
CSC307-f15-L4 Page 1

CSC 307 Lecture Notes Week 4
Introduction to Requirements Modeling

Requirements Inspection Testing

I. Thisweek’s material:

A. Writeupfor milestones 3 and 4

B. Milestone4 example

C. Java as an Abstract Modeling Language

D. SOPVolume 2: Requirements Testing

II. Lab quiz Friday week 4, October 16th.

A. Covers material on SVN Basics handout.

B. Questionswill be in terms of command-line interface to SVN.

C. Therewill be no questions on SVN clients.

D. It should less than 20 minutes to complete.

III. The next major phase of the software process -- requirements modeling and formal specification.

A. Thegoal is to formalize the user-oriented functional requirements, so that:

1. therequirements are complete and consistent;

2. therequirements are clear and unambiguous for the system design and implementation team.

B. While fully formal modeling of software is not (yet) practiced as widely as for other forms of engineered arti-
facts, the utility of formal software models is substantial. Semi-formal modeling is gaining wider acceptance
in the SE world.

IV. When to model?

A. In a more traditional process, modeling is used a step in the successive refinemnt of software requirements
into a concrete design and then implementation.

B. In a more agile / extreme programming processing, modeling is done as needed during a refactoring step.

C. Figure1 is a comparative picture of these two approaches.

V. Languages to formally specify requirements.

A. Candidatesinclude:

1. "Firmedup" English and pictures -- understandable but imprecise.

2. Semi-formalrequirements specification languages -- helpful for high-level modeling, but not precise
enough to ensure a complete and consistent specification.

3. Graphicalnotations -- helpful to clarify some aspects of a formal model, but not generally adequate for a
complete specification.

4. A programming language or the abstracted version of a programming language.

5. Fully formal textual notations, including mathematics -- these remove all imprecision but are very
demanding to use and understand.

B. Alas,"demanding to use and understand" is an attribute of many formal engineering notations.

1. Buildingand analyzing formal models is an important part of what engineers do to earn their keep.

2. Without a formal model, we run the very substantial risk of not fully understanding the system we want to
build, and as a result building a faulty system.

CSC307-f15-L4 Page 2

Design ImplementAnalyze Specify

 Refactor when necessary,
which entails what’s done in
 Specciry and Design

Analyze Implement

Refactor

Traditional Approach:

Agile Approach:

Figure 1: Where modeling fits in the process.

C. Why a formal language?

1. Remove the imprecision and ambiguity of normal English prose.

2. Avoid misunderstanding among analysts and potential users --consistency.

3. Provide a means to identify when the requirements analysis process is finished --completeness.

4. Provide some quantifiable measures by which to judge if a delivered system actually meets the require-
ments --verifiability.

VI. Justhow formal do we get?

A. In 307, we will go all the way down to formal mathematical logic.

B. We will do so in a sequence of steps from informal, to semi-formal, to fully formal.

C. Eachstep requires more work and more specialized knowledge.

D. In the real world, different participants in the analysis process will have different technical backgrounds.

1. Therefore,not all analysts will be involved with the most formal aspects of the document.

2. It is ultimately the job of the systems analyst to take input from all other analysts and produce a fully for-
mal result.

E. Formality is particularly important in a growing number of "safety-critical" applications, such as avionics and
medical systems, among others.

1. Generalrule -- the more important it is to prove that a computer system works properly, the more formally
must it be specified.

2. Formal specification can be used in other areas that do not strictly involve safety, such as verifiably secure
information processing system for financial transactions.

VII. Furtherdetails on formalizing the requirements.

A. Thefirst step in formalizing user-oriented requirements is to build arequirements model.

B. Themodel is a more abstract representation of the requirements, written in a more formal language than Eng-
lish prose and pictures.

C. Theobjective in building the model is to depict the structure and operational behavior of a proposed system
accurately and precisely.

D. Elementsof the requirements model are the following:

1. Thedefinition ofobjectsupon which the system operates.

CSC307-f15-L4 Page 3

2. Thedefinition ofoperationsthat the system performs.

3. Thedefinition of object and operationattributes.

4. Thedefinition ofrelationshipsbetween objects and operations.

5. Statements of factabout objects and operations, which statements can be validated to be true or false.

6. Explanatory remarksthat aid in human understanding of the model.

E. Theformal language we will use in 307 is Java, with modifications to make it suitable as an abstract specifi-
cation language.

F. An overview is presented in the handout entitled "Java as an Abstract Modeling Language".

G. Hereis a summary of using Java as abstract modeling language:

1. Objectsare modeled as fully abstract Java classes or enums; no concrete classes, no interfaces.

2. Operationsare modeled as method signatures; no method implementations.

3. Objectattributes are modeled as Java annotations.

4. Objectrelationships are
a. has-a, which is modeled as data fields
b. is-a, which is modeled as inheritance usingextends

5. Statementsof fact are modeled with JML assertions (more on this in coming weeks)

6. Thefollowing Java features arenot usedin an abstract model:
a. executable code
b. information hiding withpublic, private, or protected
c. exceptions
d. librarydata structures exceptCollection
e. primitive types exceptint, double, andboolean
f. any other Java feature not explicitly mentioned above

VIII. Heuristicsfor deriving a requirements model from user-oriented requirements scenarios.

A. In our scenario style of requirements analysis, the requirements model is derived from the pictures of the user
interface and the accompanying textual narrative.

B. Thefollowing heuristics can be used to derive an initial set of objects and operations from a graphical user
interface:

1. Functionbuttons and menu items generally correspond to operations.

2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically, data-entry dialogs that appear in response to invoking an operation generally corre-
spond to the input object(s) for the invoked operation.

4. Outputreporting screens that appear in response to confirming an input dialog (E.g., with an "OK" button)
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements that allow entry of a single number, string, or boolean value correspond to primitive
types.

6. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-
dows and boxes, with primitive elements at the lowest level of nesting.

C. Specificdetails of object and operation attributes are derived from the scenario narrative that accompanies the
interface pictures.

IX. Someexamples from the Calendar Tool.

A. To illustrate the derivation of a requirements model, we’ll apply the preceding basic heuristics to Calendar
Tool example.

B. Completedetails of the initial modeling for the Calendar Tool are in the specification directory of Milestone
4 example.

CSC307-f15-L4 Page 4

X. Deriving scheduling operations.

A. Hereis the top-level Schedule command menu from the Calendar Tool:

Appointment ...
Meeting ...
Task ...
Event ...

B. Applying the first heuristic (buttons and menus indicate operations), we can identify the following four oper-
ations from theSchedule menu:

void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

C. We hav enot yet identified the following aspects of these operations:

1. Whatclass they go in.

2. Whatparameter(s) they take.

3. Whatreturn value, if any, they produce.

D. Linguistically, operation names should always be verbs or verb phrases.

1. Dependingon how the user commands are structured, we can use different combinations of interface ele-
ment names to derive meaningful operation names.

2. In this case, which is reasonably typical, we’ve concatenated a menu name with the name of each menu
item to derive the operation names.

3. An important point is to have traceability between the terminology used in the user interface and the cor-
responding model.

a. In fact, the derivation of model names can help point out flaws or inconsistencies in the interface sce-
narios.

b. If it is difficult to derive a simple and meaningful name for an operation from the interface, this is a
sign that the interface naming might well be improved.

c. This is an instance of a recurring principle in requirements analysis and modeling -- "form follows
function".

d. Thatis, a well-defined interface scenario leads to a well-defined model, and vice versa.

