
CSC307-f15-L10 Page 1

CSC 307 Lecture Notes Week 10
Introduction to Code Coverage

Introduction to "Classic" Design Patterns

I. Milestone 10 Summary

A. Due11:59PM Thurs 11 June

B. Deliverables:

1. finishedimplementation of requirements subset

2. JMLand unit tests for 8 to 12 methods

3. 100%code coverage for tested methods

CSC307-f15-L10 Page 2

II. Final exam.

A. Cummulative

B. Bothpaper and computer-based

C. Seethe final exam overview handout for details.

III. Backgroundfor "Classic" Design Patterns

A. As outlined in earlier notes, adesign pattern is reusable piece of design, based on experience that has been
gained over the years by software engineers.

B. In software engineering, the specific term "design pattern" dates back to 1995.

C. Thefoundational book is by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

1. Thisis often referred to as the "Gang of Four (GoF)" book on design patterns.

2. It defined 23 specific patterns in C++ and OMT (the "Object Modeling Technique", on which UML is
based).

D. Theoriginal GoF defines what can be called the "classic" design patterns.

1. Someare more useful than others.

2. Thepatterns have also undergone refinement since original publication, in some cases considerable refine-
ment.

3. A good deal of the basic GoF terminology has persisted in tact.

IV. GoF hits and misses (Fisher’s opinion).

A. Hits:

1. Thethe gang of four coined the term, and so deserve their due in that regard.

2. Several of the patterns have become well-accepted parts of the software design vocabulary, even if the
details of the patterns have evolved.

B. Misses:

1. Thereis not a good high-level org anizational framework for the patterns, particularly in terms of the size
and scope of the different patterns.

2. Thereare a a number of fundamental and frequently-used patterns that they did not cover at all.

3. Somedetails of the C++ presentation are somewhat or entirely inapplicable to languages like Java and C#.

4. For Java in particular, a few of the patterns have been largely subsumed by theinterface feature.

5. Someof the patterns really aren’t that useful anymore.

V. Typical language and notation used for patterns.

A. Multi-classpatterns defined as UML class diagrams.

B. Multi-packagepatterns defined as UML package diagrams.

C. Single-classpatterns defined as the API of one class or interface.

D. A piece of behavior defined in a function or dataflow diagram.

E. Diagramshave explanatory UML comments, or accompanying prose.

VI. Designpattern summary, org anized into the three pattern categories presented in GoF.

A. Creational Patterns

1. Singleton -- Ensure that a class only has one instance, and provide a global point of access to it.

CSC307-f15-L10 Page 3

2. Factory Method -- Define an interface for creating an object, but let subclasses decide which class to
instantiate.

3. Abstract Factory -- Provide an API for creating families of related or dependent objects, without speci-
fying the concrete class instances.

4. Builder -- Separate the construction of an object from its representation, so that the same construction
process can create different representations.

5. Prototype -- Provide new objects by copying an prototypical example.

B. Structural Patterns

1. Adapter -- Adapt the interface provided by one class to suit the needs of a third class that needs a differ-
ent interface.

2. Facade -- Provide a unified interface to a set of interfaces in a subsystem.

3. Decorator -- Add properties or behaviors to a class by enclosing it in another class that implements the
properties or behaviors.

4. Bridge -- Separate an abstraction from its implementation, so the two can be independently specialized.

5. Composite -- Define objects so that composite and atomic instances can be treated uniformly.

6. Flyweight -- Use sharing to support large numbers of fine-grained objects efficiently.

7. Proxy -- Provide a surrogate or placeholder for another object to control access to it.

C. Behavioral Patterns

1. Iterator -- Provide a way to access the elements of an aggregate object sequentially, without exposing its
underlying representation.

2. Mediator -- Define an object that encapsulates how a set of objects interact, without having the mediated
set of objects refer to one another explicitly.

3. Chain of Responsibility -- Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request.

4. Command -- Encapsulate a request as an object, thereby allowing clients to be parameterized with differ-
ent requests, queue or log requests, and support undoable operations.

5. State -- Distribute state-specific logic across multiple classes that represent and object’s state.

6. Memento -- Without violating encapsulation, provide for the storage and restoration of an object’s state.

7. Observer -- Define a one-to-many relationship among objects, so that when an observed object changes
state, all of its observers are notified so they can update themselves.

