
CSC307-f15-L10 Page 1

CSC 307 Lecture Notes Week 10
Introduction to Code Coverage

I. Milestone 10 Summary

A. Due11:59PM Thurs 11 June

B. Deliverables:

1. finishedimplementation of requirements subset

2. JMLand unit tests for 8 to 12 methods

3. 100%code coverage for tested methods

CSC307-f15-L10 Page 2

II. Final exam.

A. Cummulative

B. Bothpaper and computer-based

C. Seethe final exam overview handout for details.

III. What is code coverage?

A. It is a measure of how program code is covered for a given program execution.

B. Coverage is typically measured at the level of textual lines of code.

C. Whena program is run to completion, the coverage measure states the percentage of program lines that are
covered, i.e., executed, during the run.

D. If all lines of code are executed, coverage is 100%; if only half the lines are executed, coverage is 50%.

IV. How code goes "uncovered".

A. Linesof code can go unexecuted for a number of reasons, including the following.

1. Uninvoked functions -- code in a function body is not covered if the function is never called during a pro-
gram run

2. Untaken conditional branches -- depending on the values assigned to program variables, not all alterna-
tive branches of conditional statements may be covered in a particular program run.

3. Unexecuted loop bodies -- if a loop test never evaluates to true the loop body will not be executed.

B. In a testing context, uncovered code means there are insufficient test cases to fully exercise the code being
tested.

V. Coverage Tool Resources

A. Seethe307/doc/
page.

B. Andnote that code coverage is NOT required for Milestone 7, though it will be for a later milestone.

VI. Where code coverage fits into testing.

A. Codecoverage is used to ensure that black box tests are adequately cover code.

B. Thereare many different coverage measures.

C. Thebottom line is to ensuresome measure of coverage.

D. Duringand after a test execution run, the coverage measures are applied to determine how much of the tested
code is covered.

E. Whatfollows is a discussion of the different coverage measures, from weakest to strongest.

VII. Code coverage measures.

A. Function(method) coverage.

B. Statementcoverage

C. Branchcoverage

D. Decisioncoverage

E. Loopcoverage

CSC307-f15-L10 Page 3

F. Define-use (d-u) coverage

G. All path coverage

H. Exhaustive coverage

VIII. Here is a common example that will be used to illustrate the different types of coverage.
public static int f(int i, int j) {

int k;
if (i > j) {

i++;
j++;

}
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++;
j++;

}
else {

i++;
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}

IX. Function coverage.

A. Eachfunction is called at least once.

B. Very large-grain measure.

C. Notadequate for final tests.

D. Canbe done with one test case for functionf.

X. Statement coverage.

A. Every statement is executed at least once.

B. Canbe done with two test cases forf.

XI. Branch coverage.

A. The true/false direction of each branch is taken at least once, including branches that have no code in them,
as in an else-less if statement.

B. Thisrequires four test cases forf.

XII. All path coverage

A. Eachdistinct control path is traversed.

B. Requiresfour cases forf.

XIII. Decision coverage

A. Theboolean logic of each condition is fully exercised.

CSC307-f15-L10 Page 4

B. Requiresat least four cases inf.

XIV. D-u coverage

A. Cover every path for every variable between a definition of that variable (i.e., assignment) and a use of that
variable, without an intervening definition.

B. D-u for i requires three paths inf.

C. D-ufor j requires two paths inf.

XV. Coverage tools.

A. Thereare a number of code coverage tools available for Java, and other languages, links to which are in the
307doc directory.

B. Oneof the best of the tools isCobertura.

C. Thereis an example of Cobertura in 307/examples/cobertura

1. Theexample code is that shown above as the common example for the different coverage measures.

2. It can be run in conjunction with JUnit tests, providing an HTML report of the code covered when the
tests are executed.

3. Thereis anant script to build and run the example, which is invoked simply by typing "ant" on the
command line.

4. Theexamples files are the following:

• CoverageExample.java -- the code to be tested and measured for coverage.

