A Short Primer for Formal Specification with Java/Spest

November 2015

Contents
I (oo ¥ Tod 1 o] o TSR 3
0 T /T Y= 110 o RSN 3
2 N [] = 1o o 3
1.3. Writing Formal Specifications Can Be Challenging for Programmerscccccoiiiiiiiiineeennniinne, 4
1.4. SCOPE Of tNE PIIMEI ..o ettt e e e e e e et e e e e e e a bt e e e e e e e e e aannnes 4
1.5. What Is a “Requirement”, What Is a “Specificatiin’.............ccccoe 5
2. TheRolodeX USEr INTEITACEcooeiiiiiiiiiiieie et 5
3. DefiningODbjects and OPEIALIONSccoiiiiiiiiiiiiiiiiiiiiiitir e eeeeeaas 6
G0t I 11 =T = Vot TN o [T 1= 4o 7
3.2. HeUrIStIC APPIICALION ..ottt e et e e e e e e e e e e e e e s e e e et e e e e e nreeeeas 7
IR T 11 L= = T =T V=T o PP 9
4. Formal Specification with Preconditions and Postconditions.............ccccccevveeeveiiiiiieeeeenn, 10
4.1, NOtAtIONAI SUMIMAIY ...oeiiiiiiieii it e e e e e s e e e e e e e s s e e e e e e e e e anbb e reeeeeeeaannes 11
4.2. Formal Specification MaXimSooooiiiiiiiiii e 11
4.3. Basic ROIOAEDESINITIONSccooiieiieee e 12
4.4, BasiC User-LEE REQUITEMENTSuiiiiiiiiiiiiiiieiie ettt et et e ee e e e et eeeeeeeeeeeeeeeeeeeeeeeeeaaeeeaeeaeeees 15
I [0 B B W] o] [oF= 1 L= ST PRI 15
A T o101 Y= 1O TN @ T=Tod (] o TP PPPPRTTRN 16
4.4.3. Ordering Of MUILI-Card LISTSiiiieiiiiiiiiiiii ettt ettt e e e e e e e s e e bbb b e e e e e e e e e e e e s e s annnbbebeeeaaaaaeas 17
4.4.4. Unbounded QUANLTICALIONueiiii i e ———————— 18
4.4.5. USING AUXIIAIY FUNCLIONS ...ttt ettt e e e e e e s s b bbbt et e e e e ae e e e e e aannnbebaeeeaaaaaaaaeas 18
5. UserLevel Refinements and ENNANCEMENTS........cooiiiiiiiiiiiiiiiiiiiiiiir e 19
5.1, Pattern-Based SEarCh ...ttt ettt ettt ettt sttt et e e e s eneeeeeeeeeeees 19
I o 153 (o [>T I D I = 1 oo - SRR 21
Lo TRC T O o T o] Q01 11 o P 22
S S 1 T o OSSP 23
SRS U | PP PPPPPPPRPPP 24
6. ROIOUEXFIIE OPEIALIONSuueiiiiiiiee ettt e e e e e e e e e e et e eeaaabab e e e e e e e e aeeaaeeeeesesnnees 25
7. ConsideringOther INterface StYIESccooo oo 27

1. Introduction

This primer presents an example of formal software specification. xEmepde is a simple electronic Rolodsys-

tem that stores and retvis information records.The system performs functions that are common to a variety of
other information processing applications. Hence, the specification techniques used in the example are applicable in
general to other software applications.

The example begins with the definition of a concrete user acirf Theelements of the interface are used in the

first step of the formal specification process -- the identification of the sgstbjatts and operations. Once the
objects and operations are defined, the specification is formalized by adding mathematical logic that precisely
defines system requirements and constraints.

1.1. Motivation

The major purpose of this primer is to portray formal specificationpaacdical tool. Far too mag software engi-

neers viee formal mathematics as tedious and largely iva@leto their actiities. Thisis a rather unusual vie

when one compares sofive engineering to other science and engineering disciplines. In almost all such disci-
plines, rigorous mathematical reasoning is\any@lay practice.

One may argue that software engineering is moe dilonstruction project than science or "real" engineering.
Even if this were the case, the use of mathematasidvbe no less important for yanon-trivial project. In most
jurisdictions, a construction firm cannot undeetaknajor huilding task without complete specifications, including
the necessary engineering calculations. Such calculations rely heavily on mathematical analysis.

The branch of mathematics that is mostvaieto softvare engineering igic. Both the specification and imple-
mentation of software can be defined in logical terms. Hence, mastery of mathematical logic should be as important
to the software engineer as mastery of mathematical analysis is to the civil engineer.

One cause for lack of mathematical rigor in software engineering is that mathematicshesth When gven the

chance, human nature will steer ugag from hard tasksFor example, the @il engineer might well prefer to dra

some simple pictures and perform some informal analysis when designing a bridge. Such would be the kind of anal-
ysis that is frequently considered adequate for software engineering préjetttsiately the competent civil engi-

neer knows that informal analysis is not sufficient, and that the bridge may well collapse if a careful mathematical
analysis is not performed. Thevitiengineer learns this as part of basic training, and the practice of civil engineer

ing requires that mathematical analysis is an integral part of the job.

Like the civil engineerthe softvare engineer must learn that careful mathematical reasoning is necesszep to k
programs from collapsingUnfortunately mary software engineers are not trained thieywnor does the practice of

software engineering require the samgrée of mathematical rigor as is required for other branches of engineering.

As software engineering matures into a genuine engineering discipline, the acceptance and use of formal mathemat-
ics will be an important part of its maturation.

1.2. Notation

The example in this primer isvgh in a formal specification language called Speshe structure and grammar of
Spest are ery much the same as the standarth Jaogramming language. Objects in Spest are definedvas Ja
classes, operations defined agJaethods. WhaSpest adds to va is an agmented notation for definimgecon-
ditionsandpostconditionghat formally specify the behavior of operations. The tanditions define what must be

true before and after an operatiore@ites. Theconditions are defined using standardaleoolean gpressions,
augmented with a fe additional constructs from standard mathematical logic. These additional constructs provide a
notation that is sufficiently formal to define a precise biehal specification for a method, without writingyaof

the code that implements the method.

This primer does not pvide an introduction to the fundamentals of mathematical Idgather necessary notation
is introduced as the Rolodlexample ®olves. Themathematical details of the predicate logic in Spest are typically
covered in a standard first course on discrete mathematics, such as CSC 141.

1.3. Writing Formal Specifications Can Be Challenging for Programmers

For a programmer who understands the complexities of sofvimplementation, it may seem implausible that pro-

gram behavior can be fully defined with boolean expressions alone. The reason this is possible is that a formal spec-
ification definesvhata program is supposed to do, without definlmgvthe program wrks. Thespecification can

use boolean expressions alone, since it defines the "black box" meaning of a program, in terms of what must be true
before and after ibecutes. Thespecification does not define the "white box" internal details of program implemen-
tation. Aspecification is hence a more abstract and generally more compact definition of prognaor bedraan
implementation.