XI. Deriving scheduling objects.

A. Fromthe second heuristic (data screens are objects), we can identify as objects each of the data-entry screens
that appear in response to the user selecting one of theSchedule menu operations.

B. To start with a simple example first, let us consider the derivation of theEvent object, from the following
interface picture:

CSC307-f15-L4 Page 5

Start Date: End Date:

Title:

OK Cancel

Schedule an Event

Location:Category:

 Confirms
scheduleEvent
 operation

 Cancels
scheduleEvent
 operation

Components of
 object Event

C. Applyingheuristics 5 and 6, we can derive the following object definitions:

class Event {
String title;
Date startDate
Date endDate
Category category
String location;

}
class Date { /* ... */ }
class Category { /* ... */ }

D. In these definitions, we’ve done the following initial data analysis:

1. Thetitle and location fields are primitive string type.

2. Theother data fields are defined as object types that we’ve named, but not yet fully defined.

XII. Objectderivation details.

A. As discussed in the "Java as Modeling Language" handout there are only a few Java forms used to model
data

B. Table 1 summarizes these, along with the common interface forms.

C. Theseare constructs you should be familiar with in Java.

D. Thetable notes common interface forms for each of the basic object types.

XIII. Refining object definitions.
A. An examination of the narrative for the event dialog, indicates that theTitle andLocation components

of an event are free-form strings, hence their definition asString types.
B. Java’s String type is used to model a any free-form text string that the user may type.
C. InMilestone 4, the details of date formats has not yet been worked out.

1. Given this, we’ll leave the definitions of theDate class to be resolved later.

2. I.e.,we’ll leave the definitions as

class Date { /* ... */ }

D. Theuser interface displays theCategory as a list of selections.

1. Thismight lead us to consider modeling theCategory component as a list of form

class Category { String* list; }

CSC307-f15-L4 Page 6

Java Form Meaning Common Interface Form

int numeric integer string editor for numbers; numeric slider bar or dial

double sameas integernumeric real number

String stringeditor or combo boxfree-form string value

boolean true/false value string editor for true/false value; on/off button
class data fields components of the class box containing other types

enum literals one of a set of possibilities radio buttons; fixed-length listing of selections

Collection variable-length listing of data values or selectionszero or more components of
the same type

Method push button or menu itemthe type of an operation

Table 1: Java Modeling Forms.

2. However, a more careful analysis of the requirements shows that for a given event, theCategory com-
ponent is only one of a set of possibilities.

3. Hence,theCategory component would not be a list, but rather just a primitive String.

4. Furtheranalysis of the requirements shows that a category is not just a plain string, since each category
has an explicitly selected color, as shown in the add-category dialog:

OK Cancel

Category Name:

Color: Black

Add Category

5. Hence,the most accurate definition ofCategory is

class Category {
String name;
Color color;

}

6. A subsequent screen shot in the scenarios shows that theColor component is one of a fixed set of selec-
tions:

CSC307-f15-L4 Page 7

OK Cancel

Category Name:

Color:

Add Category

personal

Black

Red
Orange
Yellow
Green

Purple

Black

Blue
Purple

Black

Brown

7. Accordingly, we can modelColor as follows:

enum Color {
Black, Brown, Red, Orange, Yellow or Green, Blue, Purple;

}

E. Thepreceding analysis for deriving objects is typical in requirements modeling.

1. Firstwe derive initial object definitions from the UI pictures.

2. Thenwe refine the definitions based on the scenario narrative.

3. We continue to refine until all objects are defined in terms of primitives, or we’ve decided to defer com-
plete definition of model data until more requirements have been completed.

XIV. Refining operation definitions.

A. Thekey step in refining an operation is determining what object class it belongs in.

B. Thiswill clarify what object is operated on.

C. In the case of the four scheduling operations, an analysis of the requirements leads us to understand that these
operations work on aCalendarobject.

D. Hence,we have the definition

class Calendar {
void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

}

E. Usingheuristic 3 (data-entry dialogs are input objects), we refine the four scheduling operations as follows:

class Calendar {
void scheduleAppointment(Appointment);
void scheduleMeeting(Meeting);
void scheduleTask(Task);
void scheduleEvent(Event);

}

F. Since we want all of our models to compile with the Java compiler, we need to clarify that the preceding defi-
nition is intended to be an abstract model.

1. Abstractin this context means, among other things, that we leave out all operational code from the model.

2. Henceto compile in Java we must declare all of the methods to beabstract, as well as the class that
contains these methods.

G. So,here is the compilable definition of the modeled Calendar object, along with its operations:

CSC307-f15-L4 Page 8

abstract class Calendar {
abstract void scheduleAppointment(Appointment);
abstract void scheduleMeeting(Meeting);
abstract void scheduleTask(Task);
abstract void scheduleEvent(Event);

}

XV. Identifying collection objects.

A. A key aspect of data modeling is the identification ofcollectionobjects.

B. Abstractly, a collection contains zero or more objects of a particular type.

C. In terms of requirements scenarios, collections can be identified by language that describes objects with mul-
tiple entries, and operations that add entries to the collection.

D. For example, in Section 2.2 of the Calendar Tool scenarios, the following kind of language helps identify the
calendar as a collection of appointments:

"After scheduling and confirming an appointment, the appointment data are entered in an online
working copy of the user’s calendar."

E. With Java as a modeling language, we will use theCollection interface to model abstract collections, as
in this definition ofCalendar:

abstract class Calendar {
abstract void scheduleAppointment(Appointment);
abstract void scheduleMeeting(Meeting);
abstract void scheduleTask(Task);
abstract void scheduleEvent(Event);

Collection<Appointment> data;
}

F. Representing a Calendar as a collection ofAppointments is in fact an over-simplification of aCalendar,
since calendars can contain meetings, tasks and events, as well as appointments.

G. We’ll address this issue soon, by defining a parent class for these four types of scheduled items, and repre-
sentingCalendar data thusly:

Collection<ScheduledItem> data;

H. Anotherway to identify collections in requirements scenarios is by the pattern of operations that are used on
collections.

1. Theoperations areadditive, destructive, modifying, andselective.

2. Inmore common terms, these are operations to add, delete, edit, and find items in a collection.

3. Inupcoming notes, we’ll consider this to be a formal specification pattern.

XVI. Deriving a monthly view object.

A. A significant number of objects and operations will ultimately be derived from the calendarView com-
mands.

B. As an initial example, consider in Figure 2 the monthly view that is displayed in response to the user select-
ing theMonth item in theView menu.

C. Fromthis we can derive the following objects:

import java.util.Collection;

/**
* A MonthlyAgenda contains a small daily view for each day of the month,
* organized in the fashion typical in paper calendars.
*/

class MonthlyAgenda {

CSC307-f15-L4 Page 9

April 2015

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 1110 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

2728 29 30

HelpFile Edit Schedule View Admin Options

Calendar Tool

Figure 2: Monthly calendar view.

