CSC307-f15-L10

CSC 307 Lecture Notes Week 10
Introduction to Code Coverage
Introduction to " Classic" Design Patterns

I. Milestone 10 Summary
A. Duell:59PM Thurs 11 June

B. Deliverables:
1. finishedmplementation of requirements subset
2. JMLand unit tests for 8 to 12 methods

3. 100%code coerage for tested methods

CSC307-f15-L10 Bge 2

II. Final exam.
A. Cummulatve
B. Bothpaper and computer-based

C. Seehe final exam werview handout for details.

[ll. Backgroundfor "Classic" Design Patterns

A. As outlined in earlier notes, design pattern is reusable piece of design, based xpeéence that has been
ganed oser the years by software engineers.

B. Insoftware engineering, the specific term "design pattern" dates back to 1995.

C. Thefoundational book is by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1. Thisis often referred to as the "Gang of Four (GoF)" book on design patterns.
2. It defined 23 specific patterns in C++ and OMT (the "Object Modeling Technique”, on which UML is
based).
D. Theoriginal GoF defines what can be called the "classic" design patterns.
1. Someare more useful than others.

2. Thepatterns hee dso undergone refinement since original publication, in some cases considerable refine-
ment.

3. Agood deal of the basic GoF terminology has persisted in tact.

IVV. GoF hits and misses (Fishedpinion).

A. Hits:
1. Thethe gang of four coined the term, and so dest®ir due in that igerd.
2. Seeral of the patterns wa kecome well-accepted parts of the software desapabulary even if the
details of the patterns ¥xaevolved.
B. Misses:

1. Thereis not a good high-lel organizational framevork for the patterns, particularly in terms of the size
and scope of the different patterns.

Thereare a a number of fundamental and frequently-used patterns $hdidimot cover at dl.
Somedetails of the C++ presentation are somewhat or entirely inapplicable to languagbawlignd C#.
For Java in particulat a few d the patterns hee been largely subsumed by tirgerface feature.

Someof the patterns really ardrthat useful anymore.

arwDn

V. Typical language and notation used for patterns.
A. Multi-classpatterns defined as UML class diagrams.

B. Multi-packagepatterns defined as UML package diagrams.

O

Single-claspatterns defined as the API of one class or interface.

o

A piece of behavior defined in a function or dataftilagram.

m

Diagramshave eplanatory UML comments, or accompanying prose.

VI. Designpattern summarnporganized into the three pattern categories presented in GoF.

A. Creational Patterns
1. Singleton -- Ensure that a class only has one instance, and provide a global point of access to it.

CSC307-f15-L10 Bge 3

2. Factory Method -- Define an interface for creating an object, but let subclasses decide which class to
instantiate.

3. Abstract Factory -- Provide an API for creating families of related or dependent objects, without speci-
fying the concrete class instances.

4. Builder -- Separate the construction of an object from its representation, so that the same construction
process can create different representations.

5. Prototype-- Provide nes objects by copying an prototypical example.

B. Structural Patterns

1. Adapter -- Adapt the inteice provided by one class to suit the needs of a third class that nedds a dif
ent interface.

2. Facade -- Provide a unified interface to a set of interfaces in a subsystem.

. Decorator -- Add properties or bek@rs to a class by enclosing it in another class that implements the
properties or behaviors.

. Bridge -- Separate an abstraction from its implementation, so theawbe independently specialized.
. Composite -- Define objects so that composite and atomic instances can be treated uniformly.

. Flyweight -- Use sharing to support large numbers of fine-grained objects efficiently.

. Proxy -- Provide a surrogate or placeholder for another object to control access to it.

w

~N o o b~

C. Behavioral Patterns

1. lterator -- Provide a way to access the elements of an gggrebject sequentiallwithout exposing its
underlying representation.

2. Mediator -- Define an object that encapsulatew lzoset of objects interact, without having the mediated
set of objects refer to one another explicitly.

3. Chain of Responsibility -- Avoid coupling the sender of a request to its nesddy giving more than one
object a chance to handle the request.

4. Command -- Encapsulate a request as an object, therebyiaticclients to be parameterized withfdif
ent requests, queue or log requests, and support undoable operations.

5. State -- Distribute state-specific logic across multiple classes that represent andsatgeset’
6. Memento -- Without violating encapsulation, provide for the storage and restoration of anoHget’

7. Observer -- Define a one-to-manrelationship among objects, so that when an observed object changes
state, all of its observers are notified sg/tten update themselves.