Despite its compact form, a specification may in some cases be more difficult to define than the semantieally equi
lent implementation. This can be the case for a number of reasons, including

a. definingprogram behavior purely with booleaxpeession is a different way of thinking about a program than
implementing it, and it may taksome getting used to

b. the abstract mathematical notation of a formal specification, particularly the use of quantifiers, may be unf
miliar to mary programmers

c. in general, abstract mathematical thinking can be challengieg, fer those experienced with it, since it
involves determining the essential details of program behavior without benefit of observing the grogram’
execution

Despite the potential challenge of writing formal specificationsy tedinitely proside some tangible benefits.
These include:

« the precise definition of software requirements

« the formal basis for generating program tests

« the basis for formal verification of program correctness

« a dearer understandingrerall of what software is supposed to do and fitadoes it

1.4. Scopef the Primer
The primary focus of this primer &pecification and the secondary focus tisquirements analysisRequirements
analysis entalils:

* determining what end users want and need from a computer system;

« devdoping a prototype user interface and scenarios of system usage, to help elucidate end-user requirements;

« devdoping useflevel documentation that describes system functionality and requirements in terms understand-
able to the end user (e.g., a users manual).

Specification entails
« defining system functionality in a formal language;
* encoding requirements in formal logic;

« iterating with the requirements analysis process as necessary to ensure thati¢hiel ugmw and formal spec-
ification are consistent.

In the overall context of software engineering, the interaction between requirements analysis and formal specifica-
tion is quite important. As the specification is formalized, the specifier will typically\@iscbanges that must be

made to the user interface in order maintain consigteBomplementarily userinitiated changes to requirements

will drive changes in the specification. In thisiyuser-level analysis and formal specification proceed in tandem,
resulting @entually in a complete and consistent definition of a system.

In this primer the interaction between requirements analysis and specification isiatdmén order to expedite the
presentation of formal specificatiomn practice, such abbreviation should notetgdace. Thorougtconsultation
with end users shouldvadys be an integral part of specificatiorvelepment.

1.5. Whatls a “Requirement”, What Is a “Specification”?

There are nearly as mauefinitions of the terms "requirement” and "specification" as there are authors who use
them. Acommon misconception is that a requirement is an informal statement of user need and a specification is a
(more) formal statement of system functionality.

In order for a system to be formally specified, both requirements and specifications need to be formally defined.
Furthermore, in order for a system to be understandable to an endotiseequirements and specifications need to

be presented in informal, user-accessible terms. Hence, a complete requirements/specification document consists of
two views -- a formal system wvie and an informal user we

Given these observations, the terms in question can be defined precisely as follows:

* A specificatiordefines the functionality of a system, in terms of the objects and operations of which the system
is composed.

* A requirementis a verifiable statement of fact made about an object or operation.
This primer uses the term "requirements specification" to refer coflgdid both parts of this definition.

2. TheRolodex User Interface

The top-level user interfce to the sample Roladsystem is shown in Figure 1. It is a familiar menu-style iaieef
common to may types of application programThe File menu contains commands to create & Relode file,
open an existing file, 8a the current working file, s& the current working file under aweame, print the current
working file, and &it. The Edit menu contains commands to undo/redo theipus command, and cut/cgppaste
text. Finally, the Rolodex menus has commands to add & matry into the Rolodex, delete an entdhange an
entry, or find an entry.

In a typical scenario of use, the user will openwa Relodex and proceed to add neentries. Subsequentlgntries
will be changed, deleted, and searched for as necedsarysponse to each of tiolodex menu commands, an
appropriate data-entry dialog is displaydebr example, a sample dialog for theld command is shown in Figure
2. Inthis dialog, the user types the required information and completégitheperation by pressing th@K but-
ton. TheClear button clears all of the typed information, Wag the dialog emptyThe Cancel button cancels the
Add operation, and renves the dialog from the display.

For deleting and changing, cards are accessed byddfind, cards can be accessed by Id of NaWéth these
requirements, the commands to delete, change, and find a card use the dialogs shown in Figese3.of these
commands, the user initially enters a value, to which the system responds with a further command-specific dialog.
The system response Eelete is a dialog that indicates whether a card of thergid is found, and asks for

Rol odex Tool

File Edi t Rol odex Hel p
New Undo Add ...

Open ... Redo Del ete ...

Save Cut Find ...

Save As ... Copy Change ...

Print ... Past e

Exi t

Figure 1 Top-Level Rolodex Interface.

Enter Information for a Rol odex Card:

Gender : | |

Addr ess: | |

(K) (d ear) (Cancel)

Figure 2 Dialog for Adding a RolodeCard.

confirmation to delete itThe response t€hange is the same data-entry dialog used Aald (Figure 2). In the

case of the&Change command, the dialog disallows changing the Id of the card, but all other fields can be changed.
(This means that once an Id is assigned to a card, it can only be changed by deleting the card, and cveating a ne
with that I1d_. Lastly, the response tBind is a display of the card or cards of theegild or Name if ary is found,

or a "not found" message otherwise.

With this basic interface description, we will proceed to formalize the specificat@amntheugh there are a number
of userlevel requirements that remain to be addressed complgBelg such requirement in particular is whether or
not duplicate cards be allowed in the Rokad®eveloping an initial formal representation will help us formulate
this and other requirements preciseiso, after the basic requirementsyédeen coered, we will consider system
enhancements andwdhe enhancements can be precisely specified.

3. DefiningObjects and Operations

The initial step in formalizing a specification is to identify thigectsandoperationsof the system Almost all Soft-
ware Engineering textbooks discuss this process in one form or antitteesometimes called "domain analysis" or
"domain modeling".In general, the terms "object” and "operation™ are commonly used in the same sengearas the
used here.

Enter Id of Card to Del ete:

Enter Id of Card to Change:

Enter Id or Name to Search For:

Figure 3 Dialogs for Finding, Changing, or Deleting a Card.

In the Jaa pogramming language, what we refer to abstractly here as an "object” is definedvaslasda An
"operation" is a defined as avdanethod. Since the Spest notation can be used with programming languages other
than Jaa, we havechosen to use the more general terminology of "object" and "operation”, rather thanvaore Ja
specific terminology that may not be the same in other programming languages.

The software engineering literature describes a number of methods for object and operation identidicaiam-

ing techniques, such as UML and entity-relationship modeling are poputether general approach is to apply
heuristics that transform a prose description of the system into a more formal notation. This approach begins by
deriving objects from nouns or noun phrases and operations from verbs or verb phrases.

The method used in this primer is to gertbjects and operations from a prototype user iaterf Thistechnique

has the advantage of using a normal artifact of the requirements analysis process, without retrairifiggeams

or prose descriptions to bevéped. Anothermdwantage is that it provides the basis for automatically generating
portions of a specification from an interface, and for verifying that the interface is consistent with the specification.

3.1. InterfaceHeuristics
The following heuristics can be used to dern initial set of objects and operations from a graphical user interface:

1. Functionbuttons and menu items generally correspond to operations.
2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for theritked operation.

4. Outputreporting screens that appear in response to confirming an input dialog (e.g., with anutioK)' b
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements that alloentry of a single numbestring, or boolean value correspond to prim@ti
objects.

6. Thehierarchical structure of objects is generally displayed in the amteitby nested or cascading win-
dows and boxes, with primi#t dements at the lowestid of nesting.

3.2. Heuristic Application

Applying these heuristics to the preceding interface example, we ealopl¢he objects and operations for the
Rolodex system. Inparticular by the first heuristic we can identify the foNong operations from th&olodex
menu in Figure 1:

abstract void add();

abstract void delete();

abstract void change;

abstract void find();

For the moment, we will focus on these operations fromRbl®dex menu and not yet consider the operations on
the File menu. TheRolodex operations are more central to the specific functionality of the Rgledeereas the
File operations are more general operations that are common yoothan applications.

