Name:

CSC 307 Midterm Exam

Instructions: The exam is open-notét is worth a total of 125 points.
Use bak of pages as recessary for your answers.

1. Software Process Questions

a. (4points) Describe a software project "stakeholder" in 25 words or less.

Anyone who has some interest, large or small, in a software product.

Full credit for some variant of this.

Half credit for noting some specific interest orly., financial.

b. (6 points) Give wo key differences between the traditional process we are following this quarter and an Agile
software process (e.g., Extreme Programming).

A conpl ete requirenents docurment is not devel oped in an agile process.

There is nore frequent process iteration in an agile process

Other acceptable answeinclude any derivable from Notes 1-2 or Section 2.6.5 of the text.

All or nothing for some variant of this.

c. (4points) Wly is Testing called a "pervas gep" in the software process we are following?

Because it is conducted at regularly-schedul ed

intervals during all
phases of devel oprent.

Full credit for some variant of this;

Half credit for something reasonablaut not fully correct.

d. (4points) What is a significant problem with not having Testing be a peevasp?

If Testing is left until the end of the entire devel opnent process, fol-
| owi ng inplenentation, errors may well be harder to find. For exanple,
it my be quite hard to find errors in untested requirenments when | ooking
at Java code that attenpts to inplenent the requirenents.

e. (3points) Formal specifications are formal enough to be mechanically analyzed for completeness and consis-
teng (true or false)?

true

Page 2

2. Requirements Analysis Questions

Speaking as your customérwant to add a user complaint feature to the tool that your team is writing the
requirements for this quarter want the following features:

« users can send a complaint directly from the tool, without having to launch an external email program;

« if users vant a response, thean optionally include their email address along with their name andxthe te
of the complaint; note that #'only the email address that is optional, i.e., the complaint text and name are
required, with or without email address;

* when a complaint is sent, the user reeeonfirmation of the date and time of sending, plus a polite mes-
sage that the complaint will be logdk into by a responsible party; the time of the complaint is reported in
hours, minutes, and seconds

« the tool maintains a list of submitted complaints; users canthie complaints that tlyeand other people
have ®nt, including complaint responses ifyhaxist.

« the user can remwe a peviously sent complaint by giving the date and time the complaint was sent

Given these requirements, a responded-to complaint consists of theifigilelements: the name of the sender
an optional email address, the date/time of sending, the text of the complainthelf. and if a complaint is

responded to, the response text is added to the complaint.

I"d like the complaint sending interface to be as simple as possible. In particidalt want the user to ve
enter an address for where the complaint is to be sentyatlaer administratie information, that the system
can determine on the usetkehalf. Thetool knows hav and where to send the complaint to a responsible party
who can deal with it and respond if necessary.

a. (16points) Describe where the complaint-related commands best fit in yow tholYour answer entails

determining what the topatel complaint commands are, based on the requirements outlined abo

Support your description with a succinct Ul picture, showing the tmgbdecess to the complaint commands
in your tool. By "top-level access"”, | mean showhere in your toos main GUI the complaint commands
appear By "succinct" | mean shwoas ittle non-essential detail as possible in the picture.

If your tool has more than one end-user irsteef describe othe commands are added to what you con-
sider to be the primary interface, or the interface where the commanddh@akost sense.

I"d put the commands in the Help nenu of the regul ar-user Cal endar Tool
U. Here's a picture of the Hel p nmenu:

About

Qui ck Help
Detailed Help ...
Send Conpl ai nt

Vi ew Conpl ai nt's

Grading Notes:
* 6 pts for eath command
« 4 pts for decent description and reasonable placement

» Placement on the file menu would be fine too, as would placement in some other reasonable part of the

top-level GUI, though the menubar is faedrper the class discussions about it being the nxpstcéed
place to find major commands.
« -3 pts for putting it in moe than one place

Page 3

b. (36 points) Write a requirements scenario describing the command that sends a complaint. Write it precisely
in the style presented in the lecture notes and examples, including being precise about the asati
style. Includeas mawg screenshots as you think are necesséxscribe fully all user interactions, including
input value constraintsHint: More than three or four screens is likely too gnan

Note well: This scenario has nothing to do with the complaint viewing, complaint removing, or with com-
plaint processing after it is sent. It justvers complaint sending.