8. Template Method -- Define main steps of an algorithm in a superclass, deferring the definition of some
steps to subclasses.

9. Strategy -- Encapsulate alternaé dgorithmic stratgies in separate classes that each implement a com-
mon operation.

10. Visitor -- Let a n&v operation be defined without changing classes of the elements on which it operates.

11. Interpreter -- Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language.

VII. Otherwidely-used patterns not in GoF.

A. Model/View -- Organize a set of classes into those that provide the basic data model and thoseittet pro
user-level views of the data.

B. Client/Server -- Define the responsibilities and interconnection between a server that operates remotely from
its clients.

C. DataInstantiation -- Specify where in the hierarglof data composition instantiated objects are created.

CSC307-f15-L10 Boe 4

D. Data Communication -- Specify data communication as parametric or persistent storage access.
E. Push/Pull -- Define provider and consumer classes, and define the direction of data exchange.

F. Wrapper -- Isolate the platform-dependent services in well-encapsulated classes, and provide generic plat-
form-independent interfaces to them.

G. Design by Contract. -- Define preconditions and postconditions for all methods, requiring that preconditions
be enforced by callers or callees.

VIIl. GoF pattern examples
A. Whatfollows are some examples of classic design pattern usaganteie CSC 307.

B. Theexamples illustrate the use of the patterns wittaJaundation and GUI classes, with UML diagrams
and code excerpts as applicable.

IX. Singleton.

A. A typical implementation of this pattern uses a static class boosr&able to record if an instance of the
single object has yet been created.

B. Theimplementation also provides a singleton creation method thatdsshs dbllows:

1. If no instance has yet been created, call the constraatethe result, set the boolean is-created flag, and
return the object.

2. If an instance has already been created, just return it.

C. Analternatve implementation is to va a éngleton constructor thm an exception if its already been called,
e.g.,
public class Singleton {

public Singleton() throws Alreadyl nstantiatedException {
if (islnstantiated) {
t hrow new Al readyl nstanti at edExcepti on(get C ass(). get Nane());

}

islnstantiated = true;

}

protected static boolean islnstantiated = fal se;

}

public class AlreadylnstantiatedException extends Runti nmeException {
public Alreadyl nstanti atedExcepti on(String targetd ass) {
this.targetC ass = targetd ass;

}
public String targetd ass;

}

D. A more benign approach to enforcing singleton behavior is to define a class wiiiteqonstructgrand an
accesser method that calls the constructor at most once, e.g.,

public class Singleton {
private Singleton() { . . . }

public static Singleton getlnstance() {
if (instance == null) {
instance = new Singleton();

}

CSC307-f15-L10 Bge 5

}

return instance;

}

protected static Singleton instance;

E. Theremay be cases where a Singleton pattern is used implicitly in a design, without enforcement.

1.

Thiscan occur when there is no reason teehaore than a single instance of a clasg,there is no par
ticular harm in having multiple instances.

In such cases, there may be no need to enforce Singletovidsebat rather call constructor once only
by design covention.

. Thisapproach happens regularly in the CSC 307 example project.

X. Factory Method and Abstract Factory.

A. A factory method is lik a @nstructoybut it can return objects of different types.

B. Anarchetypal example of a factory clasg &/ax. swi ng. Bor der Fact ory.

1.
2.

It's described in the JFC documentation as a "Factory class for vending standard Border objects."

Thedocumentation goes on to say "Wherepossible, this dctory will hand out references to shared
Border instances."

It has create methods that return a variety of different fitiGoerponent borders.

A value added of create methods is thaytteal with Border constructor parameters so Hetdry user
does not hee .

. E.g.,

BorderFactory

static createBevelBorder
static createEtchecBorder
static createLineBorder

C. Anotherexample of a factory method in JFCjiava. util.lterable.iterator,

1.
2.

Thei t er at or factory method constructs & er at or object and returns it; 8 not a constructor.

Themethod determines which subclasd ber at or to create, hiding some of the construction details
from the user.

Thevalue added wer constructor is that it creates an iterator for an in-hand collection.

Thei t er at or method is defined in tHet er abl e interface, inherited by th€ol | ect i on interface,

implemented in theAbstractLi st class, and \ailable in (but not re-implemented in)
Abstract Li st’s extensions:

lterable |<}——| Collection |[<J——| AbstractList (<} ArraytList

iterator iterator iterator

Vector

XI. Builder.

A. Thepurpose of builder is to "Separate the construction of an object from its representation”.

CSC307-f15-L10 Bge 6

B. Thisis useful when the construction of an object is complex\iing extensie data analysis or validation.
1. For example, the construction of an object that takes a large amount of textual input from a user may
involve parsing the input, which includes ensuring that the input data is grammatically correct.
2. Insuch cases, the constructor creates a shell for the object rather than performing the parsing.
3. Itthen calls the builder to populate the shell.