From the second heuristic and Figure 2 of the interface, we can identify the following object:
abstract class Card {}

These basic object and operation definitions are the initial step in the formal specifitagprare already speci-
fied in compilable Spest notation, withvddeywords and syntax.

The next step is to refine the initial definitior®pecifically for the operations we need to define the inputs and out-
puts. InSpest, operation inputs and outputs are the names of defined olybfest refinement entails defining the
composite structure of the object, if necessary.

Applying heuristics 3 through 6, we can refine the initial object and operation definitions as follows (see Figure 4):

Enter Information for a Rol odex Card:

Nane: | |
1d: | |
Components of
Age: | | object Card
Gender: | |
Addr ess: | |

(K)(Oear)(Cancel)
/ | \

Confirms Add Clearj Card Cancels Add
operation object values operation

Figure 4 Identifying Object Components from the Interface.

abstract class Rol odex {

abstract
abstract
abstract
abstract
abstract

}

class Card {

voi d add(Card card);

void delete(int id);

voi d change(int id, Card card);
void find(int id);

void find(String nane);

String nane;

int id;
int age;

Mal eOr Fenal e gender;
String address;

}

enum Mal eOr Fenal e {

Mal e,
Femal e

Here we hae wsed standard vya rotation to specify operation inputs/outputs and object components. The general

formats of these notations are the following:
abstract output name(inputs);

abstract class nane is data fields ...

Both the methods and classes are definedbed r act since no method implementations will be part of the
abstract specificationAlso, since Jaa/Spest is a strictly object-oriented language, methods must be defined within
classes. Wwill discuss further belw how best to determine in which classes methods should be defined.

Data types in Spest are a proper subset of pvienitid non-primitve types in Jaa. Table 1 summarizes thes€he

table notes common interface forms for each of the basic object types.

Spest Type MathematicalMeaning | Commoninterface Form

int integer string editor for numbers; numeric slider bar or dial
double reahumber samas integer

String string string editor or combo box

boolean truedlse string editor for true/false value; orffatitton

class data fieldg tuple boxcontaining other types

enum union radio buttons or string editor with restricted values
Collection bag unordered scrollable list

List sequence ordered scrollable list

Method function push button or menu item, as a datum

Table 1: Basic Spest Types.

3.3. Further Refinement

To this point, we hee gplied heuristics in a straightforward mannslow we must address some technical details.

In particular we must determine he operations produce their output. In object-oriented language, operation output
can be in three forms: (1) a returalve, (2) modification to one or data fields in the class in which the operation is
defined, (3) modification (by mutation) of one or more objects sent as parameters. Consider the indtianderi
above for theadd operation:

abstract void add(Card card);

In this case, the return value\vsi d, meaning that the output from this operation must be in a data field of the
Rolode class or a mutated car&ince the requirements for the Rolr@eld operation say that it adds a card to the
rolodex, the logical choice for output in this case is a change to a Radat@efield.

In fact, all four of the operations defined in Roldell need to use a Rolodelata field of some kind. These four
operations -add, del et e, change, f i nd -- are part of a recognizable pattern for data-collection objdttese
operations each need the data object on which to op8ragestructure of such an object is modeled abstractly as an
unordered collection of zero or more entriés.Spest this is aava. util. Col | ecti on. With this, the defini-

tion of the Rolode given aove is refined to include &ol | ect i on data field

import java.util.Collection;

abstract cl ass Rol odex {
Col | ecti on<Car d> dat a;

/1 same operations as above ...

}

The import fromj ava. uti | is necessary for compilatiorzor brevity in the examples that follg this and other
import declarations are omitted.

This definition specifies that a Rolodis a ®llection of zero or more Card$.or those familiar with the UML nota-
tion, aj ava. uti | . Col | ecti on represents the same thing as a "*' in UML.

Generally large collections may not appear en masse jniaterface screenFor example in the simple Rologe
Tool being modeled here, we dosée the entire contents of the Rolrdisplayed in ap single screen.Rather the
system stores, retkies, and displays items inddually by Id. In tools lile this, there is no immediate Ul heuristic
to help identify data-collection objectRatherthe heuristic is the following: when a pattern of data-collection-oper
ations is identified, we infer there is an underlying data collection object, and wawaeut i | . Col | ecti on

as a data field to model the collection.

In an object-oriented language, data fields can be used as both the inputs and outputs of basic opeisistie
case here with a tredd, del et e, andchange Rol odex operations. live were going to specify the signatures
of these methods fully in a non-object-oriented yvtlagy would look like this:

abstract Rol odex add(Rol odex, Card)
abstract Rol odex del et e(Rol odex, Nane)
abstract Rol odex change(Rol odex, Nane, Card) - >Rol odex;

Method signatures such as this are typically not used in object-oriented languages svechRettder the Rolod&
that is the input and output of a method is a data field within the class.

4. Formal Specification with Preconditions and Postconditions

Having completed the initial phase of specification, we are ready to formalize the object and operation definitions
fully. The formal technique used in the primer is based on operatgaonditionsandpostconditions A precondi-

tion is a predicate (i.e., boolean-valueghression) that is true before an operatigecates. Apostcondition is a
predicate that is true upon completion of an operat®ince preconditions and postconditions are predicates, this
style of formal specification often callpdedicative

The preconditions and postconditions are used to specify fully what the system does, includindezt usepuire-
ments for the systemin practice, formal specification is part of thea@ll process of requirements specification,
which entails:

1. gathering user-kel requirements via interface storyboards and usage scenarios;
identifyingobjects and operations;
formalizingwith preconditions and postconditions;
refininguser-level requirements

o~ N

refiningobject and operation definitions
6. iteratingsteps 3-5 until done.

The "until done" step wrolves two levds of validation. Firstwe must alidate that the specified system is complete
and consistent from the end usepérspectre. That is, the system meets all end-user needs and does sain a w
that is wholly satisfactory to the end us&his is accomplished by continued consultation with the end inskrd-

ing user interaction with a system prototype.

The second leel of validation irvolves completeness and consistefiom a formal perspeet. This can be
accomplished in a number ofays. Inthe case of mechanized specification languages, such as Spest, some com-
pleteness and consistgnthecking is done using a computer-based analyzar Spest, the analyzer hasotyparts:

(1) the standard ¥a compiler, and (2) a separate Spest checker that validates the preconditions and postconditions.

More thorough validation of a specification can be done with mechanized theoreimgpvo model checking.
Techniques such as this can formally verify behavior properties of a specification.

The formal specificationxamples presented in the primewéall been run through the Ja compiler and Spest
checker Hence, the examples are complete and consistent to the extent checked by theBéstasion of more
formal forms of specification checking, such as theoremimpgoor model checking, are beyond the scope of the
primer.

! Thesignatureof a method is the specification of the input and output types of that method.

4.1. NotationalSummary

The specification examples to follause the Jea/Spest variant of formal logicAvailable operations include predi-

cate logic, arithmetic, lists, tuples, unions, and strinjsese operations are summarized in Table 2. The logic of
Spest is comparable to other formal specification languafjesight difference between Spest and a number of
contemporary languages is the use in Spest of collections and lists instead Bbseddly, al of collections, lists

and sets can be fully axiomatized, so there is no lack of formality in the usg afthrses. Oerall, the use of col-

lections and lists results in little &8fence in a specification compared to the use of sets. Set notation makes certain
low-level specification easier than with lists, such as operations that can be modeled with set uniofe remd alif

On the other hand, list notation makes other forms of specification easier than with sets, such as specification of

ordering constraints.