When the user selects the ‘Send Conplaint’ command in the ‘Help' nenu, the
system responds by showing the dialog in Figure 1.

Enter a Complaint

Conpl ai nt:

=

<

If you would like a response,
enter your enmil address here:

| (03¢ | | Cancel |

Figure 1: Conplaint entry dial og.

The di al og contains a place for the user to enter a conplaint, and an opti onal
emai | address. The conplaint is a free-formtext string. The email address is
not validated in any way. This scenario assumes that the user has al ready been
identified by the Cal endar Tool, so the user name associated with the conpl aint
is available fromthe Cal endar Tool workspace. The scenario also assunes that
the Cal endar tool uses the systemdate and tinme for the conplaint.

Figure 2 shows the result of the user having entered a conplaint text and email .

Enter a Complaint

Conpl ai nt :

[>

This software is annoying in the extrene.

<

If you would like a response,
enter your enmil address here:

I of i sher @al pol y. edu I

| (0% | |Cance| |

Figure 2: Conplaint entry dialog filled in.

Page 3b

Figure 2 shows a typical user conplaint. Wen the user presses OK, the system
sends the conplaint to the appropriate processing personnel. The systemthen
responds with the confirmation dialog shown in Figure 3.

Complaint Sent

Thank you for your interest. A service consultant
wi || process your conplaint and reply if appropriate.

[o]

Figure 3: Conplaint sent confirmation.

Grading Notes:
« 15 pts for initial dialog picture (8 fs) and explanation of contents (7 pts), with these specific deductions:
o0 -2 for no window title
o0 -2 ead for missing namecomplaint text, and/or email
o0 -2 ead for missing confirm and/or cancel buttons

* 14 ps for filled-in diala, with 7/7 split and comparable deductions

* 7 pts for confirmation, including "polite" megga with these deductions:
0 -2 pts for description of result that megeas £nt to a "responsible
authority" of some kind
o0 -5 for missing confirmation is some screen form, most typically a dialog

« -3 pts for eab prose style violation, up to -9
« -3 pts for eab egregous misplacement of figures, up to -6

Page 4

3. Object Modeling Questions

a. (20points) Based on the complaint features outlined on Page 2 and your answers to Questions 2a and 2b,
define an abstract i nmodel to represent the follong aspects of complaint management: the complaint
object; the cumulate list of complaints sent by all users; the operations to sendyvegaa viev com-
plaints. Includdull signatures for the operations. No comments are necessary.

import java.util.List;

abstract class Conplaints {
Li st <Conpl ai nt> list;
abstract void send(Conpl ai nt conpl aint);
abstract voi d renove(Dat eAndTi ne dat eAndTi ne) ;
abstract List<Conplaint> view);

}

abstract class Conplaint {
String nane;
String email;

Dat eAndTi me dat eAndTi ne; /1 using java.util.Date is acceptable
String text;
String response; /'l acceptable as data field here or in subclass,
/1 but not both places
}
/1 Al'so acceptable is to have response field in a subclass, like this:
abstract class Conpl ai nt Wt hResponse ext ends Conpl ai nt {
String response; /1 acceptable as data field here or in Conplaint class,
/1 but not both places
}

/1 Other variants are acceptable, including use of java.util.Date with no
/1 separate class defined here
abstract class Dat eAndTi ne {
int date;
int tine;
/1 Per the note on the test, we assune this conpareTo works properly
abstract int conpareTo(Dat eAndTi ne ot her);

Grading Notes:
« 1 pt for import
« 8 pts for Complaints class (2 for heag@ror collection, 3 for method signature)
« 8 pts Complaint class (1 for headéreach for data fields)

« -2 pts for each significant inconsistgneith the scenarios, up to -6; notable inconsistencies are missing
components and substantial deviations in object names compared to the scenarios

b. (8 points) Drav a UML diagram that is equéalent to the preceding vJa definition.