8. Template Method -- Define main steps of an algorithm in a superclass, deferring the definition of some
steps to subclasses.

9. Strategy -- Encapsulate alternative algorithmic strategies in separate classes that each implement a com-
mon operation.

10. Visitor -- Let a new operation be defined without changing classes of the elements on which it operates.

11. Interpreter -- Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language.

VII. Otherwidely-used patterns not in GoF.

A. Model/View -- Organize a set of classes into those that provide the basic data model and those that provide
user-level views of the data.

B. Client/Server -- Define the responsibilities and interconnection between a server that operates remotely from
its clients.

C. Data Instantiation -- Specify where in the hierarchy of data composition instantiated objects are created.

CSC307-f15-L10 Page 4

D. Data Communication -- Specify data communication as parametric or persistent storage access.

E. Push/Pull -- Define provider and consumer classes, and define the direction of data exchange.

F. Wrapper -- Isolate the platform-dependent services in well-encapsulated classes, and provide generic plat-
form-independent interfaces to them.

G. Design by ContractTM -- Define preconditions and postconditions for all methods, requiring that preconditions
be enforced by callers or callees.

VIII. GoF pattern examples

A. Whatfollows are some examples of classic design pattern usage relevant to CSC 307.

B. Theexamples illustrate the use of the patterns with Java foundation and GUI classes, with UML diagrams
and code excerpts as applicable.

IX. Singleton.

A. A typical implementation of this pattern uses a static class boolean variable to record if an instance of the
single object has yet been created.

B. Theimplementation also provides a singleton creation method that behaves as follows:

1. If no instance has yet been created, call the constructor, sav ethe result, set the boolean is-created flag, and
return the object.

2. If an instance has already been created, just return it.

C. An alternative implementation is to have a singleton constructor throw an exception if its already been called,
e.g.,

public class Singleton {

public Singleton() throws AlreadyInstantiatedException {
if (isInstantiated) {

throw new AlreadyInstantiatedException(getClass().getName());
}
isInstantiated = true;

}

protected static boolean isInstantiated = false;

}

public class AlreadyInstantiatedException extends RuntimeException {
public AlreadyInstantiatedException(String targetClass) {

this.targetClass = targetClass;
}
public String targetClass;

}

D. A more benign approach to enforcing singleton behavior is to define a class with a private constructor, and an
accesser method that calls the constructor at most once, e.g.,

public class Singleton {

private Singleton() { . . . }

public static Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}

CSC307-f15-L10 Page 5

return instance;
}

protected static Singleton instance;

}

E. Theremay be cases where a Singleton pattern is used implicitly in a design, without enforcement.

1. Thiscan occur when there is no reason to have more than a single instance of a class, but there is no par-
ticular harm in having multiple instances.

2. In such cases, there may be no need to enforce Singleton behavior, but rather call constructor once only
by design convention.

3. Thisapproach happens regularly in the CSC 307 example project.

X. Factory Method and Abstract Factory.

A. A factory method is like a constructor, but it can return objects of different types.

B. An archetypal example of a factory class isjavax.swing.BorderFactory.

1. It’s described in the JFC documentation as a "Factory class for vending standard Border objects."

2. Thedocumentation goes on to say "Wherever possible, this factory will hand out references to shared
Border instances."

3. It has create methods that return a variety of different frameJComponent borders.

4. A value added of create methods is that they deal with Border constructor parameters so the factory user
does not have to.

5. E.g.,

BorderFactory

static createBevelBorder
static createEtchecBorder
static createLineBorder
. . .

C. Anotherexample of a factory method in JFC isjava.util.Iterable.iterator,

1. Theiterator factory method constructs anIterator object and returns it; it’s not a constructor.

2. Themethod determines which subclass ofIterator to create, hiding some of the construction details
from the user.

3. Thevalue added over constructor is that it creates an iterator for an in-hand collection.

4. Theiterator method is defined in theIterable interface, inherited by theCollection interface,
implemented in theAbstractList class, and available in (but not re-implemented in)
AbstractList’s extensions:

Iterable

iterator

Collection

iterator

AbstractList

iterator

ArraytList

Vector

XI. Builder.

A. Thepurpose of builder is to "Separate the construction of an object from its representation".

CSC307-f15-L10 Page 6

B. Thisis useful when the construction of an object is complex, involving extensive data analysis or validation.
1. For example, the construction of an object that takes a large amount of textual input from a user may

involve parsing the input, which includes ensuring that the input data is grammatically correct.
2. Insuch cases, the constructor creates a shell for the object rather than performing the parsing.
3. It then calls the builder to populate the shell.

