CSC307-f15-L4 Bge 1

CSC 307 Lectue Notes Week 4
Introduction to Requirements Modeling
Requirements Inspection Testing

I. Thisweeks material:
A. Writeupfor milestones 3 and 4
B. Milestone4 example
C. Jaa & an Astract Modeling Language

D. SOPVolume 2: Requirements Testing

II. Lab quiz Friday week 4, October 16th.
A. Covers material on SVN Basics handout.
B. Questionwvill be in terms of command-line interface to SVN.
C. Therewill be no questions on SVN clients.

D. It should less than 20 minutes to complete.

lll. The next major phase of the software process -- requirements modeling and formal specification.

A. Thegoal is to formalize the user-oriented functional requirements, so that:
1. therequirements are complete and consistent;
2. therequirements are clear and unambiguous for the system design and implementation team.

B. Whilefully formal modeling of softwre is not (yet) practiced as widely as for other forms of engineered arti-
facts, the utility of formal software models is substantial. Semi-formal modelirajrisng wider acceptance
in the SE world.

IV. When to model?

A. In a nore traditional process, modeling is used a step in the suczesfiemnt of softwre requirements
into a concrete design and then implementation.

B. Ina nore agile / extreme programming processing, modeling is done as needed during a refactoring step.

C. Figurel is a omparatve fcture of these tew gpproaches.

V. Languages to formally specify requirements.

A. Candidatesnclude:
1. "Firmedup" English and pictures -- understandable but imprecise.

2. Semi-formalrequirements specification languages -- helpful for high-lemodeling, but not precise
enough to ensure a complete and consistent specification.

3. Graphicahotations -- helpful to clarify some aspects of a formal model, but not generally adequate for a
complete specification.

4. Aprogramming language or the abstracted version of a programming language.

5. Fully formal textual notations, including mathematics -- these verd imprecision hut are ‘ery
demanding to use and understand.

B. Alas,"demanding to use and understand" is an attribute oy ficamal engineering notations.
1. Buildingand analyzing formal models is an important part of what engineers do to earn their keep.

2. Without a formal model, we run thery substantial risk of not fully understanding the system we want to
build, and as a result building a faulty system.

CSC307-f15-L4 Bge 2

Traditional Approach:

Analyze

Y

Specify > Design = Implement

Agile Approach:

Analyze = |mplement

Refactor when necessary,
Refactor which entails what's done in
Specciry and Design

Figure I Where modeling fits in the process.

Why a formal language?

1. Remee the imprecision and ambiguity of normal English prose.

2. Avoid misunderstanding among analysts and potential useosisistency

3. Prwvide a means to identify when the requirements analysis process is finisbatpleteness.
4.

Praside some quantifiable measures by which to judge if aaletl system actually meets the require-
ments --verifiability.

VI. Justhow formal do we get?

A.

In 307, we will go all the way down to formal mathematical logic.

B. We will do so in a sequence of steps from informal, to semi-formal, to fully formal.
C.
D

. Inthe real world, different participants in the analysis process wi#t derent technical backgrounds.

Eachstep requires more work and more specialized knowledge.

1. Thereforenot all analysts will be wolved with the most formal aspects of the document.

2. ltis ultimately the job of the systems analyst teetadput from all other analysts and produce a fully for
mal result.

Formality is particularly important in a growing number of "safety-critical" applications, such as avionics and
medical systems, among others.

1. Generatule -- the more important it is to @ that a computer system works propetiie more formally
must it be specified.

2. Formal specification can be used in other areas that do not striglydrsafety, such as erifiably secure
information processing system for financial transactions.

VII. Furtherdetails on formalizing the requirements.

A.
B.

Thefirst step in formalizing user-oriented requirements is to buidjairements model

Themodel is a more abstract representation of the requirements, written in a more formal language than Eng-
lish prose and pictures.

Theobjective in building the model is to depict the structure and operational behavior of a proposed system
accurately and precisely.

Elementof the requirements model are the following:
1. Thedefinition ofobjectsupon which the system operates.

CSC307-f15-L4 Bge 3

O O~ WN

. Thedefinition ofoperationghat the system performs.

. Thedefinition of object and operatiaitributes

. Thedefinition ofrelationshipsbetween objects and operations.

. Statements of faetbout objects and operations, which statements can be validated to be true or false.
. Explanatory remarkshat aid in human understanding of the model.