4.2. Formal Specification Maxims

In developing ary formal software specification, it is useful to obsehe following two maxims:

1. Nothingis obvious.

2. Never trust the programmer.

Predicate Logic:

Operator Description

&& logical and

[] logical or

! logical not

if (e) (e? logical implication
i ff logical equvalence

if (el (e else (e3
forall
exi sts

Logical Extensions:

conditional choice
universal quantification
existential quantification

Operator Description
X’ value after &ecution
return return value of method

Collections, Lists, Strings:
Operator

Description

.size()
.cont ai ns(Cbj ect 0)
.get(int i)

.length(String s)
other collection ops
other list ops

other string ops

size of collection
collection membership
get ith list element
length of s

seeCol | ecti on docs
seeli st docs

seeSt ri ng docs

Relational:

Operator Description

== primitive equality

I - primitive inequality

< primitive less than

> primitive geater than

<= primitive less than or equal to
>= primitive geater than or equal to
.equal s object equality

.conpareTo object comparison
Arithmetic:

Operator Description

+ addition

- subtraction

* multiplication

/ division

Table 2: Spest Notation Summary.

10

The first maxim relates primarily to udewel requirements. lis often easy to think that a requirement idfisuf
ciently obvious that it need not be stated formallize problem with this thinking is that one persoadvious is not
always the same as anotleerTo ensure that a specification is sufficiently precise, stating the "obvious" is necessary.

The second maxim is necessaryvoid nasty surprises in an implementatidn.mary cases, we might consider an
application to be sufficiently simple that we can trust the programmer to get it lmggeneral, such trust is a bad
idea. ltis better for the specifier to maintain a respectfully adversarial relationship with the implementor.

4.3. BasicRolodex Definitions

We ae naw ready to define the basic formal specifications for the Rrlsggem. Asa matter of style, we will first
state a predicate semi-formally in English, and then refine it to formal I®bie.English version can be retained as
a ommment, to aid in the human understanding of the specification. Let us begin with thexRalddeperation,
within its context of thdRol odex class:

abstract class Rol odex {

/*
pre: // The given card is not already in the Rol odex.
post: // The given card is in the output Rol odex,
/1 and all the cards that were in the input are still there.
*/

abstract void add(Card c);
}

This example shows the basic format of a Spest specificafioe two keywordspr e: andpost : are used to des-

ignate tvwo boolean expressions that are the precondition and postcondition for the method. The precondition defines
what must be true before the method can Hfithe precondition is true, then the postcondition defines what must

be true after the method is finished running.

Having covered notation, we can return to the main focus of formal specification. The English commentafid the
postcondition specifies the most fundamental property of an add operation -- upon completion of the operation, the
given Card is in the output Rolode Formally,

abstract cl ass Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: /'l none yet
post: data’'.contains(card); /1l The given card is in the output data
*/
abstract void add(Card card);
}

The standard Ja methodCol | ecti on. cont ai ns is used for collection membership. Its input parameter is
Car d which is the type of element in tiRel odex. dat a collection.

Having no precondition is equalent to a precondition of trueln general true preconditions can be fine, if there is
no specific condition that must be met before the operatigindelnthe case of the Rologé\dd operation, a true
precondition is not strong enough, because waetwo impose a requirement that disallows duplicate entries in the
Rolodex. We will address this requirement a little later.

One of the fundamental questions that must bedsK preconditions and postconditions is ifythaee strong
enough In general, adding additional predicate clauses will strengthen the condikonsxample, the true pre-
condition for Add is relatiely weaker than one that specifies that the input card is not already in the input Rolodex.

In general, there are tnams to strengthening a specification.

1. Ensuringhat all user-leel requirements are met (cf. Maxim 1 abp
2. Ensuringhat a system implementation works properly (cf Maxim 2).

The former is accomplished via continued consultation with the end Tisedatter requires an experienced analyst,

11

who understands the kinds of problems that may arise in a system implementation.

In the case of the Rolodend similar database applications, an area of potential implementation error is the intro-
duction of spurious entries into the database and/or the spurious deletion of dtréesid such spurious opera-
tions, the specification of thedd operation can be strengthened as follows:

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: // none yet
post :
/1 The given card is in the output Rol odex
data’ . contains(card)
&&
/1 Any other card is in the output Rol odex
/1 if and only if it is in the input Rol odex
forall (Card other_card ;
Icard. equal s(other_card);
data’' .contains(other_card) iff
dat a. cont ai ns(ot her_card));
>/

abstract void add(Card card);
}

This specification introduces the use of thevensial quantification operatofor al | . Universal quantification in
Spest has the same meaning as in standard typed predicate logic. The general format is the following:

forall (T x; constraint ; predicate)

This is read "for all &luesx of typet, such thatconstraintholds, predicateis true." The constraintexpression is
optional. Theguantified ariablex must appear isonstraint(if present) as well as th@edicate In general, unier-
sal quantification is used frequently when specifying predicates on list objects, as upcoming examples illustrate.

While this ekample is a good illustration of specification strengthening, there is slightly simpler way to specify the
same meaning in Spest:

import java.util.Collection;

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: // none yet
post :
/1 Acardis in the output Rolodex if and only if it is
/1 the card to be added or it is in the input Rol odex.
forall (Card a_card ;
data’ .contains(a_card) iff
a_card. equal s(card) || data.contains(a_card));
*/

abstract void add(Card card);
}

In general, predicate simplification is beneficial when it helps clarify the specification.

Another way to simplify this specification is to use a constreabllection operatqrsuch as the following:

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*

12

pre: // none yet
post :
/1 The given card is in this.data, per the semantics of
/1 java.util.Collection.add.
dat a. add(card);
*/
abstract void add(Card card);
}

A constructivespecification such as this describes the output of an operation using a caestpertition on the
inputs. Incontrast, ananalytic specification (such as the previous spec using the bootdaeecont ai ns
method) describes output without using constvectperations.

This particular construate ecification is problematic on twgrounds. Thdirst is that sincg ava. uti | . Col -

| ecti on is an interface, its definition @fdd relies on a specific implementation to define its bigla There is a
javadoc comment foCol | ect i on. add that describes it as doing what wewld like here. Havever, the Jaa
library javadoc for Col | ecti on. add is only an English description, not inyasense a formal specification.
Hence there is no guarantee that a particular implementati@oldfect i on. add will abide by the method’
description, and so we cannot formally rely on it.

The other more general problem with a constvecgpecification is that it leanswards a specific implementation,
rather that specifying in terms a purely analytic booleslned predicate. There is debate among software engi-
neers as to the relad merits of constructie vasus non-construate gecification, but further discussion of this
topic is beyond the scope of the primér this primer dl specification examples are analytic.