C. Thereare some builder class examples in JFC, incluBmgunent Bui | der andPr ocessBui | der .

D. Inthe CSC 307 version of thevp. Vi ew class, theconpose methods follows the wlder pattern at the
method leel, separating the construction of a GUI object and the specific details of its layout.

XIl. Prototype.
A. Thispattern is related to builder in that the construction of an object melyéna bt of work.

B. Inthe case of the prototype pattern, the construction procesyvadrparforming a lage amount work by
making a cop of some statigrototypical data, and then modifying the data as necessary.

C. Theclassic prototype pattern specifies thatame method is defined to provide the prototypicalycop

D. Anexample for 307-lile projects could be in a set of classes that providelagdrinstructions in plain td,
HTML, or possibly other formats.
1. Aprototype class defines thewinstruction context in textual form.
2. Thespecializing classes clone the text and possibly add to it to produce the desired format.
3. Heres a simmary UML diagram:

Userlnstructions InstructionsAsText

clone ﬂ

InstructionsAsHTML

XIIl. Adapter.

A. This pattern allows one class to use the services of anethen the serving class does not provide the API
the first class wants or needs.

B. To do he adaptation, a thiradapter class is used to wert a provided API into a desired API.
C. Genericallythe pattern looks li this:

ClassA A_to_B_Adapter ClassB

"natural” data representation C adaptive data representation C "natural” data representation

"normal" API API that ClassB needs "normal" API

D. A very good example of adaptors we’'sen in 307 is the use @kf aul t Tabl eModel as an adaptor
between a model class that does not provide the API thBall e view class needs.

CSC307-f15-L10 Bge 7

UserCalendar TableAdapter CalendarListView
linked data structure C DefaultTableModel C JTable
date-based access methods getTableRow update
populateTableByRows

1. The"natural" representation for thdéser Cal endar is a linked and hashed data structure, arglrr-
mal API provides access to the calendar by lookup on dates and other calendar item fields.

2. Thenatural representation for a tabularwiesing Jaa Swing is aJTabl e, to which theUser Cal en-
dar API is ill-suited.

3. TheTabl eAdapt er class uses pavax. swi ng. Def aul t Tabl eMbdel to adapt theJser Cal -
endar to theCal endar Li st Vi ew.

a. Theget Tabl eRowmethod extracts data from the calengeoviding it to the viev a row a a ime.
b. The viev has aJTabl e, which it it populates row-wise when its update method is called.

XIV. Facade.

A facade is a way to consolidate the services provided by a multi-class subsystem into a single.
Typically, the original subsystem will not @ keen written to be reused as a single service.
In particular methods that would go in its APl mayveafewer explicit parameters than might be desired.

An often-cited example of the facade pattern is one for a programming language compiler that is not intended
for programatic reuse.

1. Thefacade defined &onpi | er class, which interfaces to the various internal components of the com-
piler.

2. Thisfacade can be used in an IDE program, to treat the compiler as a black box.

O o w2

E. For 307 projects, a facade could provide programmatic access to the entire application, for scripting pur
poses, for example.

1. E.g,

CalendarToolScriptingFacade

CalendarTool

Calendar Schedule(Calendar, Appointment)
Calendar Schedule(Calendar, Meeting)

WeekView View(Calendar, WeekName)
MonthView View(Calendar, MonthName)

2. Thecalendar tool provides all of the functionality offered by the facagteddes so in methods that do
not have the cowenient parameterization and return values provided by the facade methods.

3. In addition, the facade provides a full set of scripting methods in a single class, where in the Calendar
Tool application these methods are spread across multiple classes.

F. Another &le is programmatic access to a drawing ediat was designed originally for access by an
end user through a mouse interface, e.g.,

CSC307-f15-L10 Bge 8

DrawingEdigtorFacadeAPI

DrawingEditor

Graphic drawRectangle(Canvas, int, int)
Graphic drawCurve(Canvas, int[])

move(Canvas, Graphic, int, int)

where again the value-added provided by the facade is parameterized versions of extant methods, and the
collection of all the too$ user-accessible methods into a single class.