FullMonthName name;
DayOfTheWeek firstDay;
int numberOfDays;
Collection<SmallDayView> items;

}

class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }

/**
* A SmallDayView has the number of the date and a list of zero or more short
* item descriptions.
*/

class SmallDayView {
int DateNumber;
Collection<BriefItemDescription> items;

}

class BriefItemDescription {
String title;

CSC307-f15-L4 Page 10

Time startTime;
Duration duration;
Category category;

}

class Time { /* ... */ }
class Duration { /* ... */ }
class Category { /* ... */ }

XVII. Someobservations on requirements modeling.

A. TheCalendar Tool will provide some interesting examples where a model can be derived in anumber of dif-
ferent ways.

1. For example, should the Calendar itself be modeled as a collection of scheduled items or as a collection of
years?

2. Shoulddates be modeled as simple strings or a composite objects?

3. Whichof these is the "correct" or "most accurate" way to model?

B. Thegeneral answer to such questions is that we strive to model objects and operationsas perceived by the
end user.

1. Oursingle criterion for model correctness and accuracy is based on how well we represent objects and
operations in terms of what the user thinks.

2. Whatwe definitely do not want to do is model things in terms of efficient computer data structures.

3. We will discuss these requirements modeling ideas more in upcoming lectures.

XVIII. Administrative matters.

A. Modelingfor Milestone 4.

1. Seethe Milestone 4 example for roughly how much you should do.
a. Eachteam member must commit at least fourJava model classes, organized into packages.
b. The model classes can be in one or more.java files.
c. You’ll need some team coordination for the major shared objects and the packaging structure.

2. Createpackage sub-directories in the projectspecification directory.

3. Put.java files to the appropriate package directories.

4. The files must compile withjavac.

B. Rememberthat this is the week of requirements inspection testing.

1. Review the procedure in the SOP Vol. 2 handout, which we’ll go over in lecture on Monday.

2. In particular, be sure to decide in your team at what time on Friday (or even Thursday) pre-testing check-
in is due in order for the inspection tester to get things done so the librarian can release them by 11PM.

XIX. Guidelinesfor modularizing a software model.

A. To modularizemeans to subdivide parts into independent units.

B. Here’s an excerpt from the regular English dictionary definition for"module" that applies very well to soft-
ware modeling:

"A module is an independent unit that can be used to construct a more complex structure".

C. In the specific case of a model defined in Java, modules are defined aspackages.

D. A good heuristic for defining model packages is to use the large-grain structure defined in the software
requirements

1. For example, each menu in a menu-based UI can be considered a module.

2. Similarly, the top-level UI toolbars can be considered to be modules.

CSC307-f15-L4 Page 11

E. Given these guidelines, the packaging structure of the Calendar Tool model can be defined as follows:

package file;
package edit;
package schedule;
package view;
package admin;
package options;

F. Within each package are the classes that support the package’s functionality.

1. For 307 Milestone 4 example, the primary focus is on theschedule andview packages, since these
contain the most important and interesting features of the Calendar Tool.

2. Thepackaging structure is easy to view in javadoc form in the Milestone 4 example.

3. Eachpackage is documented with a file named "package.html" in each package directory.

a. Thefile describes what the package is for.

b. See the Milestone 4 example for what these files look like.

XX. Summaryof core steps of the model derivation and refinement process.

A. Derive initial model from UI screens, using these heuristics:

1. Functionbuttons and menu items generally correspond to operations.

2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically, data-entry dialogs that appear in response to invoking an operation generally corre-
spond to the input object(s) for the invoked operation.

4. Outputreporting screens that appear in response to confirming an input dialog (e.g., with an "OK" button)
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements with a single number, string, or boolean value corresponding to primitive objects.

6. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-
dows and boxes, with primitive elements at the lowest level of nesting.

7. Wholepull-down menus and large editing dialogs generally correspond to modules.

B. Refine object model using requirements narrative.
1. Definecomponent details down to primitive-level objects.

2. Addinheritance based on references to "generic" objects mentioned in narrative.

3. Addobject descriptions that synopsize narrative details.

C. Refine operation model using requirements narrative and thoughtful functional analysis.
1. Fully specify operation inputs and outputs.

2. Identifydefault inputs that the user does not need to enter explicitly in the interface.

3. Identifycollection objects and add them to operation inputs/outputs, to ensure functional behavior.

XXI. Specificmodeling guidelines.

A. Objectand operation naming.

1. Derive object and operation names directly from requirements pictures and narrative.

2. Thenoun or noun phrase in the banner of a dialog is the name of the object derived from the dialog.

3. Thelabels of dialog components are the names of object components.

4. Theverb or verb phrase on a menu item or function button is the name of the operation derived from the
menu item or button.

5. Spacesand other alphanumeric punctuation must be consistently removed to form legal object name iden-
tifiers; otherwise, retain full spelling and capitalization in derived names, except for the Java convention
to start method and data field names with a lower case letter.

CSC307-f15-L4 Page 12

B. Inheritance.

1. Derive inheritance relations based on explicit narrative in the requirements.The objective is to define
inheritance in the model if it is perceptible in some form to the user.

2. Inheritanceshould not be used in a requirements model for the purposes of representational efficiency, as
it is often used in programs.

3. Theprime directive of modeling is "If the user perceives it, model it". Otherwise, leave it out.

4. Inkeeping with the prime directive, inheritance is generally best derived "bottom up", i.e.,
a. Defineall objects first without inheritance.
b. Examine object definitions to see if there are common components.
c. Defineparent object classes based on common components.
d. Confirmthe use of inheritance in the model by finding justification for it in the requirements narrative

(or adding such justification if the inheritance was discovered while modeling and is legitimately
deemed "user perceptible").

XXII. Details of object derivation.

A. Wheninterface screens are well laid out and clearly defined, object derivation is generally straight forward.

B. Thefollowing table summarizes the derivation of model types from common interface forms.

Common UI Form Model Object Type

One-line Text box Typically a string. If the requirements narrative defines specific constraints on what can
be entered in the text box, then the model structure should reflect these constraints.E.g.,
if the narrative limits what can be typed to an integer value, then the text box is modeled
as an integer. If the narrative defines what can be typed as a two-part value of some form,
then the model is a two-tuple (e.g., Time and Date).

Multi-line Text Area A string, list of strings, ore more complex object. Asingle string model is appropriate if
the entire text area is entered as one large block of text the system does not decompose in
any way. A list of strings is the appropriate model if the line-by-line contents of the text
area are handled separately, but each line is not further decomposed.A more complex
object model is necessary if the system performs any detailed parsing of the text to ana-
lyze its contents.

Fixed-length
selection list

An enum object, with each element being one of the items in the selection list.

Variable-length list A Collection object, with elements corresponding to the type of the selections.

Check-box A boolean object. When check boxes are grouped together in the UI, model the group as
a tuple of boolean objects.

Radio-button(s) A boolean object or enum.A single on/off radio button is modeled as a boolean, e.g., a
single radio button labeled "Yes/No" or "On/Off". When radio buttons are grouped to-
gether as a set of alternatives, the model is an enum with one component for each alterna-
tive. For example, with a group of radio buttons labeled "Range", with button labels
"High", "Medium", and "Low", the model is

enum {High, Medium, Low}

Dialog window A class of objects that model the dialog components.

CSC307-f15-L4 Page 13

Tabbing or
Multi-Panel dialog

A class with data fields for each tab panel, with each component class defining one of the
tabs or panels.

Specialized "widgets" Graphical interfaces may contain an assortment of primitive-level forms, such as on/off
toggles, numeric slider bars, and small icons representing single values. Agood rule for
the use of such forms is if the corresponding model object is not readily derivable from
the widget, then the widget is probably not that easy to understand for the user and should
be replaced with a simpler form.