C. Thereare some builder class examples in JFC, includingDocumentBuilder andProcessBuilder.

D. In the CSC 307 version of themvp.View class, thecompose methods follows the builder pattern at the
method level, separating the construction of a GUI object and the specific details of its layout.

XII. Prototype.

A. Thispattern is related to builder in that the construction of an object may involve a lot of work.

B. In the case of the prototype pattern, the construction process can avoid performing a large amount work by
making a copy of some staticprototypical data, and then modifying the data as necessary.

C. Theclassic prototype pattern specifies that aclone method is defined to provide the prototypical copy.

D. An example for 307-like projects could be in a set of classes that provide user-level instructions in plain text,
HTML, or possibly other formats.

1. A prototype class defines the raw instruction context in textual form.

2. Thespecializing classes clone the text and possibly add to it to produce the desired format.

3. Here’s a summary UML diagram:

UserInstructions

clone
. . .

InstructionsAsText

InstructionsAsHTML

XIII. Adapter.

A. This pattern allows one class to use the services of another, when the serving class does not provide the API
the first class wants or needs.

B. To do the adaptation, a thirdadapter class is used to covert a provided API into a desired API.

C. Generically, the pattern looks like this:

ClassA

"natural" data representation

"normal" API

ClassB

"natural" data representation

"normal" API

A_to_B_Adapter

adaptive data representation

API that ClassB needs

D. A very good example of adaptors we’ve seen in 307 is the use ofDefaultTableModel as an adaptor
between a model class that does not provide the API that aJTable view class needs.

CSC307-f15-L10 Page 7

UserCalendar

linked data structure

date-based access methods

CalendarListView

JTable

update
populateTableByRows

TableAdapter

DefaultTableModel

getTableRow

1. The"natural" representation for theUserCalendar is a linked and hashed data structure, and it’s nor-
mal API provides access to the calendar by lookup on dates and other calendar item fields.

2. Thenatural representation for a tabular view using Java Swing is aJTable, to which theUserCalen-
dar API is ill-suited.

3. TheTableAdapter class uses ajavax.swing.DefaultTableModel to adapt theUserCal-
endar to theCalendarListView.
a. ThegetTableRow method extracts data from the calendar, providing it to the view a row at a time.
b. The view has aJTable, which it it populates row-wise when its update method is called.

XIV. Facade.

A. A facade is a way to consolidate the services provided by a multi-class subsystem into a single.

B. Typically, the original subsystem will not have been written to be reused as a single service.

C. Inparticular, methods that would go in its API may have fewer explicit parameters than might be desired.

D. An often-cited example of the facade pattern is one for a programming language compiler that is not intended
for programatic reuse.

1. Thefacade defined aCompiler class, which interfaces to the various internal components of the com-
piler.

2. Thisfacade can be used in an IDE program, to treat the compiler as a black box.

E. For 307 projects, a facade could provide programmatic access to the entire application, for scripting pur-
poses, for example.

1. E.g.,

CalendarToolScriptingFacade

CalendarTool

Calendar Schedule(Calendar, Appointment)
Calendar Schedule(Calendar, Meeting)
 . . .

WeekView View(Calendar, WeekName)
MonthView View(Calendar, MonthName)

2. Thecalendar tool provides all of the functionality offered by the facade, but does so in methods that do
not have the convenient parameterization and return values provided by the facade methods.

3. In addition, the facade provides a full set of scripting methods in a single class, where in the Calendar
Tool application these methods are spread across multiple classes.

F. Another example is programmatic access to a drawing editor, that was designed originally for access by an
end user through a mouse interface, e.g.,

CSC307-f15-L10 Page 8

DrawingEdigtorFacadeAPI

DrawingEditor

Graphic drawRectangle(Canvas, int, int)
Graphic drawCurve(Canvas, int[])
 . . .

move(Canvas, Graphic, int, int)

where again the value-added provided by the facade is parameterized versions of extant methods, and the
collection of all the tool’s user-accessible methods into a single class.

XV. Decorator.

A. A decorator pattern adds features or behaviors to a class by having the decorated class be a component,
instead of having the decorated class inherit from the decorator.

