CSC102-S010-L9 &ye 1l

CSC 102 Lectue Notes Week 9
Mor e on Recursion
Introduction to JavaGUI Library

. Announcements

A. Labs15 through 18 are out.

B. Thelab quiz is orwednesday of week 10.

C. Afinal exam reviw is on friday of week 10.

D. Thefinal exam is omwvednesday of finals week:
1. 7-10PMJune 12

2. Room26-104

. Quiz and Exam Review Details

A. Quiz
1. You'll do a paper design and coding during Wednesday lecture hour.
2. Thenyou'll move o the lab to compile, test, handin the program.

B. Final Exam Review:

1. Therewill be a review of the final exam during Friday lecture, discussing the topics and kind of questions
that will be asked.

2. Therewill be NO practice final as discussed previously in class.

Definitions of Functional and Structural Recursion

A. Functional is when a method calls itself, directly or indirectly.
1. Thepreceding examples in these notesfametional recursion.
2. Aswe sav, this can be more or less useful inalan the practical leel.
3. Lab15 covers this topic further

B. Structural is when a class refers to itself, directly or indirectly.
1. Agood example of structural recursion is the Node in a linked list.
2. Labsl6 and 17 ceer this topic further.

. Helper Methods in Recursve Slutions

A. Theidea of helper methods is common in functional recursion.

B. Helpersare typically used with recursd nethods that hae aray parameters, such as the recgrsim
example belav.

C. Helpermethods can also be used to makecursve lution easier to implement, as in the palindrome
method discussed in Section 13.2 of the book, and the mergesort algorithm discussed in Section 14.4.

D. Heres dmple recursie amming method, illustrating the use of a helper method

/****

*

* This class illustrates how to conpute the sumof an array recursively. The
* public sumnethod takes an array of integers and returns the sumof all its
* elenments. A private "helper" nmethod takes an array and an integer postion
* in the array.

*

* The reason for the hel per nmethod is to avoid inefficient array copying to

* create a sub-array. Rather than creating a sub-array by copying, the hel per
* method takes a full array plus an integer position that indicates the

*

begi nning of the sub-array.

CSC102-S010-L9 &ye 2

*
*/
public class RecursiveSum {

/**

* Return the sumof the given array. Return O for an enpty array. Assune
* the array is not null.
*/
public int sun(int a[]) {
return sum(a, 0);
}

/**

* Return the sumof the given array, starting at the given position. |If
* the position is equal to the length of the array, return O.
*/

private int sun(int a[], int position) {

/**
* Base Case: Return a sumof O if position is at the end of the array.
*/
if (position == a.length)
return O;

/**

* Recursive Step: Return the sumof the first elenment of the array

* with the recursive sumof the rest of the array. The first el enent
* is at a[position]. The rest of the array is represented by the full
* array with the position incremented by 1.

*/

return a[position] + sum(a, position + 1);

E. Thecode is in 102/examples/Recwessum.java and 102/examples/RecuveBumTest.jaa

F. Theres an nteresting alternate lution here 102f@amples/RecurgeSumAlternatve.java and here
102/examples/Recur@SumAlternatveTest.java

V. Recursive Slution to the "Classic" Fibonacci Sequence
A. Thefirst two in the sequence are 0 and 1.
B. Thefollowing numbers are the sum of previous two

C. Heres a ecursve lution from the book examples in 102/examples/book/ch13/fib
i mport java.util.Scanner;

/****

* This program conputes Fibonacci nunbers using a recursive nethod.
>/
public class RecursiveFib {
public static void main(String[] args) {
Scanner in = new Scanner (Systemin);
Systemout.print("Enter n: ");
int n=in.nextlint();

for (int i =1; i <=n; i++) {

CSC102-S010-L9 &ye 3

long f = fib(i);
Systemout.printin("fib(" +i +") =" + f);

}

/**
* Return the nth Fibonacci numnber.
*/
public static long fib(int n) {
if (n<=2) { return 1; }
else return fib(n - 1) + fib(n - 2);

}

D. We'll discuss this method during lecture in class.

E. Heres a \ersion of recurske fib that outputs trace information as it runs; you can compile sexli it to
see whas going on:

i mport java.util.Scanner;

/****

* This programprints trace nessages that show how often the

* recursive nethod for conputing Fibonacci nunbers calls itself.

>/

public class RecursiveFi bTracer {
public static void main(String[] args) {

Scanner in = new Scanner (Systemin);
Systemout.print("Enter n: ");
int n=in.nextlint();

long f = fib(n);

Systemout.printin("fib(" +n + ") =" + f);
}

/**

* Return the nth Fibonacci nunmber. Qutput nethod trace information during
* execution.

*/
public static long fib(int n) {
Systemout.printin("Entering fib: n =" + n);
long f;
if (n<=2) { f =1; }
else { f =fib(n- 1) + fib(n - 2); }
Systemout.printin("Exiting fib: n=" +n+ " return value =" + f);
return f;
}

VI. Recursive Pdindrome Solution
A. A palindrome is a string that is read the same forward or backward.
B. Heres a ecursie lution from the book examples in 102/examples/book/ch13/palindrome

C. Sectionl 3.2 of the book discusses an alternate version of reeyedindrome that uses a helper method.

CSC102-S010-L9 &e 4

VII. An Efficient and Elegant form of Sort

A.
B.

It's called mergesort.

Thebasic algorithm is this:

1. Diide the array in half.

2. Recursiely merge sort each half.
3. Meme the tw sorted halves.

Here$ a ®lution from the book examples in 102/examples/book/ch14/mergesort

/****

* This class sorts an array, using the nerge sort algorithm
*/
public class MergeSorter {

private int[] a;

/**

* Constructs a nmerge sorter.

*/

public MergeSorter(int[] anArray) {
a = anArray;

}

/**
* Sort the array nmanaged by this nerge sorter.
*/
public void sort() {
if (a.length <= 1) return;
int[] first = newint[a.length / 2];
int[] second = newint[a.length - first.length];
/1 Copy the first half of ainto first, the second half into second

for (int i =0; i <first.length; i++) { first[i] = a[i]; }
for (int i =0; i < second.length; i++) {

second[i] = a[first.length + i];
}

MergeSorter firstSorter = new MergeSorter(first);
Mer geSorter secondSorter = new MergeSorter(second);
firstSorter.sort();

secondSorter.sort();

nerge(first, second);

}

/**
* Merges two sorted arrays into the array managed by this nerge sorter.
*/
private void nerge(int[] first, int[] second) {
int iFirst = 0; // Next elenent to consider in the first array
int iSecond = 0; // Next elenent to consider in the second array
int j = 0; // Next open positionin a

/1 As long as neither iFirst nor iSecond is past the end, nove
/1 the snaller element into a
while (iFirst < first.length & i Second < second. |l ength) {
if (first[iFirst] < second[i Second]) {
a[j] = first[iFirst];
i First++;
}
el se {
a[j] = second[i Second];

CSC102-S010-L9 &ye 5

i Second++;

j ++;

1

}

/1 Note that only one of the two | oops bel ow copies entries
/1 Copy any remaining entries of the first array
while (iFirst < first.length) {
a[j] = first[iFirst];
i First++;, j++
}
/1 Copy any renmining entries of the second hal f
whil e (i Second < second. | ength) {
a[j] = second[i Second];
i Second++; j ++;

I tems discussed on Friday Week 9 to be added here.