XV. Decorator.

A. A decorator pattern adds features or behaviors to a class by having the decorated class be a component,
instead of having the decorated class inherit from the decorator.

B. Inthis way not all instances of the class needéthe decorations.
C. Anexample cited in GoF are decorators for GUI classesJiGanponent s in Java.

1. Thedecorations are features such as borders and scrollbars.

2. Ratherthan having these features be inherited fré@onponent s, they are added as decorations
around extensions dfConponent s.

3. Thisis in fact the way these features are designed in Swing.

XVI. Bridge.
A. Thispattern is essentially what interfaces and abstract classes are all abwat in Ja

B. Namely the bridge pattern separates concrete implementations from abstract definitions.

XVII. Composite.
A. Thispattern allows an object that can be either composite or atomic to be treated uniformly.

B. A simple and illustratie example is the typical design of a node in a tree.
1. Aninterior tree node, i.e., one with children, is conceptually composite.
2. Aleaf node is conceptually atomic.

3. Defininga dngle class for both interior and leaf nodes is an application of the Composite pattern that
allows the nodes to be treated uniformly in tree-manipulation methods.

XVIII. Flyweight.
A. Thispattern is aimed at efficient use of storage for objects that are composed/chmalmparts.
B. A typical application of flyweight is for string-based data, whene caracter or string of characters can
have dtributes.
1. Having each character being represented by a heavy-weight class object would be quite inefficient.

2. Insteadthe underlying data are represented as a plain string, with flyweight classes that represent
attributes for character sequences.

3. Thesequences are represented as ranges of character positions in the strings, or pointers into the string.

CSC307-f15-L10 Bge 9

XIX. Proxy.
A. A proxy class provides a place holder for a service-providing class that may not yet exist.

B. If an instance of the service-pider does not exist, the proxy does the instantiation when the service-con-
sumer asks for one.

C. Inthis way the service-provider is instantiated on demand, transparently to the service-consumer.

E.g.,

DocumentEditor GraphicContent GraphiclmageProxy
TextContent d FileName
GraphicContent <>_ IOr:éJN <J—— Image

store
getimage draw
load
store

1. TheDocunent Edi t or uses the& aphi cCont ent interface to perform operations on the graphic
content represented as images.

2. TheTGr aphi cl magePr oxy implements the interface, and fetches image data from a file if the data
have rot yet been fetched, or uses cached image dataildlale.

3. Thefetching/caching behavior of the proxy is transparent to user @taphi cCont ent interface.

XX. lterator
1. For Jara, the original GoF lterator pattern has been fully subsumed by the design of iteratoesamdJ3-C.

XXI. Mediator.
A. A mediator class is the parent to other sibling classes that need to communicate with one another.

B. Ratherthan having the siblings refer directly to one anqttiey each refer to the mediatowho forwards
the communication request.
C. Themediator pattern is used extargy in the 307 Calendar Tool example.

1. For example, the topdel Cal endar Tool model class instantiates sub-models anvéssa eference to
all of them.

2. Italso provideget methods to access the sub-model references.
Inthis way the sub-models themselves do notéhdrect reference to one another

4. Rathereach sub-model has a reference to its paBahtendar Tool class, which acts as a mediator of
all the sub-models.

5. Any sub-model accesses one of its sibling sub-models through the access methiols! fmp the medi-
atingCal endar Tool model abee.

w

XXII. Chain of Responsibility.

A. This pattern defines ko a request can be satisfied by multiple handlers, without the request&mgno
exactly who does the satisfying.

B. Therequester sends the class to the first potential provider; if that provider cannot satisfy the request, it for
wards it to others, whoventually will handle it. E.g.,

dient Handl er 1

CSC307-f15-L10 Bge 10

I nfol
next Handl er:

Handl er <----- Handl er 1
Handl er n
Info <----- I nfol
I nfon

XXIl. Command.
A. A command is a heavy-weight class for encapsulating the operational behavior of a method.

B. Theclass contains meta-information about commaretigion, such as the value of past parameters, or the
values of pastxecutions.

C. Avery typical use of the Command pattern is for undoable operation, where the Command class has stored
data or other information necessary to support undo/redo.

D. Undo/redocan be supported by ameeution history that contains copies of yiceis states, or anvarse
command method that computationally undoes the effect of a commandien.

E. Genericallythe a command class looksdithis:

Command

ExecutionStat
ExecutionHistory

execute
undo
redo
inverse

XXIV. Sate.
A. A State class provides an abstraction used in a state-base design.

B. For example, the design of a communication system is based on state®llik, ACTI VE, DATA WAI T-
I NG, etc.

C. A St at e class defines common methods that each specific state must implement, and the value of the state.

o

Theextending classes implement the methods, and set the state value as appropriate.