B. In this way, not all instances of the class need have the decorations.

C. Anexample cited in GoF are decorators for GUI classes, i.e.,JComponents in Java.

1. Thedecorations are features such as borders and scrollbars.

2. Ratherthan having these features be inherited fromJComponents, they are added as decorations
around extensions ofJComponents.

3. Thisis in fact the way these features are designed in Swing.

XVI. Bridge.

A. Thispattern is essentially what interfaces and abstract classes are all about in Java.

B. Namely, the bridge pattern separates concrete implementations from abstract definitions.

XVII. Composite.

A. Thispattern allows an object that can be either composite or atomic to be treated uniformly.

B. A simple and illustrative example is the typical design of a node in a tree.

1. An interior tree node, i.e., one with children, is conceptually composite.

2. A leaf node is conceptually atomic.

3. Defininga single class for both interior and leaf nodes is an application of the Composite pattern that
allows the nodes to be treated uniformly in tree-manipulation methods.

XVIII. Flyweight.

A. Thispattern is aimed at efficient use of storage for objects that are composed of many small parts.

B. A typical application of flyweight is for string-based data, where any character or string of characters can
have attributes.

1. Having each character being represented by a heavy-weight class object would be quite inefficient.

2. Instead,the underlying data are represented as a plain string, with flyweight classes that represent
attributes for character sequences.

3. Thesequences are represented as ranges of character positions in the strings, or pointers into the string.

CSC307-f15-L10 Page 9

XIX. Proxy.

A. A proxy class provides a place holder for a service-providing class that may not yet exist.

B. If an instance of the service-provider does not exist, the proxy does the instantiation when the service-con-
sumer asks for one.

C. In this way, the service-provider is instantiated on demand, transparently to the service-consumer.

E.g.,

DocumentEditor

TextContent
GraphicContent

getImage

GraphicImageProxy

FileName
Image

draw
load
store

GraphicContent

draw
load
store

1. TheDocumentEditor uses theGraphicContent interface to perform operations on the graphic
content represented as images.

2. TheTGraphicImageProxy implements the interface, and fetches image data from a file if the data
have not yet been fetched, or uses cached image data if available.

3. Thefetching/caching behavior of the proxy is transparent to user of theGraphicContent interface.

XX. Iterator.

1. For Java, the original GoF Iterator pattern has been fully subsumed by the design of iterators in Java and JFC.

XXI. Mediator.

A. A mediator class is the parent to other sibling classes that need to communicate with one another.

B. Ratherthan having the siblings refer directly to one another, they each refer to the mediator, who forwards
the communication request.

C. Themediator pattern is used extensively in the 307 Calendar Tool example.

1. For example, the top-level CalendarTool model class instantiates sub-models and saves a reference to
all of them.

2. It also providesget methods to access the sub-model references.

3. In this way, the sub-models themselves do not have direct reference to one another

4. Rather, each sub-model has a reference to its parentCalendarTool class, which acts as a mediator of
all the sub-models.

5. Any sub-model accesses one of its sibling sub-models through the access methods provided by the medi-
atingCalendarTool model above.

XXII. Chain of Responsibility.

A. This pattern defines how a request can be satisfied by multiple handlers, without the requester knowing
exactly who does the satisfying.

B. Therequester sends the class to the first potential provider; if that provider cannot satisfy the request, it for-
wards it to others, who eventually will handle it. E.g.,

Client Handler1 ...

CSC307-f15-L10 Page 10

Info1
nextHandler:

request(Info)

Handler <----- Handler1
...

Handlern

Info <----- Info1
...

Infon

XXIII. Command.

A. A command is a heavy-weight class for encapsulating the operational behavior of a method.

B. Theclass contains meta-information about command execution, such as the value of past parameters, or the
values of past executions.

C. A very typical use of the Command pattern is for undoable operation, where the Command class has stored
data or other information necessary to support undo/redo.

D. Undo/redocan be supported by an execution history that contains copies of previous states, or an inverse
command method that computationally undoes the effect of a command execution.

