
Name _______________________________________ Page 1

CSC 307 Final Exam

The exam is open note, open computer. The first five questions are on general topics. The remaining questions refer
to a sample requirements specification that is given on Pages 3 through 5 of the exam. Exceptfor Question 9, all of
your answers go on the exam pages. There are instructions below for how to submit your answer to Question 9.

The exam lasts up to 170 minutes and there are 170 points possible, so figure roughly 1 minute per point.

1. (3 points)In the process we followed in 307 this quarter, which of the following best describes theTesting step
(circle the correct answer).

a. anordered step

b. a pervasive step

c. amanagerial step

d. amaintenance step

e. noneof the above

2. (3 points)For a filed named "X", what is the SVN command to check if there are any differences between the
version of X in your local working directory compared to the version of X in the SVN repository? What I’m
asking for is the command that reports whether or not there are differences,not the command that reports what
the differences are.

svn status X

3. (4 points)What is (are) the command(s) to properly rename a file named "X" to a file named "Y". The com-
mands can be SVN commands alone, or a combination of SVN commands and UNIX shell commands. What it
means toproperly renameis that the file is renamed in your local directory as well as in the SVN repository.

svn rename X Y
svn commit "Renamed X to Y" X Y

-- OR --

mv X Y ; svn remove X ; svn add Y svn commit "Renamed X to Y" X Y

4. (8 points)In our process of requirements modeling, we begin with developing a set of scenarios that describe user
requirements. Fromthese scenarios, we use heuristics to help us derive a model. Briefly describe one such
heuristic and give a simple example of its use. The example need not have any pictures, just an explanatory
description in words.

Any reasonable description and example of one of the heuristics from the notes will do. E.g,
• button = op
• data-entry screen = obj
• input dialog = input obj
• output report = output obj

Page 2

5. (20 points)Explain in one to three sentences how it is possible to achieve 100% branch coverage1 in a test suite,

while at the same time having 100% failure of unit tests1.

The plan has ample test cases to achieve complete decision coverage, but
none of the expected results is correct with respect to the specification,
whereas the code correctly implements the specification.

Support your answer by writing an illustrative unit test plan for the following methodm. When executed, the
unit test plan forX.m produces 100% branch coverage of the methodm, with 100% failure of unit testing.

public class X {
public static int m(int i, int j) {

if ((i > 0) && (i < j)) {
i++;

}
else {

j++;
}
return i+j;

}
}

Give your unit test plan in tabular form, not as code.Tabular form is described in the 307 lecture notes as a
four-column table that has a list of test cases, with column headings for (1) the test case number, (2) the case
input, (3) the expected output, (4) explanatory remark for the test case.

/**
* Test Expected
* Case Input Output Remarks
* ==
* 1 i=0, j=0 return = 0 Cover truth table row 1
* 2 i=0, j=1 return = 0 Cover truth table row 2
* 3 i=1, j=1 return = 0 Cover truth table row 3
* 4 i=1, j=2 return = 0 Cover truth table row 4
*
* Branch Testing truth table (not required in answer if Remarks reasonable:)
*
* i > 0 i < j i j return
* =====================================
* 0 0 0 0 1
* 0 1 0 1 2
* 1 0 1 1 3
* 1 1 1 2 4
*/

The idea is that all the paths get covered, but the expected return value of 0 is wrong in every case.

Grading Notes:
• 4 pts for explanation
• 4 pts per test case in plan

Page 3

Given below are excerpts from the requirements specification for a simple form letter mailing system.Following
the requirements specification excerpt are the remaining final exam questions. These questions all refer to the
requirements spec.

1. Introduction

In an effort to survive a few more years in the paper junk mail business, Acme Junkmail Inc. needs to make their business
more efficient. Acmespecializes in producing individualized advertising letters.The letters are mailed to potential cus-
tomers who may be interested in purchasing certain products. At present, Acme has fifty employees who produce the let-
ters using standard office software. Acmewants a more automated form of letter generation system.