E. E.g.,

class Data {
Dat aSt ate state;
public void handl e() {
state->handl e(...)
}
}

interface DataState {
void handle(...);

CSC307-f15-L10 Bge 11

class IdleState inplenents DataState { void handle(...); }
class ActiveState inplenents DataState { void handle(...); }
class WaitingState inplenents DataState { void handle(...); }

F. This pattern is an object-orientedrsion of a state-based design that typically looks tile following in
non-object-oriented languages, such as plain C:

class Data {
Enum state ... ;
public void handle() {
switch (data.state) {
case IDLE: handleldle(...)
case ACTIVE: handl eActive(...)
case WAITING handl eWaiting(...)

}
}

G. Thepattern uses inheritance and polymorphism in a standard way to better modularize the design.

XXV. Memento.
A. Thispattern is related to State.
B. A Memento class represents parts of a state that need to be written to avetiretne persistent storage.
C. Typically, only a subset of the Stasedomponents are stored in the Memento.

XXVI. Obsener.

A. The original GoF Observer pattern has been fully subsumed b@iker ver / Cbser vabl e pattern in
Java FC, and comparable patterns in the libraries of other languages

B. Discussiorof the observer/observable pattern is on previous lecture notes and the examples.

XXVII. Template Method.
A. Thisis a very general pattern for distributing method behavior in an abstraction hyerarch

B. Thehigher-level Template Method defines a dik signature and defines some general methodvioghice.,
an algorithmic skeleton.

C. Owrloads of the Template Method further specialize thevwahbased on the design of the class in which
they reside, in particular to implement substeps that the skeleton does not implement.
D. Atypical use of this pattern inviis when sub-class constructors call their parent constructor sigingr .

1. Theparent constructor can be seen as a template initidlegrinitializes the data common to the sub-
classes.

2. Eachsub-class constructor uses the parent initialization template, and then adds iitstialization as
necessary.

XXVIII. Strategy.
A. Thisis also a very general pattern that has been very largely subsumed by the interface coneept of Ja

B. Theidea of a strategy is to prisle an abstract API for operations that can be concretely implemented in a
number of different ways, which is fundamentally the relationship between amadetéwhich specifies the
strategy abstractly) and the implementing classes (which concretely implement the strategy).

CSC307-f15-L10 Bge 12

XXIX. Visitor.

A. The Visitor pattern allows classes that need to perform operations on some encapsulated data to perform
those operations without changing the original encapsulation.

B. Two dass hierarchies are defined
1. Abase class hierarglthat constructs all data and its elements.

2. Aparallel visitor class hierarghthat provides operation on the elements, without constructing the origi-
nal overall hierarcly.

C. Ageneric datagram for the pattern looke lifis:

Visitor Visitee
VisitA < data representation
traverse
VisitN find
vislit;Al
VisitN
VisitorX

data representation C

VisitA

visitN

VisitorY

data representation C

VisitA

VisitN

1. TheVi si t or interface defines the methods that aveled at each stage of a visitation.

2. TheVi si t ee class defines the encapsulated data representation for the data to be \isitedease
to perform an werall visitation, and ayother methods that may be useful to concrete visitors, such as a
find.

3. Vi si t ee also implements thei si t methods for its on tkarsal purposes.
4. Concretevisiting classes, such a8 si t or X andVi si t or Y will perform specialized forms of visita-
tion; to do so, they

D. A specific use of the Visitor pattern is often applied to tree-structured data, e.g.,

CSC307-f15-L10

1. Aparent tree class defines the tree structuregral method, and generic (may be no-op) visiting meth-

TreeVisitor

Tree

VisitA

visitN

tree data rep

ods for each type of node.

2. Thespecializing children define different actions, that rely on thexsal to perform their work.
3. E.g..theTreePri nt er has a string that represents the print result, and implements the visiting methods

traverse
find

VisitA

visitN

TreePrinter

String printString

VisitA

visitN

TreeSummation

int sum

VisitA

visitN

to concatenate the print name of each node to the print string.

4. TheTreeSumat i on class has an inger to which the trgersal methods add the numeric value of each

node.

XXX. Interpreter

A. Thisis by far the broadest of the original GoF patterns.

Rge 13

B. Theaim is to define the general pattern of a language interpeetesisting of a lexical analyzgvarser and

interpreter.