XXIII. Details of operation derivation.

A. The"..." suffix in a menu item generally leads to two forms of dialog:

1. A data input dialog, with anOK button (or a button synonymous with OK).
a. Inthis case, there is only one operation to model.
b. Its name is derived from the menu item.
c. TheOK button itself is not a separate operation.
d. Rather, there is three-phase GUI sequence to invoke a single underlying model operation:

i. Selectit from the menu (or function button).
ii. Fill in the required values in the input dialog.
iii. Confirm the operation

2. Thealternative to a single-operation input dialog leading from "..." is a larger multi-operation dialog of
some form.
a. In this case, there are multiple operations to model, one each for the buttons or sub-menus in the dia-

log.
b. The menu item itself does not derive an operation name, but rather a module name, in which the mul-

tiple dialog operations are defined.

B. No "..." in a menu item means that the input(s) required for the operation are collected as default values from
the surrounding environment.

XXIV. Object and operation derivation examples from the Calendar Tool.

A. Event (introduced in Notes Week 4).

Start Date: End Date:

Schedule an

Location:Category:

OK CancelClear

Title:

title startDate endDate categoryEventclass { ; ; ; ; ;

Event

location ; }

1. This annotated screen illustrates clearly the traceability between user-level requirements screens and
underlying abstract model.

2. Thisis an admittedly simple example, however such traceability can be achieved throughout the require-
ments derivation process with some diligence.

CSC307-f15-L4 Page 14

B. Appointment

public

must

Start Time:

Duration:

Date:

End Date:

Title:

weeklyRecurring?
S M T W Th F S

Interval:

Location:

Details:

Priority:

Schedule an Appointment

Security:Category:

hr min

on screenminutes beforeRemind? 15

OK CancelClear

class Appointment {
String title;
Date startDate;
Date endDate;
Time startTime;
Duration duration;
RecurringInfo recurringInfo;
Category category;
Location location;
AppointmentSecurity meetingSecurity;
AppointmentPriority priority;
RemindInfo remindInfo;
Text Details;

}

1. Thisillustrates a more involved dialog and its derived object.

2. Notethe grouping of related UI components into the RecurringInfo and RemindInfo objects.
a. Thisgrouping in the model is a good cue that the UI itself could have better visual cues of how related

components go together.
b. E.g., the recurring and reminder areas could be surrounded by a box.

3. Also,the number of components violates the 7+/-2 rule.
a. Thisis a cue that the dialog itself may be too complex for a single window.
b. Some form of better ergonomic organization could be used, such as toggles to show more or less

detail.

CSC307-f15-L4 Page 15

C. Meeting

public

must

Start Time:

Duration:

Date:

End Date:

Title:

weeklyRecurring?
S M T W Th F S

Interval:

Location: Priority:

Details:

Security:Category:

hr min

on screenminutes beforeRemind? 15

OK CancelClear

Attendees:

Confirm a Meeting

Minutes:

class Meeting {
String title;
Date startDate;
Date endDate;
Time startTime;
Duration duration;
RecurringInfo recurringInfo;
Category category;
Location location;
AppointmentSecurity meetingSecurity;
AppointmentPriority priority;
RemindInfo remindInfo;
Attendees attendees;
Text Details;
Text Minutes;

}

CSC307-f15-L4 Page 16

D. Task

public

must

Due Date:

End Date:

Title:

weeklyRecurring?
S M T W Th F S

Interval:

Details:

Priority:

Schedule a Task

Security:Category:

on screenminutes beforeRemind? 15

OK CancelClear

class Task {
String title;
Data dueDate;
Date endDate;
Category category;
Security security;
int Priority;
RemindInfo remindInfo;
Text details;
boolean carryOverFlag;
boolean completedFlag;

}

1. Notethat there is aCompletedFlag in the model object that does not appear in the task scheduling
dialog.

2. Thereis a to-do item in the Milestone 6 task-scheduling scenario that describes how the completed flag
should appear once a task is scheduled.

3. Thisis an example of where the model is temporarily further developed than the requirements scenarios.

CSC307-f15-L4 Page 17

E. Deriving thescheduleEvent operation.

Start Date: End Date:

Schedule an

Location:Category:

OK CancelClear

Title:

Event

 Confirms operation
 scheduleEvent.
(There is no operation
 named "ok".)

Clears input dialog.
(GUI only; there is
 no operation
 named "clear".)

 Cancels operation
 scheduleEvent
(There is no operation
 named "cancel".)

class Calendar {

. . .

void scheduleEvent(Event);

. . .

}

1. Asdiscussed in Lecture Notes 4, a major collection object has been identified -- theCalendar.

2. Eachof the four scheduling operations isadditive in that it takes a form of scheduled item and adds it to
the Calendar.

3. Anadditive operation takes a collection component as input In an object-oriented language like Java,

Hence, the functional form of the operation signature has theCalendar as both an input and output.

F. Refining the scheduling objects and operations.

1. Initial refinement of scheduled items using inheritance.

class ScheduledItem {
title; startOrDueDate; endDate; category; }

class Appointment extends ScheduledItem {...}

class Meeting extends ScheduledItem {...}

class Task extends ScheduledItem {...}

class Event extends ScheduledItem {...}

2. Secondrefinement pass, which adds component details, further refines inheritance, and refines operation
signatures.

/*
*

CSC307-f15-L4 Page 18

* This file defines objects and operations related to calendar scheduling.
* See Sections 2.2, 2.4, and 2.5 of the Milestone 6 requirements.
*
*/

import java.util.Collection;

/**
* The Calendar object is derived from an overall view of Sections 2.1 through
* 2.5 of the requirements. The functionality described in those sections
* makes it clear that a Calendar is the primarily data object of the Calendar
* Tool.
*
* The data component of a Calendar is a collection of scheduled items. The
* operations are those that schedule each of the four types of scheduled
* item. In the case of meetings, there are two operations involved -- one to
* compute a list of possible times, and another to confirm a specific selected
* meeting time.
*/

abstract class Calendar {

Collection<ScheduledItem> data;

/**
* ScheduleAppointment adds the given Appointment to this.data, if an
* appointment of the same time, duration, and title is not already
* scheduled.
*/
abstract void scheduleAppointment(Appointment appointment);

/**
* ScheduleMeeting uses the given MeetingRequest to determine possible
* times that the requested meeting might be held, within the existing set
* of scheduled items in the this.data. The PossibleMeetingTimes output is
* a list of zero or more possible times and dates that the meeting can be
* held.
*/
abstract PossibleMeetingTimes scheduleMeeting(

MeetingRequest meetingRequest);

/**
* ConfirmMeeting takes a MeetingRequest, list of PossibleMeetingTimes, and
* a Selected time from the list. It adds a meeting to this.data,
* comprised of the given request, scheduled at the selected time. Further
* details of output constraints are forthcoming.
*/
abstract void confirmMeeting(

MeetingRequest request,
PossibleMeetingTimes times,
int selectedTime);

/**
* ScheduleTask adds the given Task to this.data, if a task of the same
* time, duration, and title is not already scheduled.
*/
abstract void scheduleTask(Task task);

/**
* ScheduleEvent adds the given Event to this.data, if an event of the same
* time, duration, and title is not already scheduled.
*/
abstract void scheduleEvent(Event event);