Given the deelopment ofadd thus fr, we @an provide a comparablevi of formal specification for the other three
Rolode operations. Herare the initial formal specifications for the delete and change operalibase specifica-
tions include "no spurious data" requirements:

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: // none yet
post :
/! Acardis in the output Rolodex if and only if it
/1 does not have the sane id as the card to be del eted
/1 and it is in the input Rol odex.
forall (Card a_card ;
data’ .contains(a_card) iff
a card.id '=id & data.contains(a_card));
>/
abstract void delete(int id);
/*
pre: // none yet
post :
/1 If there is a Card with the given id in the input Rol odex
/1 then the output Card is equal to that card, otherw se
/1 the output record is null
exists (Card card_found ; data.contains(card_found)
card_found.id == id & return. equal s(card_found))
[
lexists (Card card_found; data.contains(card_found);
card_found.id == id & return == null);
>/
abstract Card find(int id);
/*
pre: // none yet
post :

13

/1 A Cardis inthe output list if and only it is in the
/1 input Rolodex and the Card nane equal s the name being
/'l searched for.
forall (Card card_found,
return.contains(card_found) iff
dat a. cont ai ns(card_found) && card_found. nane. equal s(nane))

*/
abstract Collection<Card> find(String nane);
/*
pre: // none yet
post :
/1 Acard is in the output Rolodex if and only if it is
/1 the card to be changed or it is in the input Rol odex and
/1 it does not have the same id as the card to be changed
forall (Card a_card ;
data’ .contains(a_card) iff
a_card. equal s(card) |
a card.id !'=card.id & data.contains(a_card));
*/

abstract void change(Card card);
}
Careful eamination of the specifications for delete and change indicate tlyatliefire uniqueness of card Id to
some gtent. Havever, these specifications alone do not guarantee uniqueness in all Thgegssue is addressed
in the next section of the primen the discussion of duplicate cards in a Rolodex.

Note also that we lva ot yet specified the Find operation. This requires some additionaleuseanalysis, which
is also addressed in the next section.

4.4. BasicUser-Level Requirements

To this point, we hee formalized the most basic specifications of the Rolaperations. lis nov appropriate to
consider the formal definition of basic uderel requirements. @ gart, there are a humber of "obvious" ukeel
requirements, including the following:

1. Duplicateentries are not allowed in the Rolodex

2. Inputvalues are checked for validity.

3. If the Find operation outputs more than one card, the output should be sorted in some appropriate order.
An historical note is of interest withgards to such requirements. One approach to formalizing a requirements

specification is formalizing the English with which the requirements are state@gxample, the first of the ale
requirements might be stated more formally as:

A Rolodex shall not contain duplicate entries.

While this may not seem to be a substantial imgrent to the original statement of the requirement, it does
attempt to formalize a specification by placing restrictions on the language used to state the spedffitatibis
approach, a number of possible forms of natural language are standardized with a resti@tieldny For exam-

ple, all formal requirements are expressed using "shall" instead of other comparable Emglésbueh as "should",
"ought to", or "allowed to". While such rules can indeed help with the formalization procgstltiveell short of

a fully formal basis for requirements specification.

4.4.1. NoDuplicates

Analysis of the no duplicates requirement provides fine support for the "nothing-is-obvious" maxim. While we may
expect reasonable people to understand what "no duplicates" means, theraetra imunber of plausible interpre-
tations. Threesuch interpretations are the following:

1. Notwo cards in a Rolodehaveexactly the same values for all card fields.

14

2. Notwo cards in a Rolodehavethe same name.
3. Notwo cards in the Rolodehavethe same uniqueegly; such as the Id field of the card.

Which of these interpretations to choose is a matter for a programmer alone to &eatlus.it should be decided
at the user specificationvig, by the analyst in consultation with the end usé&k& muld even grant that most pro-
grammers are reasonably smart, so in this case we might safely assume that a programmer eduwidcoragct
decision, or knev enough to consult with the user to resoliae problem. Suppose, Wever, we were specifying
data records in a much more complicated application domain, such as aeronauticsdomain we might va a
data object such as an anomaly list, with record fiel@sHikFlight, Taxi, InFlight, Approach, and Landingvhat
does it mean to disalwduplicates in an anomalies database? Which field,yif @auld be used as a uniqueyR
The point is that such questions need to be answered by end users and/or applicationxpentginStclyues-
tions should most certainly not be left unanswered when the programgies brk, since the programmer may
well not knav how to answer them.

Based on the requirements wevéaeen thusdr, the most reasonable choice for the definition of Rolddard
duplicate is the third of the alternadi interpretations ab@. This means that cards in the Roledaust hae a
unique Id, but other values of a Card can be the same aciss tmre cards in the Rolode In particular there
may be multiple cards with the same narflis fact has an effect on all of the Roladperations we hae tus &r
defined. V¢ will now address theses effects.

To begn with, we'll consider a simple enhancement to #tdel operation. Thédasic strategy for disallowing dupli-
cates is to define a precondition on Add that checks for an entry of the same Id as the card being added. Here is the
refined specification for Addror brevity, the postcondition is omitted:

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*
pre:
/1 There is no card in the input Rolodex with the sane Id
/1 as the given input card.
lexists (Card a_card; data.contains(a_card);
a card.id == card.id);
post :
/1 Same as above.
>/

abstract void add(Card card);
}

Here we hae introduced the second form of quantification in Spestistential. Ithas the same general format as
universal quantification:

forall (T x;constraint fuck; predicate)

A discussion of the exact nature ofygmrecondition is in orderBy definition, failure of a precondition means that
the operation is pvented from &ecuting. Moreprecisely precondition failure means that the operation fails and
produces a value of false.

The abstract meaning of precondition failure does not defimedperation failure is percegd by the end user
Generally the end-user should see an appropriate error message when an opatatiorhédetails of such error
messages are typically abstracted out of the formal specification.

4.4.2. InputValue Checking

There are a number of possibilities for input value checking. As a basic example, consider whegfalfmated
version of Add, where the input value constraints are defined formally with accompanying comments.

abstract cl ass Rol odex {
Col | ecti on<Car d> dat a;

15

/*
pre:
/1 The length of the nane is <= 30 characters
card. nanme. |l ength() <= 30

&&
/1 The length (i.e, nunber of digits) of the idis 9
Integer.toString(card.id).length() ==

&&
/1 Age is a reasonable range
card. age >= 0 && card. age <= 200

&&
/1 The length of the address is <= 40 chars
card. address. |l ength() <= 40

&&

/1 There is no card in the input Rolodex with the sanme |d
/1 as the given input card (no dups condition from above).
lexists (Card a_card; data.contains(a_card);
a_card.id == card.id);
post :

/1 Same as above

*/

abstract void add(Card card);

}

Later in the primer when we consider interface enhancements, additional input value checking will be specified.

4.4.3. Orderingof Multi-Card Lists

Given that more than one card of the same name can be in a Rdlloeé-ind operation that searches by name pro-
duces a Collection of outputs rather than a single Card. An important question to consider is the order of the multi-
card output. Sincej ava. util . Col | ecti on does not hee erations to specify ordering of collection ele-
ments, the output type of the find method needs to be updatédifbect i on<Car d>toLi st <Car d>.

In order to specify card list ordering, we must strengthen the Find postcondition. In consultation with oux Rolode
users, we hae cetermined that a list of cards with the same name should be ordered by Id. That is, we are specify-
ing that the output of Find is sorted by the Id field of a cditte formal specification of sorting is a more auosed
application of logic than we kia sen thus farHere it is, in the context of the Find definition:

abstract class Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: // none yet
post :
/1 ACard is in the output list if and only it is in the
/1 input Rolodex and the Card nane equal s the name being
/'l searched for
forall (Card card_found
return.contains(card_found) iff
dat a. cont ai ns(card_found) && card_found. nane. equal s(nane))
&&
/1 The output list is sorted in ascending order by card id
forall (int i; (i > 0) & (i < return.size() - 1);
return.get(i).id <= return.get(i+1).id);
>/

abstract List<Card> find(String nange);
}

An English translation of this forall logic is the following:

16

For each position i in the output list, such that i is between the first and the second to the last positions in the
list, the ith element of the list is less than the i+1st element of the list.