• CoverageExampleTest.java -- the JUnit tester for the code.

• build.xml -- the ant build script

• build.properties -- the properties file for the build, which defines file paths for the build.

5. Theresults of running the example are in these subdirectories:

• reports/cobertura-html -- the coverage report

• reports/junit-html -- a junit testing report

6. As these reports suggest, Coberatura is well integrated with JUnit, and produces result reports for both
test coverage and the JUnit test execution.

D. You can modify the ant scripts for use in other contexts by changing thefileset list in build.xml, and
the directory paths inbuild.properties.

E. Alternatively, you can use Coberatura in an IDE, per the IDE’s conventions.

XVI. Details of branch (aka, decision) coverage in Cobertura and other coverage tools

A. Whena testing tool such as Cobertura reports that branch coverage is not attained, the code can be white-box
analyzed to determine test cases to add to meet the branch coverage requirement.

B. Specifically, test values must be added to exercise fully the boolean logic of all in conditional statements.

C. Theuse of a truth table can help in this task.

D. As an example, here is the truth table for the four alternatives in the boolean logic of the conditional state-
ment "if ((k > 0) && (i < 100)) ...":

k > 0 i < 100 (k > 0) && (i < 1 00) i j Remarks

CSC307-f15-L10 Page 5

0 0 0 1 2 i < j means k <= 0
0 1 0 100 101 i< j means k <= 0
1 0 0 100 100 i>= j mean k > 0
1 1 1 2 1 i >= j mean k > 0

XVII. Some mutations to illustrate different forms of test failure.

A. Changeline 22 ofCoverageExample.java from

return i+j+k;

to

return i+j-k;

1. Thisis an example of a bug in the code not properly implementing what the code is supposed to do.

2. Theresult is the coverage tests all still succeed, but three out of the four test cases inCoverageExam-
pleTest.java fail

B. Changeline 55 ofCodeCoverageExampleTest.java from

assertEquals(-2, ce.f(-2,-1));

to

assertEquals(-2, ce.f(2,-1));

1. Thisis an example of a bug in the testing code not properly testing code that is correct.
2. Inparticular, the expected results are not correct with respect to the test plan.
3. Theunit tests fail but the coverage tests still succeed

C. Furtherchange line 55 ofCodeCoverageExampleTest.java from

assertEquals(-2, ce.f(2,-1));

to

assertEquals(-2, ce.f(-2,1));

1. Thisis another example of a bug in the testing code not properly testing code that is correct.
2. Herethe inputs are not correct with respect to the test plan.
3. Theunit tests succeed but the coverage tests still succeed

XVIII. Recent research on code coverage.

A. Somevery interesting research results on test coverage are presented in the paper

"Test coverage and post-verification defects: A multiple case study"
by Audris Mockus, Nachiappan Nagappan, Trung T. Dinh-Trong,
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement,
October 2009

B. It is available at the ACM digital library at

http://portal.acm.org/citation.cfm?
id=1671248.1671276&coll=ACM&dl=ACM&CFID=80887391&CFTOKEN=40233171

access to which is free from campus computers (or anywhere to ACM digital library subscribers).

C. Thepaper authors are from Microsoft research and Avaya, two very large companies.

D. Key observations and conclusions from the paper are the following (emphasismine):

1. "Despitedramatic differences between the two industrial projects under study we found thatcode cover-
age was associated with fewer field failures This strongly suggests that code coverage is a sensible

CSC307-f15-L10 Page 6

and practical measure of test effectiveness."

2. "[They found] anincrease in coverage leads to a proportional decrease in fault potential."

3. "Disappointingly, there isno indication of diminishing returns(when an additional increase in coverage
brings smaller decrease in fault potential)."

4. "Whatappears to be even more disappointing, is the finding that additionalincreases in coverage come
with exponentially increasing effort. Therefore, for many projects it may be impractical to achieve com-
plete coverage."

E. Bottomline -- more coverage means fewer bugs, but it costs to get there.