CSC307-f15-L4 Page 19

}

/**
* A ScheduledItem is the generic definition for the types of items stored in a
* calendar. The Title component is a brief description of what the item is
* for. The startOrDueDate and endDate components indicate when the item is
* scheduled. The category component is used to organize items into related
* color-coded categories.
* <p>
* There are four extensions of ScheduledItem. They are Appointment, Meeting,
* Task, and Event. A ScheduledItem is derived from examining the common data
* fields of these four types of item, and the requirements narrative that
* describes these items.
* <p>
* The startOrDueDate is a multi-purpose component of ScheduledItem. Its
* purpose depends on whether an item is a Task and whether it is recurring
* (Events cannot recur). For non-recurring appointments and meetings,
* StartOrDueDate is used as the single date on which the item is scheduled.
* If the item is recurring, StartOrDueDate is the first date on which it
* occurs. For a non-recurring Task, StartOrDueDate is the single date the
* task is due. If the task is recurring, StartOrDueDate is the first date it
* is due.
* <p>
* In recurring appointments, meetings, and tasks, the endDate defines the last
* date on which the item will recur. In events, the end date defines the last
* date of a multi-day event. When the value of end date is empty, the
* startOrDueDate component is interpreted as the single date on which the item
* occurs.
*/

abstract class ScheduledItem {
String title;
Date startOrDueDate;
Date endDate;
Category category;

}

/**
* An Appointment adds a number of components to a generic ScheduledItem. The
* StartTime and Duration indicate when the appointment starts and how long it
* lasts. The Location is where it is held. The Security indicates who can
* see that the appointment is scheduled. AppointmentPriority is how important
* the appointment is. RemindInfo indicates if and how the user is reminded of
* the appointment. Details are free form text describing any specific
* appointment details.
* <p>
* This object is derived from Section 2.2 of the Milestone 6 requirements, in
* particular Figure 6.
*/

abstract class Appointment extends ScheduledItem {
Time startTime;
Duration duration;
RecurringInfo recurringInfo;
Location location;
Security security;
AppointmentPriority priority;
RemindInfo remind;
Text details;

}

/**
* A Meeting adds two components to an Appointment. The Attendees component
* reflects the fact that a meeting is scheduled for more than one person,

CSC307-f15-L4 Page 20

* whereas an appointment is for a single user. The MeetingMinutes component
* is a URL for the minutes of a meeting, once it has been held.
* <p>
* This object is derived from Section 2.4.1 of the Milestone 6 requirements, in
* particular Figure 46.
*/

abstract class Meeting extends Appointment {
Attendees attendees;
MeetingMinutes minutes;

}

/**
* A meeting request has all the components of a meeting plus three additional
* components to specify the latest dates and time at which the meeting can be
* scheduled. A meeting request is used to specify a range of possible meeting
* times, to allow scheduling alternatives to be considered. In the meeting
* request, the inherited fields for startDate, endDate, and time are used for
* the earliest dates and time at which the meeting can be held, i.e., for the
* beginning values of each range. The description of the ScheduleMeeting
* operation has further details on how meeting requests are handled.
* <p>
* This object is derived from Section 2.4.1 of the Milestone 6 requirements,
* in particular Figure 45.
*/

abstract class MeetingRequest extends Meeting {
Date latestStartDate;
Date latestEndDate;
Time latestStartTime;

}

/**
* The PossibleMeetingTimes object is a collection of (start time, start date)
* pairs at which a meeting could be held.
*/

abstract class PossibleMeetingTimes {
Collection<TimeAndDate> timesAndDates;

}

/**
* A TimeAndDate object is an element of a possible meeting time list.
*/

class TimeAndDate {
Time startTime;
Date startDate;

}

/**
* Like an Appointment, a Task adds a number of components to a generic
* ScheduledItem. A Task differs from an Appointment as follows: (1)
* Appointments have StartTime, Duration, and Location; Tasks do not. (2) For
* Appointments, the priority is either ’Must’ or ’Optional’; for Tasks,
* priority is a positive integer indicating the relative priority of a task
* compared to other tasks. (3) For appointments, reminders can be set to
* occur at hour or minute granularity; for tasks, the smallest granularity of
* reminder is a day. (4) Tasks have a completedFlag, and completionDate
* components; appointments do not.
* <p>
* The completedFlag is true if a Task has been completed, false if not. The
* system does not enforce any specific constraints on the setting of a task’s
* CompletedFlag. That is, the user may set or clear it at will. Hence the
* meaning of the completedFlag is up to user interpretation, particularly for
* recurring tasks.

CSC307-f15-L4 Page 21

* <p>
* The completionDate is the date on which as task is completed. The system
* does not enforce any specific constraints on the setting of a task’s
* completionDate (other than it being a legal Date value). As with the
* completedFlag, the meaning of the completionDate value is up to user
* interpretation, particularly for recurring tasks.
* <p>
* This object is derived from Section 2.4.2 of the Milestone 6 requirements,
* in particular Figure 47.
*/

abstract class Task extends ScheduledItem {
RecurringInfo recurringInfo;
Security security;
TaskPriority priority;
TaskRemindInfo remind;
Text details;
boolean completedFlag;
Date completionDate;

}

/**
* An Event is the simplest type of ScheduledItem. The only component it adds
* to is Location.
* <p>
* This object is derived from Section 2.4.3 of the Milestone 6 requirements,
* in particular Figure 48.
*/

abstract class Event extends ScheduledItem {
Location location;

}

/**
* An AppointmentPriority indicates whether an appointment is a must or if it
* is optional. This information is used to indicate the general importance of
* an appointment to the user. The operational use of AppointmentPriority is
* in the ScheduleMeeting operation, where the meeting scheduler can elect to
* consider optional appointments as allowable times for a meeting.
*/

enum AppointmentPriority {
Must,
Optional

}

/**
* A TaskPriority is a positive integer that defines the priority of one
* task relative to others. It’s defined as a separate class in case we want
* to enforce the value range restriction within the class constructor.
*/

abstract class TaskPriority {
int value;

}

/**
* For now, a Date is just as string. This definition will expand soon.
*/

abstract class Date {
String value;

/**
* Aux function used in scheduleEvent specs.
*/
abstract boolean isValid();

CSC307-f15-L4 Page 22

}

/**
* Duration is the time length of a scheduled item, in hours and minutes.
*/

abstract class Duration {
int Hours;
int Minutes;

}

/**
* As with Date, Time is for now just as string. This definition will expand
* soon.
*/

abstract class Time {
String value;

}

/**
* RecurringInfo has components to specify the nature of a recurring item. The
* isRecurring component is an on/off flag that indicates whether an item
* recurs. The interval is one of Weekly, Biweekly, Monthly, or Yearly. The
* IntervalDetails component defines the precise means to define recurrence for
* the different interval levels.
*/

abstract class RecurringInfo {
boolean isRecurring;
Interval interval;
IntervalDetails details;

}

/**
* Interval specifies the granularity at which recurring items are defined.
* The Weekly and Biweekly settings allow the user to specify recurrence on one
* or more days of the week. The Monthly setting allows the user to specify
* recurrence on one or more days in one or more weeks of each month. The
* Yearly setting allows the user to specify recurrence on one or more specific
* dates in the year.
*/

enum Interval {
Weekly, Biweekly, Monthly, Yearly

}

/**
* IntervalDetails are either weekly or monthly. This parent class is used
* generically for either kind of details.
*/

abstract class IntervalDetails {}

/**
* WeeklyDetails has an on/off setting for each day of the week on which
* an item recurs. These details are also used for the BiWeekly setting
* of the recurrence interval.
*/

abstract class WeeklyDetails extends IntervalDetails {
int onSun;
int onMon;
int onTue;
int onWed;
int onThu;
int onFri;
int onSat;