C. Inactual use, applying this pattern takes a substantial amountwfekiye, that cannot be represented in a

simple pattern definition.

1. Inthis sense, Interpreter stands apart from the other patterns in its scope.

2. Implementorsof an Interpreter patteor dosely related Compiler pattern, need to understagdlae

expressions, context-free grammars, and programming language semantics.

CSC307-f15-L10 Bge 14

D. E.g.,
| exer ----> Parser ----> Interpreter

XXXI. Examplesof non-GoF patterns.
A. Several of the original patterns defined by the Gokehgood the test of time well, some less so.

B. Asoutlined abwe, there are other design patterns that are not part of the original GoF catalog, examples of
which follow.

XXXIl. Model/View
A. Previous lecture notes and exampleséneovered the model/vie pattern in detail.

XXXIII. Client/server
A. Theclient-server pattern is generally implemented waJdaing RMI --remote method invocation.
B. Thishas been used in a number of 307 projects.
C. Asimple example of RMI-based client/server design and implementation is in 307/examples/rmi

XXXIV. Data instantiation.
A. A number of the patterns discussedwblavedealt with data instantiation in different ways.
B. Inthe pattern examples, as well as in other 307 examples, there are the following three underlying patterns of
data instantiation:

1. Instantiate up-front; e.g., the way sub-model and subwielasses are allocated and referenced in Calen-
dar Tool managerial classes.

2. Instantiate on-demand and cache; e.g., the vay a singleton class can be allocated, and the way the Cal-
endarDol could work if up-front allocation was deemed too cosity, there was a Ige lag time at tool
start up.

3. Instantiate on demand and destroy (garbage collect); e.g., the vay transient viewing classes are allocated
in the Calendar Tool, where the wielata are computed dynamicallyeey time a display is updated.

XXXV. Data communication
A. As with data instantiation, a number of the patterns discussea dhoedealt with data communication in
different ways.
B. Throughouthe patternxeamples, and in the 307 calendar tool examples, there are the follovaingderly-
ing patterns of data communication:
1. parametric -- data are sent to methods as parameters, and provided as return values
2. persistent data -- data are accessed by methods from data fields, and provided as modified data fields

C. A generic example of thesedwpatterns is the folling, concrete examples of which are found throughout
the 307 examples:

public class Data {

/**
* Conpute using current data field values and storing results in the data
* fields.
*/
voi d conpute() {
Systemout.printin("x,y=" + this.x +"," + this.y);

}

CSC307-f15-L10 Bge 15

/**
* Conpute using paranmeters and returning results. As a side effect, data
* fields are set.
*/
Data conpute(int x, int y) {
this.x = x;
this.y =vy;
Systemout.printin("x,y=" + this.x +"," + this.y);
return this;

}

void setX(int x) {
this.x = x;

}

void setY(int y) {
this.y =vy;

}

/**

* Performa persistent-data conputation by setting the class fields and
* calling the field-accessing conmpute nethod.
*/
static void useWthSets() {
int a 1;
int b
int c
int d

2;
3;
4

)

Data data = new Data();
dat a. set X(a) ;

dat a. set Y(b);

dat a. comput e() ;

dat a. set X(c);
dat a. set Y(d);
dat a. comput e() ;

}

/**

* Performa parametric conputation by setting method-1ocal variables, and
* calling the paranmetric conpute function.

*/
static void useWthParnms() ({
int a=1;
int b =2;
int ¢ = 3;
int d = 4

)

Data data = new Data();
dat a. conmput e(a, b) . conpute(c, d);

public static void main(String[] args) {
useW t hPar ms() ;
useWthSets();

}

protected static int x;

CSC307-f15-L10 Bge 16

protected static int vy;

XXXVI. Push/Pull
A. Thispattern is defined in terms of avdlasses -- @roducer and aconsumer.

B. Thesetwo dasses determine who initiates the datehange, which can be defined deta-driven versus
demand-driven patterns.

C. E.g,
Pr oducer Consurner
Dat a Dat a
Dat a provi deDat a accept Dat a(Dat a)

D. Ina demand-dnien pattern, the Consumer cal®s oducer . pr ovi deDat a for a PULL.
E. Ina data-driven pattern, the Producer callonsuner . accept Dat a() for a PUSH.
F. Direction determiners include:

1. Whichside is the asynchronous initiator -- data- versus demawnehdri
2. Thelevd of trust between the sides -- e.g., AJAX iwals PULL.