E. Theformal language we will use in 307 isvdawith modifications to mak it uitable as an abstract specifi-
cation language.

F. An overview is presented in the handout entitledvdas an Abstract Modeling Language".

G. Hereis a summary of using Ja & ébstract modeling language:

1.

o

Objectsare modeled as fully abstracvdadasses or enums; no concrete classes, no interfaces.

2. Operationsire modeled as method signatures; no method implementations.
3.
4. Objectrelationships are

Objectattributes are modeled asrdannotations.

a. has-g which is modeled as data fields
b. is-a, which is modeled as inheritance usext ends

Statementef fact are modeled with JML assertions (more on this in coming weeks)

. Thefollowing Java features areot usedn an abstract model:

&ecutable code

information hiding withpubl i c, pri vat e, or pr ot ect ed
exceptions

. librarydata structures exce@bl | ecti on

. primitive types except nt , doubl e, andbool ean

f. ary other Jaa feature not explicitly mentioned alm®

PoooTp

VIII. Heuristicsfor deriving a requirements model from user-oriented requirements scenarios.

A. In our scenario style of requirements analysis, the requirements modeVésl denin the pictures of the user
interface and the accompanying textual nareati

B. Thefollowing heuristics can be used to derin initial set of objects and operations from a graphical user
interface:

1.
2.
3.

Functionbuttons and menu items generally correspond to operations.
Data-entryscreens and output screens generally correspond to objects.

More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for therathed operation.

. Outputreporting screens that appear in response to confirming an input dialog (E.g., with arutoK)' b

generally correspond to the output object(s) for the confirmed operation.
Interface elements that alloentry of a single numbestring, or boolean value correspond to prin@ti
types.

. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-

dows and boxes, with primi# dements at the lowestid of nesting.

C. Specificdetails of object and operation attributes arevédrirom the scenario narraé that accompanies the
interface pictures.

IX. Someexamples from the Calendar Tool.

A. To illustrate the devition of a requirements model, Mleapply the preceding basic heuristics to Calendar
Tool example.

B. Completedetails of the initial modeling for the Calendar Tool are in the specification directory of Milestone
4 example.

CSC307-f15-L4 Bge 4

X. Deriving scheduling operations.
A. Hereis the top-lgel Schedul e command menu from the Calendar Tool:

Appoi nt nent
Meeting ...
Task ...
Event

B. Applyingthe first heuristic (buttons and menus indicate operations), we can identify tarfglfour oper
ations from théschedul e menu:

voi d schedul eAppoi nt nent () ;
voi d schedul eMeeting();
voi d schedul eTask();
voi d schedul eEvent () ;
C. We havenot yet identified the following aspects of these operations:
1. Whatclass thg go in.
2. Whatparameter(s) thetake.
3. Whatreturn value, if ay they produce.

D. Linguistically operation names shouldnadys be verbs or verb phrases.

1. Dependingn hav the user commands are structured, we can use different combinations of interface ele-
ment names to dee meaningful operation names.

2. Inthis case, which is reasonably typical, veetoncatenated a menu name with the name of each menu
item to denve the operation names.

3. Animportant point is to ha traceability between the terminology used in the user aterénd the cer
responding model.

a. Infact, the dewation of model names can help point out flaws or inconsistencies in the interface sce-
narios.

b. If it is difficult to derve a $mple and meaningful name for an operation from the interface, this is a
sign that the interface naming might well be imjgch

c. Thisis an instance of a recurring principle in requirements analysis and modeling -- "forwsfollo
function”.

d. Thatis, a well-defined interface scenario leads to a well-defined model, and vice versa.

Xl. Deriving scheduling objects.

A. Fromthe second heuristic (data screens are objects), we can identify as objects each of the data-entry screens
that appear in response to the user selecting one 8ttiheedul e menu operations.

B. To gart with a simple example first, let us consider thevetoh of theEvent object, from the follwing
interface picture:

CSC307-f15-L4 Bge 5

Schedul e an Event O A
Titl e:| | |
Start Dat e:| | End Dat e:| | C%Egg?(éctesn(t)f
Cat egor y:| v] Location:| |
))

/ \

Confirms Cancels
scheduleEvent scheduleEvent
operation operation

C. Applyingheuristics 5 and 6, we can derithe following object definitions:

cl ass Event {
String title;
Date startDate
Dat e endDat e
Cat egory cat egory
String | ocation;

}
class Date { /* ... */ }

class Category { /* ... */ }

D. Inthese definitions, wee done the following initial data analysis:
1. Thetitle and location fields are primig gring type.
2. Theother data fields are defined as object types thatewamed, but not yet fully defined.