The reader should study this logic to be satisfied that it specifies sorting satisfactorily.

There are tw further points of discussion to be addressed wiglards to the specification of sorting: unbounded
guantification and the use of auxiliary functions in Spest. These ®&eeedoin the next ter subsections of the
primer.

4.4.4. UnboundedQuantification

What would happen to the meaning of the sorting predicate if the constraint on the range of i was not peesent?
if the sorting logic in the postcondition were changed to the following:

forall (int i;
return.get(i).id <= return.get(i+1).id);

The meaning here is ambounded quantificationThat is, the quantifier operategenthe unbounded range of all
integers. Inprinciple, there is nothing wrong with unbounded quantificatiéar. example, the original anti-spuri-
ous requirements for the Add operation wetrgressed using unbounded quantification. One might argue for range
restrictions on the grounds offiefengy, but as noted earligefficiengy of this nature is not of concern in an abstract
specification.

The potential problem with unbounded quantification is that the body of thersaliquantifier may not ka the
correct value in an unbounded range, and hence the value of the entire quaptifissien may be false when we
expect it to be true, or may thwoan exception, which we do not want.

This is in fact the case in the unbounded quantification used in the sorting predi€atedorSpecifically, the eval-
uation ofr et ur n. get (i) throws an exception if is outside the bounds okt ur n.

The exact outcome of the unbounded quantification depends on the semantics, i.e., formal definition, of a particular
specification language. In generalwmewer, unbounded quantification is potentially problematic undgrlagical
semantics. Theoint is that one needs to be careful when using unbounded quantification to ensure that the body of
the quantifier has a well understood valuerahe entire unbounded range of quantification. This is particularly the
case when quantifyingver the elements of a list.

4.4.5. UsingAuxiliary Functions

The postcondition in the most recent definitiorf bhd(St ri ng nane) is a little lengtly. In practice, predicates
significantly longer than this can appear in the specification of a coropézation. Wherpre- or postconditions
become unduly long, it is useful to use auxiliary functions garoze the logic.

In Spest, an auxiliary function is defined as a boolean-valued method in the class where the function is used in a
predicate. Thdogic of the auxiliary function is defined with a postcondition of the format'urn == ...",
where " . . " is a lnolean expression that appears in one or more predicates.

The purpose of an auxiliary function is modularize a piece of logie,igg rnemonic name, and allothat logic to
be invoked in one or more places. This can help mgkedicates more readable and understandable.

As an example, here is the preceding definitiohiofd(St ri ng nane) using two auxiliary functions:

abstract cl ass Rol odex {
Col | ecti on<Car d> dat a;

/*
pre: // none yet
post:
car dsFound(nane, return)
&&

sortedByl d(return);

17

/1 The output list is sorted in ascending order by card id.

*/
abstract List<Card> find(String nane);
/*
post :
/1 Return true when a card is in the given cards |ist
/1 if and only it is in the input Rolodex and the
/1 Card name equal s the nane being searched for.
return ==
forall (Card card_found,
cards. contai ns(card_found) iff
dat a. cont ai ns(card_found) &&
card_f ound. nane. equal s(nhane))
*/
abstract bool ean cardsFound(String name, Collection<Card> cards);
/*
post :
/1l Return true if the given card list is sorted
/1 in ascendi ng order by card id.
return ==
forall (int i; (i >=0) & (i < cards.size() - 1);
cards.get(i).id <= cards.get(i+1).id);
*/

abstract bool ean sortedByl d(Li st<Card> cards);

5. UserLeve Refinements and Enhancements

In this section we consider a number of refinements and enhancements to the uaee iotdlfe Rolodesystem
and hav these can be specified formally.

5.1. Rattern-Based Search

Suppose we would lkto locate Rolode cards by leys aher than just the namelo be fully general, we could

allow search by patterns for grone of the kys. Atthe interface lbeel, the Find operation would present the same
dialog used for Add. In the case of Find, entries in the dialog box would be patterns rather than just strings or num-
bers. Br example, Figure 5 shows a search dialog that will find all cards with age less than 40 and gend&n male.
entry for ary one of the fie card fields can contain a single instance of one of the following patterns:

Operator | Meaning

X matches the value x (a string or number)
<X matches all values less than x

> X matches all values greater than x

X-y matches all values between x and y

For simplicity, we asume that»act match is necessary for strings, but this requirement is probably too strict for a
practical user intedice. E.g.a user should be able to enter "Smith" in the name field to find all cards with "Smith"
someavhere in the name. The reader is invited to enhance the specification thves felth a feature for such partial
matching.

Given below are selected>eerpts of the formal specification for the enhanced Find operation. The specification
focuses on searching with patterns in the Age field of a daodnal specification of searching by the other card
fields (name, id, gendeand address) is very similaiThe gist of the pattern-search specification is the definition of

18

Enter Search Information:

Nare: | |
| |
Age: | < 50 |

Gender : | M|
Addr ess: | |

(oK) (d ear) (Cancel)

Figure 5 A Pattern Search Dialog.

the object Searchinfo and the additions to the postcondition of Hind.comments in the code the major objects
and operations further

import java.util.Collection
import java.util.List;

abstract class PatternBasedSearch {

/**
* Find zero or nore cards that match the constraints specified in the
* given Searchlnfo.
post :
/1 Al cards in the output list nust be found according
/!l to the given search info, and the output |ist nust be
/1 sorted by Card id.
cardsFound(r, si,return)
I &&
//sortedByld(return);
>/
abstract List<Card> find(Rolodex r, Searchlnfo si);

/*
post :
/1 Cards in the given card list consist of those, and only
/1 those in the given Rolodex that match the given search info
forall (Card c;
return.contains(c) iff r.contains(c) & match(c,si))
>/
abstract bool ean cardsFound(Rol odex r, Searchlnfo si, List<Card>cl);

Searchlnfo si2;
/*
post :
return ==

mat chNanme(c. name, si.np) &&
matchld(c.id, si.idp) &&
mat chAge(c. age, si.ap) &&
mat chGender (c. gender, si.sp) &&

19

mat chAddr ess(c. address, si.adp);
*/
abstract bool ean match(Card c, Searchlnfo si);

abstract bool ean mat chNane(String name, NanePattern np);
abstract bool ean matchld(int id, IdPattern idp);

/*
post :
return ==
if (ap.op == PatternOp. AgeEqual) (age == ap.agel) ||
if (ap.op == PatternOp. AgeLessThan) (age < ap.agel) ||
if (ap.op == PatternOp. AgeEqual) (age == ap.agel) ||
if (ap.op == PatternQp. AgeLessThan) (age < ap.agel) ||
if (ap.op == PatternOp. AgeG eat er Than) (age > ap.agel) ||
if (ap.op == PatternCp. AgeRange)
(age >= ap.agel && age <= ap.age2)
*/

abstract bool ean mat chAge(int age, AgePattern ap);

abstract bool ean mat chGender (Mal eOr Ferral e gender, GenderPattern gp);
abstract bool ean mat chAddress(String address, AddressPattern ap);

}

/**
* Each component of Searchinfo is a search pattern that corresponds to
* one of the fields of a card.
*/
cl ass Searchlnfo {
NanePattern np;
IdPattern idp;
AgePattern ap;
Gender Pattern sp;
Addr essPattern adp;

}

cl ass NamePattern { /* ... */}
class IdPattern { /* ... */}
/**

* An AgePattern allows the user to search for cards with an age val ue
* | ess than a given age, greater than a given age, between a range of
* given ages, equal to a specific age, or with a specific age.
*/
cl ass AgePattern {

PatternQp op;

int agel;
int age2;
}
enum PatternOp {AgeEqual , AgelLessThan, AgeG eaterThan, AgeRange}
cl ass GenderPattern { /*... */}
cl ass AddressPattern { /*... */}

5.2. Historical Dialogs

It is typical in a graphical user interface that a dialog retaihseg from the last time it was displaydebr example,
when the Add dialog is displayed for the second time and beyond, it could contain the last values $ateecd.