2. Functional Requirements

The Acme system maintains three databases:

1. A form letter database, consisting of form letter templates.

2. A prize database, consisting of prizes that can be offered to customers

3. A customer database, consisting of potential customers to whom letters will be mailed.

For database management, the system provides operations to add, delete, modify, and search for records in any of the three
databases. To produce form letters, the system provides a text editor for creating form letter templates.A template con-
sists of standard text and template fill-in fields.For example, a typical form letter could have fill-in fields for customer
name, address, and other specialized information.

To generate customized letters, the user selects a template from the form letter database, and fills in selection criteria for
which customers will receive the letter. For example, selection criteria could be all customers in a particular city between
the ages of 20 and 50.After selection criteria are defined, letters are generated by finding all customer records that match
the criteria.For each matching customer, a personalized letter is generated by filling in the template fill-in fields with spe-
cific information from the customer database record.

2.1. User Interface Overview

Figure 1 shows an expansion of the Acme system command menus.

TheFile andEdit menus have typical commands for manipulating data files and basic text editing.

TheCustomers andPrizes menus provide standard commands to manage each of the databases.TheAdd command
adds a new record. TheDelete command deletes an existing record.The Change command changes an existing
record. TheFind command finds one or more records by an appropriate identifier.

Undo
Redo
Cut
Copy
Paste
Delete
Find ...

New
Open ...
Close
Save
Save As ...
Print ...
Exit

Add ...
Delete ...
Change ...
Find ...

Add ...
Delete ...
Change ...
Find ...

Create ...
Delete ...
Edit ...
Find ...

Generate ...

Acme Form Letter System

File Edit HelpCustomers Prizes Letters

Figure 1: Expanded command menus.

Page 4

TheLetters menu provides operations to create, delete, edit, and find a form letter template.The ’Generate ...’
command allows the user to perform the generation of form letters based on selection criteria.

2.2. Customer Database Management (Abbreviated Requirements)

When the user selects the ’Add ...’ i tem from theCustomers menu, the system displays the dialog shown in Figure
2. Theuser enters free-form string values in theName, Company, Age, and Address fields. TheField Name and
Field Value columns are typeable text areas in which the user enters customer-specific data fields.

When the user selects the ‘Find ...’ i tem in theCustomers menu, the system displays the dialog shown in Figure 3.
To find a customer, the user can scroll in the name list, or enter the customer name and press the ‘Find’ button.

The add-customer and find-customer dialogs are both non-modal. When the user pressesOK in the add dialog, the find
dialog is updated by adding the new customer’s name into the displayed list of names.

Age:Company:

Name:

Address:

Add a Customer

OK CancelClear

Field Name: Field Value:

Jane Doe

Acme, Inc. 42

1234 Main Street Any Town USA 12345

Magazine subscriptions Golf Digest, Time
Known hobbies golf, sky diving

Figure 2: Add customer dialog.

Find a Customer

Name:

Find Cancel

Name

Alder, Daniel
Ball, Alex
Brandon, James L.
Bochman, Ray E.
Borman, John
Bellingham, Stacey
Brady, Louise
Butler, Dexter P.
Cambridge, John
Camp, Robert

Figure 3: Find customer dialog.

Page 5

2.3. Prize Database Management (Abbreviated Requirements)

When the user selects the ’Add ...’ i tem from thePrizes menu, the system displays the dialog shown in Figure 4.
The Name field is a free-form string; it cannot be empty. The Inventory ID is a positive integer; it also cannot be
empty. TheValue field is one of ‘low’, ‘medium’, or ‘high’. The Quantity in Stack is a positive integer; it
can be empty, which indicates a quantity in stock of 0. TheDescription field is an optional free-form string.

When the user presses the ‘OK’ button in the add prize dialog, the system checks that no prize of the given Inv entory ID is
already in the prize database.If there is no such prize, then the system adds a prize with the given information. Other-
wise, the system displays an error dialog informing the user that the specified Inventory ID is already in use.