CSC307-f15-L4 Page 23

}

/**
* MonthlyDetails can be specified on a day-of-the-week basis or on specific
* date(s) basis. The two extending classes have the specific details for these
* two types of settings. This parent class is used generically for either
* kind of details.
*/

abstract class MonthlyDetails {}

/*
* MonthlyDayDetails contains a weekly details component for each possible week
* of a month. The First- through ThirdWeekDetails are distinct for all
* possible months. Depending on the configuration of a particular month in a
* particular year, there is potential conflict in specifying recurrence in the
* fourth, fifth, or last weeks. The conflicts are resolved as follows:
* <p>
* For months with 4 weeks only, the settings in FifthWeekDetails do not apply,
* and the settings in LastWeekDetails, if present, override any settings in
* FourthWeekDetails. For months with 5 weeks only, the settings in
* LastWeekDetails, if present, override any settings in FifthWeekDetails.
* (For months with 6 weeks, the LastWeekDetails component applies to the 6th
* week, and there are no conflicts.)
*/

abstract class MonthlyDayDetails extends MonthlyDetails {
WeeklyDetails firstWeekDetails;
WeeklyDetails secondWeekDetails;
WeeklyDetails thirdWeekDetails;
WeeklyDetails fourthWeekDetails;
WeeklyDetails fifthWeekDetails;
WeeklyDetails lastWeekDetails;

}

/**
* MonthlyDateDetails is a collection of zero or more specific dates in a month
* on which an item recurs.
*/

abstract class MonthlyDateDetails extends MonthlyDetails {
Collection<DateNumber> dates;

}

/**
* A DateNumber is a positive integer between 1 and 31. It’s defined as a
* separate class in case we want to enforce the value range restriction within
* the class constructor.
*/

abstract class DateNumber {
int value;

}

/**
* A Category has a name and StandardColor, which serve distinguish it from
* other categories. Colored-coded categories serve visual cues to the user
* when viewing lists of scheduled items in some form. Categories can also be
* used in filtered viewing.
*/

abstract class Category {
String name;
StandardColor color;

}

CSC307-f15-L4 Page 24

/**
* A StandardColor is one of a fixed set of possibilities, per the requirements
* scenarios.
*/

enum StandardColor {
Black, Brown, Red, Orange, Yellow, Green, Blue, Purple

}

/**
* For now a Location is a free-form string indicating in what physical
* location an item is scheduled. It may be refined to something like
* (building,room) pair.
*/

abstract class Location {
String value;

}

/**
* Security is one of four possible levels, each of which is described
* individually in the body of the enum. The selected level specifies the
* degree of visibility a scheduled item has to other users. For an
* appointment, task, or event, "other users" are defined as all users other
* than the user on whose calendar the scheduled item appears. For a meeting,
* "other users" are defined as all users not on the Attendee list of the
* meeting.
*/

enum Security {

/**
* Public security means other users can see the scheduled item and all the
* information about the item.
*/
Public,

/*
* PublicTitle security means other users can see the title of the
* scheduled item but none of the other information about the item.
*/
PublicTitle,

/**
* Confidential security means other users can only see that a user is
* unavailable for the time period of a scheduled item; no other
* information about the scheduled item is visible. Since confidential
* security applies to a specific time period, it is meaningful only for
* appointments and meetings, not for tasks or events; tasks and events do
* not have specific time components.
*/
Confidential,

/**
* Private security means other users see no information at all about a
* scheduled item, not even that the item is scheduled. Note that private
* security hides a scheduled item from the ScheduleMeeting operation,
* q.v., so that a meeting may be scheduled at the same time as a private
* appointment. It is up to the user to handle this situation by
* accepting or refusing the scheduled meeting. Given the nature of
* private security, it does not apply to meetings. I.e., only
* appointments can have private security.
*/
Private

}

CSC307-f15-L4 Page 25

/**
* RemindInfo has a flag that indicates if a scheduled item will have a
* reminder sent and defines one of three ways that the user is alerted when a
* scheduled event is to occur. OnScreen means the user is reminded with a
* pop-up alert on her computer screen. BeepOnly means the user is reminded
* with a simple audible tone on the computer. Email means the user is sent an
* electronic mail message reminder.
*/

abstract class RemindInfo {
boolean isReminded;
HowReminded howReminded;

}

enum HowReminded {
OnScreen,
BeepOnly,
Email

}

/**
* AppointmentRemindInfo extends RemindInfo by adding information for how
* soon before a scheduled item the reminder is to be sent. For appointments,
* the time units are minutes, hours, or days (cf. TaskRemindInfo).
*/

abstract class AppointmentRemindInfo extends RemindInfo {
double howSoonBefore;
AppointmentReminderUnits units;

}

/**
* TaskRemindInfo extends RemindInfo by adding information for how soon before
* a task the reminder is to be sent. For tasks, the time unit is days. A
* fractional day can be used for smaller granularity if desired.
*/

abstract class TaskRemindInfo extends RemindInfo {
double howSoonBefore;

}

/**
* Appointment reminders can come minutes, hours, or days before an
* appointment. The units for these can be fractional, for maximum
* flexibility.
*/

enum AppointmentReminderUnits {
MinutesBefore, HoursBefore, DaysBefore

}

/**
* Attendees is a collection of names of those who attend a meeting.
*/

abstract class Attendees {
Collection<String> names;

}

/**
* MeetingMinutes is current defined as the URL for the location of the minutes
* of a meeting. This definition may be refined in upcoming versions of the
* requirements.
*/

abstract class MeetingMinutes {
String url;

}

CSC307-f15-L4 Page 26

/**
* The details of the Text object are TBD. It may just turn out to be a
* plain string. Or it may a limited form of HTML, so we can include linkable
* URLs in it.
*/

abstract class Text {}

G. Observations.

1. Inheritanceis generally easier to derive bottom up, than top down.

2. Remember-- "what the user thinks" is the driving factor in determining model accuracy and correctness.

XXV. Another example -- viewing objects and operations from the Calendar Tool.

A. Basedon the Milestone 6 excerpt from Lecture Notes 3, the following shows some initial object derivation.

/*
*
* This file defines the objects and operations related to the different
* calendar views available to the user. See Section 2.3 of the Milestone 6
* requirements.
*
* The structural viewing levels are item, day week, month, and year. There
* are operations to go to the previous and next views at any level, as well as
* an operation to go to a specific date. Lists of scheduled items can be
* viewed in a variety of ways. A general view filter operation can be applied
* to both structural and list views. Operations are available to view other
* users’ calendars and to view a list of active viewing windows.
*
* NOTE: this is work in progress. A good deal of objects are yet to be
* defined.
*
*/

import java.util.Collection;

/**
* A DailyAgenda has a full day name and a list of time-slot descriptors. The
* FullDayName consists of the day name itself (e.g., Wednesday), the month,
* the date, and the year. Each item in the TimeSlotDescriptor list consists
* of a starting time (e.g., 8 AM) and a list of zero or more scheduled items.
*/

abstract class DailyAgenda {
FullDayName name;
Collection<TimeSlotDescriptor> times;

}

/**
* A FullDayName has the complete and unique designation of a calendar day.
*/

abstract class FullDayName {
DayName day;
MonthName month;
DateNumber date;
YearNumber year;