XIl. Objectderivation details.

A. As discussed in the "Ja & Modeling Language" handout there are onlyva Java forms used to model
data

B. Table 1 summarizes these, along with the common interface forms.
C. Theseaare constructs you should be familiar with inala
D. Thetable notes common interface forms for each of the basic object types.

Xlll. Refining object definitions.
A. An examination of the narraté for the @ent dialog, indicates that thE t | e andLocat i on components
of an eent are free-form strings, hence their definitiorsasi ng types.
B. Javas St ri ng type is used to model aafree-form text string that the user may type.
C. InMilestone 4, the details of date formats has not yet been worked out.

1. Given this, we'll leave the definitions of th®at e class to be resolved later.
2. lL.e.,we’ll leave the definitions as
class Date { /* ... */ }

D. Theuser interface displays tl@&at egor y as a list of selections.
1. Thismight lead us to consider modeling tb&t egor y component as a list of form
class Category { String* list; }

CSC307-f15-L4 Bge 6

Java Form Meaning Common Interface Form

int numeric integer string editor for numbers; numeric slider bar or dial

double numeric real number samas integer

String free-form string value stringeditor or combo box

boolean true/false value string editor for true/false value; bifon

class data fields components of the class box containing other types

enum literals one of a set of possibilities radio buttons; fixed-length listing of selections

Col l ection zero or more components of variable-length listing of data values or selections
the same type

Met hod the type of an operation push button or menu item

Table 1: Jasa Modeling Forms.

2. However, a nore careful analysis of the requirementsvehithat for a gien event, theCat egory com-
ponent is only one of a set of possibilities.

3. HencetheCat egor y component would not be a list, but rather just a primi8ring.

4. Furtheranalysis of the requirements shows that a category is not just a plain string, since gmek cate
has an explicitly selected colas fiown in the add-category dialog:

Add Cat egory L] H]

Cat egory Nama:| |

Col or:| Bl ack v

(X)(Cancel)

5. Hencethe most accurate definition Gat egory is
class Category {
String nane;
Col or col or;

}

6. Asubsequent screen shot in the scenarios shows thadltlee component is one of a fixed set of selec-
tions:

CSC307-f15-L4 Bge 7

E.

Add Cat egory L] H]

Cat egory Name:| per sonal |

Col or:| Bl ack v

Bl ack
Br own

(oK Red wcel)

G een
Bl ue

7. Accordingly we an modelCol or as follows:

enum Col or {
Bl ack, Brown, Red, Orange, Yellow or Geen, Blue, Purple;

}

Thepreceding analysis for deriving objects is typical in requirements modeling.
1. Firstwe derve initial object definitions from the Ul pictures.
2. Thenwe refine the definitions based on the scenario naerati

3. We mntinue to refine until all objects are defined in terms of puesitior weve decided to defer com-
plete definition of model data until more requirementetiaen completed.

XIV. Refining operation definitions.

A.
B.
C.

Thekey step in refining an operation is determining what object class it belongs in.
Thiswill clarify what object is operated on.

Inthe case of the four scheduling operations, an analysis of the requirements leads us to understand that these
operations work on @alendarobject.

. Hencewe hare the definition

cl ass Cal endar {
voi d schedul eAppoi nt nent () ;
voi d schedul eMeeting();
voi d schedul eTask();
voi d schedul eEvent () ;

}

Usingheuristic 3 (data-entry dialogs are input objects), we refine the four scheduling operations as follows:
cl ass Cal endar {
voi d schedul eAppoi nt ment (Appoi nt nent) ;
voi d schedul eMeeti ng(Meeti ng);
voi d schedul eTask(Task);
voi d schedul eEvent (Event);

}

Snce we vant all of our models to compile with thevdammpiler, we reed to clarify that the preceding defi-
nition is intended to be an abstract model.

1. Abstractin this context means, among other things, that wesleat all operational code from the model.

2. Henceto compile in Jea we nust declare all of the methods to &est r act , as well as the class that
contains these methods.