E. Generically, the a command class looks like this:

Command

ExecutionStat
ExecutionHistory

execute
undo
redo
inverse

XXIV. State.

A. A State class provides an abstraction used in a state-base design.

B. For example, the design of a communication system is based on states like IDLE, ACTIVE, DATA_WAIT-
ING, etc.

C. A State class defines common methods that each specific state must implement, and the value of the state.

D. Theextending classes implement the methods, and set the state value as appropriate.

E. E.g.,

class Data {
DataState state;
public void handle() {

state->handle(...)
}

}
interface DataState {

void handle(...);

CSC307-f15-L10 Page 11

}
class IdleState implements DataState { void handle(...); }
class ActiveState implements DataState { void handle(...); }
class WaitingState implements DataState { void handle(...); }

F. This pattern is an object-oriented version of a state-based design that typically looks like the following in
non-object-oriented languages, such as plain C:

class Data {
Enum state ... ;
public void handle() {

switch (data.state) {
case IDLE: handleIdle(...)
case ACTIVE: handleActive(...)
case WAITING: handleWaiting(...)

}
}

}

G. Thepattern uses inheritance and polymorphism in a standard way to better modularize the design.

XXV. Memento.

A. Thispattern is related to State.

B. A Memento class represents parts of a state that need to be written to and retrieved from persistent storage.

C. Typically, only a subset of the State’s components are stored in the Memento.

XXVI. Observer.

A. The original GoF Observer pattern has been fully subsumed by theObserver/Observable pattern in
Java JFC, and comparable patterns in the libraries of other languages

B. Discussionof the observer/observable pattern is on previous lecture notes and the examples.

XXVII. T emplate Method.

A. This is a very general pattern for distributing method behavior in an abstraction hierarchy.

B. Thehigher-level Template Method defines a fixed signature and defines some general method behavior, i.e.,
an algorithmic skeleton.

C. Overloads of the Template Method further specialize the behavior based on the design of the class in which
they reside, in particular to implement substeps that the skeleton does not implement.

D. A typical use of this pattern in Java is when sub-class constructors call their parent constructor usingsuper.

1. Theparent constructor can be seen as a template initializer, that initializes the data common to the sub-
classes.

2. Eachsub-class constructor uses the parent initialization template, and then adds its own initialization as
necessary.

XXVIII. Strategy.

A. This is also a very general pattern that has been very largely subsumed by the interface concept of Java.

B. Theidea of a strategy is to provide an abstract API for operations that can be concretely implemented in a
number of different ways, which is fundamentally the relationship between an interface (which specifies the
strategy abstractly) and the implementing classes (which concretely implement the strategy).

CSC307-f15-L10 Page 12

XXIX. V isitor.

A. The Visitor pattern allows classes that need to perform operations on some encapsulated data to perform
those operations without changing the original encapsulation.

B. Two class hierarchies are defined

1. A base class hierarchy that constructs all data and its elements.

2. A parallel visitor class hierarchy, that provides operation on the elements, without constructing the origi-
nal overall hierarchy.

C. A generic datagram for the pattern looks like this:

Visitor

visitA

 . . .

visitN

VisitorX

data representation

visitA
 . . .

visitN

VisitorY

data representation

visitA
 . . .

visitN

Visitee

data representation

traverse
find
 . . .

visitA
 . . .

visitN

1. TheVisitor interface defines the methods that are invoked at each stage of a visitation.

2. TheVisitee class defines the encapsulated data representation for the data to be visited, atraverse
to perform an overall visitation, and any other methods that may be useful to concrete visitors, such as a
find.

3. Visitee also implements thevisit methods for its on traversal purposes.

4. Concretevisiting classes, such asVisitorX andVisitorY will perform specialized forms of visita-
tion; to do so, they

D. A specific use of the Visitor pattern is often applied to tree-structured data, e.g.,

CSC307-f15-L10 Page 13

TreeVisitor

visitA

 . . .

visitN

TreePrinter

String printString

visitA
 . . .

visitN

TreeSummation

int sum

visitA
 . . .

visitN

tree data rep

traverse
find
 . . .

visitA
 . . .

visitN

Tree

1. A parent tree class defines the tree structure, traversal method, and generic (may be no-op) visiting meth-
ods for each type of node.

2. Thespecializing children define different actions, that rely on the traversal to perform their work.

3. E.g.,theTreePrinter has a string that represents the print result, and implements the visiting methods
to concatenate the print name of each node to the print string.

4. TheTreeSummation class has an integer to which the traversal methods add the numeric value of each
node.

XXX. Interpreter.

A. This is by far the broadest of the original GoF patterns.

B. Theaim is to define the general pattern of a language interpreter, consisting of a lexical analyzer, parser, and
interpreter.