. *
Conpl ai nts <>— Conpl ai nt <>— Dat eAndTi e

String nane int date
voi d send(Conpai nt) String email int tine
voi d renove(Dat eAndTi ne) String text
Conpl ai nt* view) String response

Grading Notes:
« or other equivalent form
» method signature and field names are optional

Page 5

c. (25points) Using Spest notation, define preconditions and/or postconditions that formally specify the follo
ing requirements for the i@ nodel you defined in question 3a:

« a ommplaint sendes’' rame must be greater than or equal to one character in length, and less than or
equal to 100 characters in length

« if a senders anail address is not empthen the email address must contaiaaly one '@’ character;
(partial credit forat least oné@’ character)

« for the complaint viewing operation, the list of complaints is sorted by date and time sent, from earliest
to latest; you may assume the existence of a properly implemeoigzhr eTo method for whateer
representation of date and time you used in youa dadel

It's up to yu to determine which method or methods these conditions are specifiautifathether the are
preconditions, postconditions, or bot®nce you hee nmade these determinations, write your answer oy gi
ing the full signature of the method(s). AMleoeach signature, write the appropriate Spest specification.

/*
pre:
conplaint !'= null && 1lpt
conplaint.name !'= null && 1lpt
conpl ai nt. nane. l ength() >=1 && conpl ai nt. nane.length() <= 100 && 6 pts
if (conplaint.email != null && !conplaint.equals("")) 2 pts
exists (int i; i>=0 && i<conplaint.emil.length(); 4pts
conplaint.enmail.charAt(i) ==" @ &&
forall (int j; j!'=i &% j>=0 && j<conplaint.email.length(); 3 pts
conplaint.email.charAt(j) !'="'@));
*
/
abstract void send(Conpl ai nt conpl aint);
/*
post :
forall (int i; i>=0 && i<\result.size()-1; 3 pts
return. get(i).dateAndTi ne. conpareTo(5 pts
return.get(i+1).dateAndTinme) < 0);
*
/

abstract List<Conplaint> view);

Grading Notes:
« 1 pt for null che& of cmmplaint
« 1 pt each for null checks of complaint.name and complaint.email
« 5 pts for first condition, 9 pts for second condition, 8 pts foidtbimdition
« -4 pts for "at least one" instead of "exactly one"

Additional Note:The next pge has the fully compilable model, includingeponditions and postconditions,
plus some additional commenté/hat’s on he next pge s ot an additional part of the expected student
answer; its just thee to povide further explanatory information.

Page 5b

import java.util.List;

abstract class Conplaints {
Li st <Conpl ai nt> list;

/*
pre:
/1 Complaint itself can't be null
conplaint !'= null &&
/'l Sender’s name length nust be >= 1 and <= 100
conplaint.name != null &&
conpl ai nt. name. l ength() >=1 && conpl ai nt. nanme.length() <= 100 &&
/1 If the email address isn’'t enpty then
if (conplaint.email != null && !conplaint.equals(""))
// the address contains at | east one '@
exists (int i; i>=0 && i <conplaint.email.length();
conplaint.email.charAt(i) =="@ &&
/1l and exactly one '@ (i.e,. with '@ at position i,
/1 for all j!=i, there's no '@ at position j)
forall (int j; j!=i && j>=0 && j<conplaint.enail.length();
conplaint.email.charAt(j) !'="@));
*/

abstract void send(Conpl ai nt conpl aint);

/* No Spest for this nethod */
abstract void renove(Dat eAndTi me dat eAndTi ne) ;

/*
post :
/1 This is sorting the logic fromthe lecture notes, suitably
/1 adapted to work here.
forall (int i; i>=0 && i<return.size()-1;
return.get(i).dateAndTi ne. conpareTo(
return.get(i+1).dateAndTime) < 0);
*/
abstract List<Conplaint> view);
}

abstract class Conplaint {
String nane;
String email;

Dat eAndTi me dat eAndTi ne; /1 using java.util.Date is acceptable
String text;
String response; /| acceptable as data field here or in subclass,
/1 but not both places
}
/1 Also acceptable is to have response field in a subclass, like this:
abstract class Conpl ai nt Wt hResponse ext ends Conpl ai nt {
String response; /| acceptable as data field here or in Conplaint class,
/1 but not both places
}

/1 Qther variants are acceptable, including use of java.util.Date with no
/| separate class defined here
abstract class Dat eAndTi ne {
int date;
int tine;
/1 Per the note on the test, we assune this conpareTo works properly
abstract int conpareTo(Dat eAndTi me ot her);

Page 5b