20

users may find such historical dialogs undesirable, so the system could contain an option that turns the feature on or
off. With historical dialogs on, each dialog box displays the previously entehee(s). With historical dialogs df
each dialog box is empty when displayed.

Given below are selected excerpts of the formal specification for optional historical dialdgsgist of the specifi-
cation is the definition of the SystemState object and the decomposition of the mainxRpleddions into tw
operations. Br example, Add is decomposed into InitiateAdd and ConfirmAdd. From the user interface perspec-
tive, InitiateAdd is ivoked by slection ofAdd in the Rolodg menu; ConfirmAdd is moked by slection of the

OK button in the Add dialog.

import java.util.List;

abstract class Historical D al ogs {

/*
post :
/1 If the historical dialog option is on, then output the previously
/1 entered card data, else output enpty card data
if (r.state.options.showprevdata)
(cd.c == r.state. | ast Addl nput)
else (cd.c == null)
>/

abstract CardData initiateAdd(Rol odex r, CardData cd);

/*
pre: // Same precondition as original add, but replace all occurrences of
/] variable ¢ with cd.c
post: // Sanme postcondition as original Add, with sane replacenents as in
/1 precondition
>/
abstract Rol odex confirmAdd(Rol odex r, CardData cd);
}

/* See discussion bel ow */
class CardData {Card c; boolean flag;}

cl ass Rol odex {SystenfState state; List<Card> data;}

class Systenttate {Card | ast Addl nput; int |astDeletelnput;
Last Changel nput | ast Changel nput; Searchlnfo |ast Searchl nput;
Options options;}

cl ass Last Changel nput {String nanme; Card c;}

class Options {bool ean showprevdata; /* ... */}

The CardData object has no other purpose than to constrain a Confirm operatieninpuakom the companion

Initiate operation. The flag component of CardData has no other purpose than to ensure that Card and CardData are
distinct types.This specification borders on too operational, since its purpose to to specify an order of operations.

In general, the specification of such ordering should be done judicisusly it constrains an implementation to a
particular style of interaction.

5.3. CheckPoainting

As a file-based system, the Rolgd®ecification has #&i | e- >Save operation that the user explicitlyviokes.
Software lile may hare a Bature that sees user data at regular intervals on behalf of the user.

Given below are selected excerpts of the formal specification for such checkpointing functiohity the addition
of aFi | eSpace object, which is a model for an external operating system file storage. This is used further belo
in the specification of the Rolod&ie operations.

21

abstract class Rol odex {
Col | ecti on<Car d> dat a;
Systenfstate state;
Fi | eSpace fs;

/*
post :
/1 previous postcondition logic, with the followi ng & d on:

if (state.options.checkpointOn)

(if (state.checkpointCount == 0) /1 it’s time to do checkpoint save
(state.checkpoi nt Count’ == state.options.checkpointlnterval &&
exists (File f; fs.contains(f); f.data.equal s(this)))
el se /1 not time yet to checkpoint
(state.checkpoi nt Count’ == state.checkpointCount - 1))
*/
voi d add(Card card) { boolean b = state.options.checkpointlinterval == 10;}

}

class FileSpace {Collection<File> files;}
class File {String nanme; FileData data;}
abstract class Fil eData extends Rol odex {
/* Abstractly, FileData is just a Rolodex */};
cl ass Systenttate {Options options; int checkpointCount;}
class Options {/* previous conponents and */
bool ean checkpoi nt On; int checkpointlnterval;}

There is also the addition of options to turn checkpointing on dndraf to specify the checkpointing intalv The
interval is defined as the number of Add operations thet liecurred since the last checkpoirithe interval could

be extended to apply toyanther Rolod& operation by adding the same logic to the postcondition of the other oper
ations.

Also of note is the logical idiom used to specify the incrementing @flw@eyin this case the checkpoint counter
The logic to do this is

st at e. checkpoi nt Count’ == state. checkpoi nt Count - 1
A likely implementation of this postcondition would use an assignment statenestidik

st at e. checkpoi nt Count = state. checkpoi nt Count - 1
which performs the increment. In thinking about this implementation, one might initially specify the postcondition
like this

st at e. checkpoi nt Count == state. checkpoi nt Count - 1

However, this does not makgood sense, since as a booleapression its dways false. Thigs a good example of
why the prime notation is necessary to distinguish between the pre-value and post-value of an expression.

The '==" equality operator is not of course the same as an assignment gmeeattinough it takes on the charac-
teristics of assignment in caseselilkhcrementing. Ingeneral, an equality expression can "feel like" assignment
when we are specifying a behavior that is directly implemented using assignment.

5.4. Undo

It is common for systems to V& an Undo function that neerses the effects of the most recent operatiGiven

belov are selected xeerpts of the formal specification for a simple onalle@ndo facility. The specifications for

Add and Undo operations arevgn. A complete specification would include updates to Delete and Change, compa-
rable to those for Add. The specification for the more typical form of undo thatsatfwltiple operations to be
undone would use a list of undone values rather than a single value.

import java.util.Collection;

22

/* Same as for historical dialogs, plus one added field */
class Systenttate {Card | ast Addl nput; int |astDeletelnput;
Last Changel nput | ast Changel nput; Searchlnfo |ast Searchl nput;
Opti ons options;
Col | ection<Card> prev_data;} // Added field for previous value of data

/* Same as earlier Rolodex, plus added Systenttate field. */
abstract class Rol odex {

Col | ecti on<Car d> dat a;

Systenfstate state;

/*
pre: // as above
post :
/1 Acardis in the output Rolodex if and only if it is
/1 the card to be added or it is in the input Rol odex.
forall (Card a_card ;
data’ .contains(a_card) iff I’
a_card. equal s(card) || data.contains(a_card))
&&
/1 The previous state data are the input data
state.prev_data’.equal s(data);
*/
abstract void add(Card card);
/*
post :
/1 |f the input Rol odex has a previous card data,
/1 then the cards of the output Rolodex are that data
/1 and the previous of the output is null (so only one
/1 level of undo is possible). GOherw se, the output
/1 Rolodex is the sanme as the input Rol odex.
if (state.prev_data != null)
((data’.equal s(state.prev_data)) && (state’.prev_data == null))
el se
(data’ . equal s(data));
*/
abstract void undo();
}
5.5. Security

Security can be specified in a humber of formsbasic form is to hee dfferent levels of users, with dferent
access privileges.