. So,here is the compilable definition of the modeled Calendar object, along with its operations:

CSC307-f15-L4 Bge 8

abstract class Cal endar ({
abstract voi d schedul eAppoi nt ment (Appoi nt ment) ;
abstract void schedul eMeeti ng(Meeting);
abstract void schedul eTask(Task);
abstract void schedul eEvent (Event);

XV. Identifying collection objects.

A

B.
C.

XVI.
A

B.

C.

. A key aspect of data modeling is the identificatiorcoflectionobjects.
Abstractly a wllection contains zero or more objects of a particular type.

Interms of requirements scenarios, collections can be identified by language that describes objects with mul-
tiple entries, and operations that add entries to the collection.

. For example, in Section 2.2 of the CalendaolTscenarios, the following kind of language helps identify the
calendar as a collection of appointments:

"After scheduling and confirming an appointment, the appointment detangered in an online
working copy of the user'calendar.”

With Java & a nodeling language, we will use ti@®l | ect i on interface to model abstract collections, as
in this definition ofCal endar :

abstract class Cal endar {
abstract voi d schedul eAppoi nt nent (Appoi nt ment) ;
abstract voi d schedul eMeeti ng(Meeting);
abstract voi d schedul eTask(Task);
abstract voi d schedul eEvent (Event);

Col | ecti on<Appoi nt ment > dat a;

}

Representing a Calendar as a collectioAmboi nt ment s is in fact an eer-simplification of aCal endar ,
since calendars can contain meetings, tasksamtise as well as appointments.

. We'll address this issue soon, by defining a parent class for these four types of scheduled items, and repre-
sentingCal endar data thusly:
Col | ecti on<Schedul edl t en> dat a;

. Anotherway to identify collections in requirements scenarios is by the pattern of operations that are used on
collections.

1. Theoperations aradditive destructivemodifying and selective
2. Inmore common terms, these are operations to add, delete, edit, and find items in a collection.
3. Inupcoming notes, we’'ll consider this to be a formal specification pattern.

Deriving a monthly viev object.

. A significant number of objects and operations will ultimately bevelrirom the calenda¥i ew com-

mands.

As an initial example, consider in Figure 2 the monthlywikat is displayed in response to the user select-
ing theMont h item in theVi ewmenu.

Fromthis we can devie te following objects:
import java.util.Collection;

/**

* A Mont hl yAgenda contains a small daily view for each day of the nonth,
* organized in the fashion typical in paper cal endars.

>/

cl ass Mont hl yAgenda {

CSC307-f15-L4

Cal endar Tool O
File Edi t Schedul e View Admin Opti ons Hel p
April 2015 o/
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
28 27 29 30
Figure 2 Monthly calendar vie.
Ful | Mont hNanme nane;
DayOf TheWeek fir st Day;
i nt nunber O Days;
Col | ecti on<Snal | DayVi ew> itens;
}
cl ass Ful | Mont hNanme {
String nonth;
int year;
}
enum DayCf Theweek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }
/**
* A Smal | DayVi ew has the nunber of the date and a list of zero or nore short

* jtem descri ptions.
>/
cl ass Smal | DayVi ew {
i nt Dat eNunber ;
Col | ecti on<Bri efltenDescription> itens;

}

class BriefltenDescription {
String title;

CSC307-f15-L4 Bge 10

Tinme startTine;
Dur ati on duration;
Cat egory cat egory;

}

class Time { /* ... *| }
class Duration { /* ... */ }
class Category { /* ... */ }

XVII. Someobservations on requirements modeling.
A. TheCalendar Tool will provide some interesting examples where a model can\mg deanumber of dif-
ferent ways.
1. For example, should the Calendar itself be modeled as a collection of scheduled items or as a collection of
years?
2. Shoulddates be modeled as simple strings or a composite objects?
3. Whichof these is the "correct" or "most accurate" way to model?

B. Thegeneral answer to such questions is that weesti model objects and operatioas perceived by the
end user

1. Oursingle criterion for model correctness and acouiadiased on ho well we represent objects and
operations in terms of what the user thinks.

2. Whatwe definitely do not want to do is model things in terms of efficient computer data structures.
3. We will discuss these requirements modeling ideas more in upcoming lectures.

XVIIl. Administrative matters.

A. Modelingfor Milestone 4.

1. Seehe Milestone 4 example for roughlyvaanuch you should do.
a. Eachteam member must commit at least fdava model classes, ganized into packages.
b. The model classes can be in one or mgrava files.
c. You'll need some team coordination for the major shared objects and the packaging structure.