Add a Prize

Value:

Inventory ID:

OK CancelClear

Description:

Name:

Quantity in Stock:medium

Golf Clubs 1462

26

Purchase in bulk from cheap-golf-clubs.com.

Figure 4: Add prize dialog

Page 6

6. (10 points)Draw a package diagram for the Acme Form Letter System, based on the preceding requirements excerpts.
Follow the Information Process Tool (IPT) packaging pattern we’ve discussed in class, or the modified version of the
IPT pattern you used for your team’s project this quarter. In either case, the package diagram should reflect a separa-
tion of the model and view components of the design.

file_ui

acmetool

file

acmetool_ui

edit

 edit_ui

customers

customers_ui

prizes

prizes_ui

letters

letters_ui

acmedb

Grading Notes:
• a comparable diagram based on team’s high-level design is acceptable
• acmedb pkg is optional
• .5 pt per package = 6 pts
• 2 pts for structure

7. (6 points)In the requirements excerpts on Pages 4 and 5, the section headings include the note "(Abbreviated Require-
ments)". Thisindicates that some UI pictures and narrative hav ebeen omitted.Based on the style of requirements
we wrote this quarter, what would you say is the most significant omission from these abbreviated requirements?

Missing filled-in versions of the input dialogs.

Grading Note: Possbile other answers acceptable for full or half credit; no other partial credit than 3 points.

Page 7

8. (20 points)Consider the last paragraph in Section 2.2 of the requirements on Page 4:

The add-customer and find-customer dialogs are both non-modal. When the user pressesOK in the add dia-
log, the find dialog is updated by adding the new customer’s name into the displayed list of names.

A good way to design and implement this behavior is with the Observer/Observable design pattern.For the purposes
of this question, assume the following design has been implemented:

OKAddCustomerButtonListener

CustomerDB
AddCustomerDialog

actionPerformed

 Action
Listener

Observable

...

addObserver
notfiyObservers
setChanged

CustomerDB

...

CustomerDB
add
delete
change
find
getFirst
getNext

appropriate data

Model

Observer View AddCustomerDialog

...

AddCustomerDialog
compose
update

appropriate swing
 components

FindCustomerDialog

...

FindCustomerDialog
compose
update

appropriate swing
 components

In this design,

a. Whatmethod or methods callCustomerDB.addObserver?

FindCustomerDialog.FindCustomerDialog 4 points

b. What method or methods callCustomerDB.notifyObservers?

OKAddCustomerButtonListener.actionPerformed 4 points

c. Whatmethod or methods callCustomerDB.setChanged?

CustomerDB.add, .delete, .change 1 point each

d. Whatmethod or methods callCustomerDB.getFirst andgetNext (these are iterator methods to retrieve
all customer records from CustomerDB)?

FindCustomerDialog.update and/orFindCustomerDialog.compose 5 points, -2 if one

Page 8

9. (80 points)For this question of the exam, you are to implement model classes for the Acme Prize DB described on
Page 3 of the exam, and view classes for Add Prize Dialog described on Page 5.In particular, you must provide a
concrete implementation of the following abstractPrizeDB class, along with thePrize class which it uses.

import java.util.Collection;

abstract class PrizeDB {

/** The prizes in this DB. */
Collection data;

/** Add the given Prize p to this.data. */
public abstract void add(Prize p);

/** Delete the prize of the given ID from this.data */
public abstract void delete(int id);

/** Change the prize of the givem id to the given Prize p */
public abstract void change(int id, Prize p);

/** Return the prize of the given id, null if no such prize */
public abstract Prize find(int id);

}

The following are precise details of model and view implementation:

• the abstractCollection interface must be replaced by some concrete collection class; it can be as simple as
ArrayList, or the equivalent

• thePrizeDB.add method must add the prize to the the collection

• to provide a quick form of validation, theadd method must also print the size of the collection tostdout

• thePrizeDB.add method must have a Spest comment the defines the input constraints specified in paragraphs
1 and 2 of Section 2.3 on Page 5 of the exam; namely:

ο the name field of the prize is not empty

ο the inventory ID and quantity fields of the prize are positive integer values, i.e., strictly greater than 0

ο there cannot be a prize in the input database with the same ID as the prize to be added

The Spest comment must also have a postcondition that specifies that the prize is properly added to the prize
DB, where "properly" means that the prize is added, no existing prizes are removed or modified, and no extra
prizes are added; i.e., the "no junk, no confusion" logic we discussed in class

• when theOK button is pressed in the add prize dialog, the values entered in the dialog fields are extracted from
the dialog, a new prize is created, andPrizeDB.add is called to add the prize to the database

• after OK is pressed, the dialog stays in place on the screen, so multiple prizes can be added

• the implementation must have model/view separation, i.e., the model and view code must be in separate classes

The following are specific simplifying assumptions about the model implementation:

• neither thePrizeDB.add method nor thePrize constructor need implement any data validation constraints;
if the user enters invalid data into one or more fields of the add prize dialog, the program is allowed to have
undefined behavior; in other words, the program does not need to provide code that validates the specification
defined in the Spest comment

• the implementations ofdelete, change, and find PrizeDB methods can be completely empty, except for
thereturn null required to allowfind to compile properly

• the implementation does not have to be org anized into separate packages; that is, all classes may be in the same
package directory, and there need be no explicitpackage declarations in any of the classes

Page 9

• no class or method comments are necessary

For the view, you must provide an implementation that displays the dialog in Figure 4 on Page 5 of the exam. Asyou
see fit, you may make the following simplifying assumptions to ease the implementation of the dialog:

• theValue field can be a string instead of a drop-down

• theDescription field need not have a scroll bar

• theClear andCancel buttons may be eliminated

• the spacing and alignment of the dialog fields need not be exactly as shown in Figure 4 on Page 5, but the overall
horizontal/vertical layout must be preserved

Your implementation must provide some form of main program driver that constructs a Prize DB and displays the
Add Prize dialog on the screen.You may use the GUI toolkit and IDE that you employed this quarter to define the
driver program. Thebottom line is that the program must be executable, display the dialog when run, and the dialog
must communicate with the Prize DB model as described above.

You must use thehandin program onunix3 to submit your answer for this question.Submit to the usergfisher
and the submission directory307_final. Hence, yourhandin command looks like this

handin gfisher 307_final files ...

You must submit all source files for your program plus a README file that describesprecisely how to run your sub-
mission. Thefollowing is a concrete example of submitting a program that uses Java Swing for the implementation:

handin gfisher 307_final Main.java PrizeDB.java Prize.java AddPrizeDialog.java README

with the README file saying "Compile using javac *.java and run with java Main." If it i s
convenient for you to produce an executable jar file, you may do so. In this case, the submission could look like

handin gfisher 307_final Main.java PrizeDB.java Prize.java AddPrizeDialog.java Main.jar README

with the README saying "Run with java -jar Main.jar." Other variants of submission are acceptable,
as long as you submit all of your source files and make it absolutely clear how to run your program.

10. (16 points)Define the companion testing class for thePrizeDB model class you implemented in your answer to
Question 9. Include the following details:

• the class header, with its name and any class it extends
• the class comment that defines the class testing plan, in terms of the testing phases
• the names and signatures of unit test methods, but otherwise empty; i.e., the unit test methods need not have

comments and their bodies are empty
Note that youare not required to submit this test file withhandin; just put your answer here on paper, using the
back of the page as necessary.

Page 10

/**** // 1 pt per phase
* Phase 1: Test constructor.
* Phase 2: Test add.
* Phase 3: Test find.
* Phase 4: Test change.
* Phase 5: Test delete.
* Phase 6: Repeat 1-5.
* Phase 7: Stress test.
*/

public class PrizeDBTest { // 2 pts for class header
// 1 pt per method

void testPrizeDB() {}
void testAdd() {}
void testDelete() {}
void testChange() {}
void testFind() {}
void repeatPhases1Thru5() {}
void stressTest() {}

}

