () andget Rest () methods are both constantlonnkedLi st 's. (Thesenethods are

equialent to, respeciely, get(0) and subList(1,list.size()).)

3. ThesublLi st method is constant on both ArrayLists and ledkists, due to da's implementation of
java.util. AbstractList. (Notehat if ArrayList.subList created awearray, it would be O(n). Think about

what might be going on inside the ArrayList implementation toesakList O(1).)

4. Think(some more) about what these observations mean for the performance of tie ¥ersis recur

sive earches owr r ayLi st versusLi nkedLi st .