C. In actual use, applying this pattern takes a substantial amount of knowledge, that cannot be represented in a
simple pattern definition.

1. In this sense, Interpreter stands apart from the other patterns in its scope.

2. Implementorsof an Interpreter patter, or closely related Compiler pattern, need to understand regular
expressions, context-free grammars, and programming language semantics.

CSC307-f15-L10 Page 14

D. E.g.,

lexer ----> Parser ----> Interpreter

XXXI. Examplesof non-GoF patterns.

A. Several of the original patterns defined by the GoF have stood the test of time well, some less so.

B. As outlined above, there are other design patterns that are not part of the original GoF catalog, examples of
which follow.

XXXII. Model/View

A. Previous lecture notes and examples have covered the model/view pattern in detail.

XXXIII. Client/server

A. Theclient-server pattern is generally implemented in Java using RMI --remote method invocation.

B. Thishas been used in a number of 307 projects.

C. A simple example of RMI-based client/server design and implementation is in 307/examples/rmi

XXXIV . Data instantiation.

A. A number of the patterns discussed above hav edealt with data instantiation in different ways.

B. In the pattern examples, as well as in other 307 examples, there are the following three underlying patterns of
data instantiation:

1. Instantiate up-front; e.g., the way sub-model and sub-view classes are allocated and referenced in Calen-
dar Tool managerial classes.

2. Instantiate on-demand and cache; e.g., the way a singleton class can be allocated, and the way the Cal-
endarTool could work if up-front allocation was deemed too costly, i.e., there was a large lag time at tool
start up.

3. Instantiate on demand and destroy (garbage collect); e.g., the way transient viewing classes are allocated
in the Calendar Tool, where the view data are computed dynamically every time a display is updated.

XXXV. Data communication

A. As with data instantiation, a number of the patterns discussed above hav edealt with data communication in
different ways.

B. Throughoutthe pattern examples, and in the 307 calendar tool examples, there are the following two underly-
ing patterns of data communication:

1. parametric -- data are sent to methods as parameters, and provided as return values

2. persistent data -- data are accessed by methods from data fields, and provided as modified data fields

C. A generic example of these two patterns is the following, concrete examples of which are found throughout
the 307 examples:

public class Data {

/**
* Compute using current data field values and storing results in the data
* fields.
*/

void compute() {
System.out.println("x,y=" + this.x + "," + this.y);

}

CSC307-f15-L10 Page 15

/**
* Compute using parameters and returning results. As a side effect, data
* fields are set.
*/

Data compute(int x, int y) {
this.x = x;
this.y = y;
System.out.println("x,y=" + this.x + "," + this.y);
return this;

}

void setX(int x) {
this.x = x;

}

void setY(int y) {
this.y = y;

}

/**
* Perform a persistent-data computation by setting the class fields and
* calling the field-accessing compute method.
*/

static void useWithSets() {
int a = 1;
int b = 2;
int c = 3;
int d = 4;

Data data = new Data();
data.setX(a);
data.setY(b);
data.compute();

data.setX(c);
data.setY(d);
data.compute();

}

/**
* Perform a parametric computation by setting method-local variables, and
* calling the parametric compute function.
*/

static void useWithParms() {
int a = 1;
int b = 2;
int c = 3;
int d = 4;

Data data = new Data();
data.compute(a,b).compute(c,d);

}

public static void main(String[] args) {
useWithParms();
useWithSets();

}

protected static int x;

CSC307-f15-L10 Page 16

protected static int y;
}

XXXVI. Push/Pull

A. Thispattern is defined in terms of two classes -- aproducer and aconsumer.

B. Thesetwo classes determine who initiates the data exchange, which can be defined asdata-driven versus
demand-driven patterns.

C. E.g.,

__________________ __________________
Producer Consumer
__________________ __________________
Data Data
__________________ __________________
Data provideData acceptData(Data)
__________________ __________________

D. In a demand-driven pattern, the Consumer callsProducer.provideData for a PULL.

E. Ina data-driven pattern, the Producer callsConsumer.acceptData() for a PUSH.

F. Direction determiners include:

1. Whichside is the asynchronous initiator -- data- versus demand-driven.

2. Thelevel of trust between the sides -- e.g., AJAX is always PULL.