In the case of our simple Rolodex, a plausible security requirenmand Wwe to allar only privileged users to per
form the Add operationGiven below are selectedeerpts of the formal specification for such a security scheme.
The gist of the specification is to define a Usbi& containing UserInfo records. The records are tuples of a Userld
and priilege Level. Eachuser is assigned a system Id (potentialljedént from a card id) and a yilege level.
When a user logs in to the system, the user id and pessse supplied, whereupon thevjldge level is extracted

from the user table.

Based on the usend, a SystemState value is returned with a flag indicating whether or not the user caiiadd.
system state is an initialized value, including an initial empty collectiqor ef/_dat a. It is used to initialize the
system state value in a rolodeThespecification bel does not define the operations necessary to maintain a user
table, i.e., adding and deleting user records. It also does not addyeassues of password encryption, since the
password is represented as a plain string.

inmport java.util.Collection;

23

/* Same as for undo dialogs, with one field added. */

class Systenttate {Card | ast Addl nput; int |astDeletelnput;
Last Changel nput | ast Changel nput; Searchlnfo |ast Searchl nput;
Options options; Collection<Card> prev_dat a;
bool ean addOK;} // Added field for indicating if add is OK

abstract class UserTable {
Col | ecti on<User | nf o> userl nfo;
/* Spec for this find user operartion are conparable to Rol odex.find */
abstract UserInfo find(String uid);

}

class Userinfo { String uid; String password; Level |evel; }

enum Level { Privileged, Nonprivileged }

abstract class AccessControl {
User Tabl e users;

/*
pre:
exists (Userlnfo user ; users.userlnfo.contains(user) ;
user.id. equal s(id) && user.password. equal s(password));
post :
/1 Adds are OK if the given user is privileged,
/'l otherw se adds are not OK
if (users.find(id).level == Privileged)
(return. state.addOK == true)
el se
(return. state. addOK == fal se)
&&
return. prev_data == null
/1 and all other fields of return are null
*/

abstract SystentState login(String id, String password);

/* Same as earlier Rolodex, with updates add nmet hod precondition. */
abstract class Rol odex {

Col | ecti on<Car d> dat a;

Systenfst at e st ate; /1 Initial value set to return value fromlogin

/*
pre:
/1 Same as above, plus this additional && d clause:
st at e. addCX;
post :
// Sane as above
*/
abstract void add(Card card);

6. RolodexFile Operations

There are number of approaches for defining the file operations of the Rejstham, or other comparable system
that uses external file storag€he approaches vary inWwabstractly versus e concretely the external file storage
medium is modeled.

24

The file space model presented here is very abstract. It defines a file as having a name arfdecoaient. The

model does not specify file permissions or other file attributes of which thexalsgemight be ware, and which

a mmplete rolode system would deal withFor example, if the user tried to open an unreadable ralditks the
rolodex tool should preide the user with a suitable error message. Doing this would require refinement of the File
object to contain permission information.

One aspect of the abstract File model that does not necessarily require refinment is the representation of file data
directly as a Rolodeobject. Thismeans that it is entirely up to the implementation tovedra Roldodg value into

a form suitable for saving on a file. This is considered to be a detail that is reasonable flea implementa-

tion, as long as roloadecontent on a file are assumed to be unreadable/éa $arm.

If we wanted a user to be able towia rolodex file in some human readable form, such as plain textxample,
then the specification of roloddile data would have o be dfined in a string-based form. This in turrowid
require the specifications of the open angsperations to be extended to parse text and generate text, nesypecti

Here nav is the abstract specification of file operations:
import java.util.Collection;

class FileSpace {Collection<File> files;}
class File {String name; FileData data;}
abstract class Fil eData extends Rol odex {
/* Abstractly, FileData is just a Rolodex */};

public abstract class AbstractFil eSpace {
Col | ecti on<Rol odex> fil es;

/*
post: return.data == null;
>/
abstract Rol odex fil eNew();

/*
* pen is essentially a find operation, with the sane form of
* postcondition as a basic find.

post :
exists (File f ; files.contains(f)
f. nane. equal s(nane) && return.equal s(f.data))

lexists (File f ; files.contains(f)

f. nane. equal s(nane) && return == null);
>/
abstract Rol odex open(String nane);
/*
pre:

/1 The given rol odex has al ready been saved
exists (File f; f.data.equal s(rol odex));
post :
/1 This postcond is uses the sane |ogic as Rol odex. add
forall (File f;
files' .contains(f) iff

f.data. equal s(rolodex) || files.contains(f));
>/
abstract voi d save(Rol odex rol odex);
/*
post :

25

forall (File f;
files' .contains(f) iff f.name.equal s(nane) &&
f.data. equal s(rol odex) || files.contains(f));
*/
abstract void saveAs(Rol odex rol odex, String nane);

/

* * *

The specs for print are beyond the scope of this primer. They rely
on the data specification of the printed output, and once that is

* gpecified, the postcond of print defines a mapping froma Rol odex

* to the specified printed form

*/

abstract PrintedRol odex print(Rol odex rol odex);

}

abstract class PrintedRolodex { /* Some appropriate printed form*/ }

7. ConsideringOther Interface Styles

An important property of an abstract specification is to be as free of concretacmtdetails as possibldo illus-
trate this point, we can considerawifferent forms of concrete user interface, both of which map to the same
abstract specification that has beeweligped in the primer.

Figure 6 shows a pushbutton-style interface to the Relollés much the same as the original interface, except the
pulldovn menus hae been replaced with pushttons. Inaddition, the data entry area does not chaiggher the

user simply types in the card data fields, and selects a desired operation wheAdibti@nal dialogs will pop up

as necessary to request further inputs or display results.

The only significant difference for the specifier with this irstegf is that the both the Card and Searchinfo objects
are displayed in the same physical screen area, rather than in separate Hidlalhg, it might havze been slightly
more difficult to recognize Card and Searchinfo as separate objects.

A Simple Rolodex Management System

Enter Information and Select Command:

Name: | I
Id: | I
Components of
Age: | I object Card
or

Gender: | | object Searchinfo

Address:l I
(_Add) (Delete) (Change) (_ Find) Rolodex operations

(_New) (_Open) (_Save) (SaveAs) (_ Print)

= File operations

((Clear) (_Undo) (_Redo) (_ Quit) Control/Edit operations

Figure 6 A Pushbutton-Style Ul.

26

It is worth noting that to the extent the interface is confusing to the speitifieay well be the end user as well.
The notion of "form follavs function” is an important one in software specification. That is, a system that is coher
ent and easy to specify for the analyst will be equally coherent and easy to use for the, end viserversa.

In either of the graphical interfaces for the Robodgstem, lkeyboard shortcuts could beailable for the menu
and/or pushbutton operations. Such shortcuts shoukldaolutely no effect on the formal specification.

Figure 7 shows a plain text-based Rolodaterface. Thisinterface style is typical of that used with UNIX shell.
The same abstract Rolodepecification applies equally well to thexteal interface as it does to the othewotw
graphical interfaces.

Command Arguments

aldd] nameijd, age, gendeeddress
dlel] name

c[hange] namdd, age, gendeeddress
flind] name

n[ew]

o[pen] file

s[ave] [file]

[p]rint [1]

[ulndo

[rledo

[o]uit

Figure 72 A UNIX Shell Style Ext UL.

27

28

29