}

enum DayName {
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

}

enum MonthName {
January, February, March, April, May, June,

CSC307-f15-L4 Page 27

July, August, September, October, November, December
}

/**
* A time slot descriptor represents one slot (physically, a row) in a daily
* agenda. The TimeSlotName component is the start time for the slot. The
* list of BriefItemDescriptors contains the items that begin within the slot,
* where "within" is defined as the start time plus the current time increment.
* The overlaps component is a list of items with start times that overlap with
* an item in the BriefItemDescriptor list.
*/

abstract class TimeSlotDescriptor {
TimeSlotName slotName;
Collection<BriefItemDescriptor> itemDescriptors;
Overlaps overlaps;

}

/**
* A TimeSlotName consists of a numeric TimeValue and an AmOrPm indicator.
* TO DO: this definition should be reconciled as appropriate with the
* definition of Time in schedule.java.
*/

abstract class TimeSlotName {
int timeValue;
AMorPM amOrPm;

}

/**
* A brief item descriptor contains a subset of the information for a full
* scheduled item. The information is a Title, StartTime, Duration, and
* Category.
*/

abstract class BriefItemDescriptor {
String title;
Time startTime;
Duration duration;
Category category;

}

/**
* Overlaps contain zero or more BriefItemDescriptors that overlap with with
* the master item in a given time slot. An overlapping item is one with a
* start time within the same time slot as other items. The "master" item in a
* time slot is the item that is first in a sorted order based on start time,
* duration, and alphabetic title as the primary, secondary, and tertiary sort
* keys, respectively.
*/

abstract class Overlaps {
Collection<BriefItemDescriptor> descriptors;

}

abstract class DailyFormatOptions {
NormalTimeRangeOption normalTimeRangeOption;
TimeIncrementOption timeIncrementOption;
int incrementHeightOption;
ShowOrHide showHide24HoursOption;
ShowOrHide showHideExactTimeOption;
ShowOrHide showHideDashedLinesOption;
ShowOrHide showHideExtensionArrowsOption;
OnOrOff proportionalSpacingOnOffOption;
DisplayOverlapsOption displayOverlapsOption;
DefaultHeightAndWidthOption defaultHeightAndWidthOption;

CSC307-f15-L4 Page 28

}

abstract class NormalTimeRangeOption {Time startTime; Time endTime;}
abstract class TimeIncrementOption {int hours; int minutes;}
enum ShowOrHide {Show, Hide}
enum OnOrOff {On, Off}
enum DisplayOverlapsOption {Horizontal, Vertical}
abstract class DefaultHeightAndWidthOption {int height; int Width;}

abstract class Hour {
int value; // Must be legal hour value

}

abstract class Minute {
int value; // Must be legal minute value

}

enum AMorPM { AM, PM }

abstract class WeeklyAgendaTable {
FullWeekName name;
Collection<WeeklyTimeSlot> slots;

}

abstract class FullWeekName {
MonthName month;
DateNumberRange dateRange;
YearNumber year;

}

abstract class DateNumberRange {
DateNumber start;
DateNumber end;

}

abstract class WeeklyTimeSlot {
Collection<WeeklyItemDescription> items;

}

abstract class WeeklyItemDescription {
DayName day;
TimeRange range;
String truncatedTitle;

}

abstract class TimeRange {
Time start;
Time end;

}

abstract class WeeklyAgendaList {
FullWeekName name;
Collection<DailyItemList> items;

}

abstract class DailyItemList {
DayName name;
DateNumber date;
Collection<DailyItemDescription> items;

}

CSC307-f15-L4 Page 29

abstract class MonthlyAgenda {
FullMonthName name;
DayName firstDay;
NumberOfDaysPerMonth numberOfDays;
Collection<DailyItemDescription> items;

}

abstract class DailyItemDescription {
String value; // to be refined

}

abstract class FullMonthName {
MonthName month;
YearNumber year;

}

class NumberOfDaysPerMonth {
int value; // Must be between 28 and 31, inclusive

}

abstract class YearlyCalendar {
YearNumber year;
Collection<SmallMonthView> months;

}

abstract class SmallMonthView { /* ... */ }

/**
* A YearNumber is a positive integer between 0 and 9999. It’s defined as a
* separate class in case we want to enforce the value range restriction within
* the class constructor.
*/

abstract class YearNumber {
int value;

}

/*
* Model operations to place in the appropriate class:
*

DailyAgenda viewDay(Calendar);
WeeklyAgendaTable viewWeekTable(Calendar);
WeeklyAgendaList viewWeekList(Calendar);
MonthlyAgenda viewMonth(Calendar);
YearlyCalendar viewYear(Calendar);
*
*/

B. Observations.

1. Modelsof the agenda at different levels have all necessary info, some of which may be filtered out from
view based on option settings.

2. To get a complete model picture, all of the examples in the scenarios need to be examined.
a. E.g.,consider the components of objectTimeSlotDescriptor:

String timeSlotName;
Collection<briefItemDescriptor> items;
Collection<briefItemDescriptor> overlaps;

b. Figure 10 (in the Milestone 6 requirements excerpt) shows the first two components.
c. Figure13 clarifies that the third component (Overlaps) is necessary.

CSC307-f15-L4 Page 30

C. Questions:

1. ShouldtheDailyAgenda object have aDailyFormatOptions component?
a. Why or why not?
b. If not, what object does haveDailyFormatOptions as a component?

2. Isthere any reason to consider a parent class from which the different level agenda objects inherit?

XXVI. Summaryobservations about the analysis and specification phases of the software.

A. Thegoal of requirements modeling is to build anabstractmodel of the user-level requirements.

1. Abstractmeans that certain details of the user-level description are left out.

2. Whatis obviously left out is much of the English verbiage that is used to describe the system clearly in
end-user terms.

3. Theother very important aspect of the abstraction is leaving out allconcrete UI details, such as
a. Buttonssuch asOK, Clear, and Cancel that are strictly GUI conveniences, not fundamental to the

underlying model.
b. Purely decorative aspects of the interface that make it "easy on the user eyes" but that do not represent

fundamental properties of model objects or operations.

B. Thereis very beneficial feedback between the requirements analysis and specification phases of the software
development process.

1. Suchfeedback is a natural part of development since the user-level requirements, written in English prose
and pictures, describe precisely the same system as the formal model, written in the formal specification
language and graphical notations.
a. TheEnglish requirements are understandable to human users and domain experts.
b. The requirements model is understandable to the software analysts.
c. It is very important that these two different representations are consistent with one another.

2. Thisconsistency is achieved by deriving the formal model from the user-level requirements, refining the
model, and then transferring the refinements back to the user-level English and pictures.

3. The"feedback loop" between English requirements and SpecL model specification continues until the
user says the requirements are complete and the specification passes cleanly through the SpecL checker.

XXVII. Modeling the concrete GUI?

A. Are things like menus and dialog windows objects?

1. TheCSC 307 answer to these questions is "no".

2. The reason is that we are definingabstract model specifications in which only data that are directly
manipulatable by the user are modeled.

3. Thetool’s concrete interface is not modeled as an object.

B. Thismodeling decision relates to the nature of the tool UIs we are specifying in 307, namelydirect manipu-
lation user interfaces.

1. Theterm "direct-manipulation" describes the style of interface that gives the human user direct control
over the functions performed by a software system.

2. ModernWIMP interfaces (Windows, Icons, Menus, Pointing) are almost always direct manipulation in
style.

3. Directmanipulation UIs are in contrast to older style UIs in which the system had more control over when
commands could be performed by the user.

4. With a direct manipulation interface, we view the user as being in control of the operations that are per-
formed, not the system.
a. Theend user may invoke any command directly via menus, with no explicit prompting from the sys-

tem.
b. The user may generally cancel commands at will.
c. Conceptually, the system is an invisible part of what is going on.