2. Createackage sub-directories in the projepeci f i cat i on directory.
3. Put. j ava files to the appropriate package directories.
4. The files must compile withavac.

B. Remembethat this is the week of requirements inspection testing.
1. Review the procedure in the SOP \ol. 2 handout, which we’ll g@ m lecture on Monday.

2. Inparticular be sure to decide in your team at what time on Friday yen dhursday) pre-testing check-
in is due in order for the inspection tester to get things done so the librarian can release them by 11PM.

XIX. Guidelinesfor modularizing a software model.
A. To modularizemeans to subdivide parts into independent units.

B. Heres an ecerpt from the regular English dictionary definition farodule"that applies gry well to soft-
ware modeling:

"A module is an independent unit that can be used to constructeacomplec gructure”.

C. Inthe specific case of a model defined ivaJaodules are defined asickages.

D. A good heuristic for defining model packages is to use tlye-girain structure defined in the scdte
requirements
1. For example, each menu in a menu-based Ul can be considered a module.
2. Similarly the top-leel Ul toolbars can be considered to be modules.

CSC307-f15-L4 Bge 11

E. Given these guidelines, the packaging structure of the Calendar Tool model can be defined as follows:

package file;
package edit;
package schedul e;
package view,
package adnin;
package options;

F. Within each package are the classes that support the packaggionality.

1.

For 307 Milestone 4>ample, the primary focus is on teehedul e andvi ew packages, since these
contain the most important and interesting features of the Calendar Tool.

Thepackaging structure is easy towie j avadoc form in the Milestone 4 example.

. Eachpackage is documented with a file nampdckage. ht ml " in each package directory.

a. Thefile describes what the package is for.
b. See the Milestone 4 example for what these files look like.

XX. Summaryof core steps of the model detion and refinement process.

A. Derive initial model from Ul screens using these heuristics:

1
2.
3.

7.

Functionbuttons and menu items generally correspond to operations.
Data-entryscreens and output screens generally correspond to objects.

More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for thertked operation.

. Outputreporting screens that appear in response to confirming an input dialog (e.g., with anutto)' b

generally correspond to the output object(s) for the confirmed operation.
Interface elements with a single numtering, or boolean value corresponding to priwatibjects.

. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-

dows and boxes, with primit dements at the lowestid of nesting.
Wholepull-down menus and large editing dialogs generally correspond to modules.

B. Refine object model using requirements narratie.

1.
2.
3.

Definecomponent details down to prinvié-level objects.
Addinheritance based on references to "generic" objects mentioned invearrati
Addobject descriptions that synopsize navatietails.

C. Refine operation model using requirements narratie and thoughtful functional analysis.

1.
2.
3.

Fully specify operation inputs and outputs.
Identifydefault inputs that the user does not need to enter explicitly in the interface.
Identify collection objects and add them to operation inputs/outputs, to ensure functional behavior.

XXI. Specificmodeling guidelines.

A. Objectand operation naming.

1.

Derve dject and operation names directly from requirements pictures andvearrati

2. Thenoun or noun phrase in the banner of a dialog is the name of the objeed €@ the dialog.
3.
4. Theverb or verb phrase on a menu item or functiattdn is the name of the operation gedi from the

Thelabels of dialog components are the names of object components.

menu item or button.

Spacesand other alphanumeric punctuation must be consistentlweeho form lega object name iden-
tifiers; otherwise, retain full spelling and capitalization in d&rinames, except for the \lmnvention
to start method and data field names with a lower case letter.

CSC307-f15-L4

B. Inheritance.

Bge 12

1. Derve inheritance relations based on explicit haveain the requirementsThe objectie is to cefine
inheritance in the model if it is perceptible in some form to the user.

2. Inheritanceshould not be used in a requirements model for the purposes of representdtmeatyefs
it is often used in programs.

3. Theprime directve d modeling is "If the user perosss it, model it". Otherwise, lae it out.

4. Inkeeping with the prime direat®, inheritance is generally best ded "bottom up”, i.e.,
a. Defineall objects first without inheritance.
b. Examine object definitions to see if there are common components.
c. Defineparent object classes based on common components.
d. Confirmthe use of inheritance in the model by finding justification for it in the requirementsvearrati
(or adding such justification if the inheritance was disced while modeling and is d@imately
deemed "user perceptible").