5. Whenmodeling a system with a direct manipulation UI, we can abstract out objects that the user does not

CSC307-f15-L4 Page 31

change.

C. TheUI structure of the tool does provide organizational guidance.

1. In particular, the hierarchical structure of the UI provides a good basis for the modular organization of
objects and operations.

2. Hence,we definemodulesbased on how the tool UI is organized.

D. Someobservations about concrete UI modeling.

1. It is notwrongto model a GUI itself as an object.

2. Inour case, we’re following a convention to model only those objects that the user can change.

3. Hencefor us, it is notnecessaryto model the unchangeable parts of the tool as objects.

4. Thereare cases where modeling a tool’s UI is necessary.
a. For example, some systems allow the user to do things like change the format of a toolbar, or define

entirely new toolbars.
b. In our 307 projects, we’re not generally considering such tool features; if a 307 project does GUI

building features, they need not be modeled formally.

XXVIII. Modeling the tool itself.

A. Is the Calendar Tool itself an object?, an operation?, a module?

B. Thereare a variety of ways to model the overall system itself.

C. Oneapproach is not to model it at all.

1. In this approach, we completely abstract out the tool structure from the model.

2. Thishighly abstract view of the tool is consistent with the above convention to abstract out objects that
the user does not change.

3. I.e.,if the user cannot change the tool itself, it need not be modeled.

D. If we do choose to model the overall tool, it can be modeled as either an object or an operation, depending on
the kind of processing that it performs.

1. Thereare two high-level models for an information processing tool such as we are building in 307 --
transform-orientedandtransaction-oriented.

2. In a transform-oriented system, processing is viewed as transforming a single large piece of data from one
form into another, using a single large operation.
a. Ina transform-oriented system, the inputs and outputs are typically large pieces of data that are widely

different in structure.
b. The transform operation takes the input, with some additional operational parameters, and transforms

it into the output.
c. A report-generation system is a good example of transform-oriented; it takes as inputs like a large

database plus some format parameters, and produces a large report.
d. A transform-oriented systems is best modeled at the top level as an operation.

3. A transaction-oriented system performs its work with a larger number of smaller operations, each one per-
forming some form of incremental action.
a. In transaction system, the difference between operation inputs and outputs is a typically small, incre-

mental change.
b. A database management system is an example of a transaction-oriented system, where operations to

add, delete, and change database records make relatively small changes to the overall database.
c. A transaction-oriented system is best modeled at the top level as an object.

E. In practice, most information processing systems are a hybrid of the two system types, comprised of both
transformational and transactional components.

1. At the top-level, the CSC 307 projects are transaction-oriented.

2. Theremay be major operations within the systems that are transform-oriented.

F. As an example of top-level tool modeling, here is the outline for the Calendar Tool top-level module.

CSC307-f15-L4 Page 32

/****
*
* Class CalendarTool defines the top-level tool object that contains the
* currently active calendar db, system state information, and an abstract file
* space.
*
*/

class CalendarTool {
CalendarDB calendarDB;
FileSpace fileSpace;
SystemState systemState;

}

class CalendarDB { /* ... */ }
class FileSpace { /* ... */ }
class SystemState { /* ... */ }

G. We’ll discuss top-level tool modeling further in upcoming lectures.

XXIX. Compiling an abstract Java model.

A. Usethe standardjavac compiler to check a model.

B. Theexamples shown above are unconventional in that they hav emultiple top-level classes in one file.

1. Thejavac compiler is OK with this.

2. Aswe refine the model, we will move to the typical Java convention of one class per.java file.

C. Whenwe use Java’s Collection interface, we must import at the top of the file with

import java.util.Collection

This is the only import you’ll need at the current abstract level of modeling.

D. A common error in early model development is to leave objects undefined.

1. Theconventions in the 307 examples is to use this style for yet-to-be-defined objects

class Whatever { /* ... */ }

2. Thecomment with ellipses is a place holder indicating that there’s more work to do.

3. Includingthe ellipses comment is a good practice, because the model will compile fine without them, but
an undefined definition may be easier to overlook without some indication of its unfinished state.

E. You can use the standardjavadoc documentation generator to produce a browsable version of the model.

1. It’s a good idea to putjavadoc output is a separate sub-directory of the model, so all of the generated
files do not crowd the specification directory.

2. Theconvention used for the 307 examples is to have ajavadoc sub-directory under the projectspec-
ification directory.

XXX. Recapof testing in the software engineering process, and where requirements testing fits in.

A. In what might be called a traditional view of the software process, testing is seen as the last step, following
implementation.

1. In this view, the program code itself is the only artifact that is subject to formal testing.

2. Whilecode testing is critically important for quality software, the code is not the only artifact that should
be tested.

3. In fact, all of the other major software process artifacts can be tested formally -- the requirements, the
specification, and the design.

B. Figure3 compares the position of testing as the final step of the process versus a pervasive step.

1. As discussed in Lecture Notes Week 1, pervasive steps run continuously throughout the development
process, or at regularly-scheduled intervals.

CSC307-f15-L4 Page 33

Design

Prototype

Implement

Analyze

Specify

Test

Configure

Document

Manage

Ordered Process Steps

Pervasive Process Steps

Pervasive steps
are performed
continuously or
at regularly-
scheduled times
throughout the
ordered steps.

Design

Prototype

Implement

Analyze

Specify

Test

b. Process with testing as a pervasive step.

a. Traditional process,
 with testing at the end.

Figure 3: Tw o views of testing in the software process.

2. Inaddition to testing, the other pervasive steps deal with management, configuration, and documentation.

C. Thereare three types of testing that are performed during different stages of the software process.
1. Inspection testingentails systematic human inspection of all levels of software artifact, from requirements

through implementation.
2. Functional testingis performed by programmers on the executable code as it is developed.
3. Acceptance testingis performed by end users on the released product.

XXXI. Inspectiontesting the requirements.

A. Testing with walkthroughs and reviews.

1. Thepurpose is the same as walkthroughs and reviews conducted during the development of just about any
kind of product.

2. Namely, we want to assure that what is being developed is on track and meets customer needs.

3. Walkthroughs and reviews are an important means to "debug" the requirements.

4. Publicreviews can be held at specific milestones during the course of requirements gathering and analy-
sis.

5. Limitedmembers of the technical staff hold detailed walkthroughs to refine requirements specifications.

6. Suchwalkthroughs are particularly important in the process of requirements analysis since such a wide
range of people are potentially involved.

7. In307, intra-group walkthroughs are conducted during our weekly meetings.

CSC307-f15-L4 Page 34

8. In addition, each group will gives two oral reviews to the rest of the class during in the quarter; first is in
week 5 as scheduled above.

B. Formal inspection testing.

1. Startingin week 4, the functional requirements will be formally inspected by a duly appointedinspection
test engineer.

2. Duringweeks 4 through 11, each group member will have a one-week assignment as the official inspec-
tion tester (see milestone 3 writeup for exact schedule, since it varies based on team size).

3. Detailsare in the handout entitled "Standard Operating Procedures, Volume 2: Requirements Testing"

C. Modelbuilding as a means of concept testing.

1. A common practice among engineers is to build a model of a proposed engineered artifact, to see if the
high-level ideas about the artifact are sound.

2. For CSC 307, model building is done during the next ordered step of the software process after require-
ments analysis --specification.