XXII. Details of object denation.

A. Wheninterface screens are well laid out and clearly defined, objeutiileni is generally straight forward.

B. Thefollowing table summarizes the deiion of model types from common interface forms.

Common Ul Form

Model Object Type

One-line Ext box

Multi-line Text Area

Fixed-length
selection list

Variable-length list

Check-box

Radio-button(s)

Dialog window

Typically a string. If the requirements narvatidefines specific constraints on what can
be entered in thetebox, then the model structure should reflect these constr&rgs.

if the narratve limits what can be typed to an integer value, then the text box is modeled
as an intger. If the narratte defines what can be typed as @ipart value of some form,
then the model is a two-tuple (e.g., Time and Date).

A string, list of strings, ore more complebject. Asingle string model is appropriate if
the entire text area is entered as one large blockbfhte system does not decompose in
ary way. A list of strings is the appropriate model if the line-by-line contents of ite te
area are handled separatddyt each line is not further decomposed.more compl&
object model is necessary if the system perfornysdetailed parsing of the text to ana-
lyze its contents.

An enumobject, with each element being one of the items in the selection list.

A Collection object, with elements corresponding to the type of the selections.

A boolean object. When check bescare grouped together in the Ul, model the group as
a tuple of boolean objects.

A boolean object or enumA single on/of radio button is modeled as a boolean, e.g., a
single radio button labeled "Yes/No" or "OnfOf When radio buttons are grouped to-
gether as a set of alternass, the model is an enum with one component for each alterna-
tive. For example, with a group of radio buttons label@drge"”, with button labels

"Hi gh", "Medi uni, and 'Low", the model is

enum {H gh, Medium Low}

A class of objects that model the dialog components.

CSC307-f15-L4 Bge 13

Tabbing or A class with data fields for each tab panel, with each component class defining one of the
Multi-Panel dialog tabs or panels.

Specialized "widgets"| Graphical interfaces may contain an assortment of pvieiivel forms, such as onfof
toggles, numeric slider bars, and small icons representing sialgiesv Agood rule for

the use of such forms is if the corresponding model object is not readikglderirom

the widget, then the widget is probably not that easy to understand for the user and should
be replaced with a simpler form.

XXIIl. Details of operation deviation.

A. The"..." suffix in a menu item generally leads tmtforms of dialog:

1. Adata input dialog, with a@K button (or a button synonymous with OK).

a. Inthis case, there is only one operation to model.

b. Its name is devid from the menu item.

c. TheOK button itself is not a separate operation.

d. Ratherthere is three-phase GUI sequence twolie a $ngle underlying model operation:
i. Selectit from the menu (or function button).
ii. Fill inthe required values in the input dialog.
iii. Confirmthe operation

2. Thealternatve o a sngle-operation input dialog leading from "..." is a larger multi-operation dialog of
some form.
a. Inthis case, there are multiple operations to model, one each fanttbashor sub-menus in the dia-
log.

b. The menu item itself does not derian operation name, but rather a module name, in which the mul-
tiple dialog operations are defined.

B. No"..." in a menu item means that the input(s) required for the operation are collecteaudtsvelefes from
the surrounding environment.

XXIV. Object and operation degtion examples from the Calendar Tool.
A. Event (introduced in Notes Week 4).

Schedul e al EvenD O E1

Title) |

Start Date:| | |
v] Qocation)| |

o)\ Coear)\ (cancel)

N\
{title ; startDate; ; ;}

1. This annotated screen illustrates clearly the traceability betweereuskerequirements screens and
underlying abstract model.

2. Thisis an admittedly simplexample, havever such traceability can be achil throughout the require-
ments desiation process with some diligence.

CSC307-f15-L4 Bge 14

B. Appointment

Schedul e an Appoi nt ment O E1

Title:| |
Dat e: | | Start Ti rre:|:|
hr nmn

buration:[_ |[]

Recurring?]

Cat egor y:| V| Security:[public v]
Locat i on:| | Priority{must V|
Reni nd?[]
Detail s:
A
]
v

K ' [a ear) Cancel |

cl ass Appoi ntnent {
String title;
Dat e start Dat e;
Dat e endDat e;
Time startTine;
Duration duration;
Recurringlnfo recurringlnfo;
Cat egory cat egory;
Location | ocati on;
Appoi nt nent Security neetingSecurity;
AppointnentPriority priority;
Rem ndl nf o rem ndl nf o;
Text Details;

1. Thisillustrates a more irolved dialog and its deréd object.

2. Notethe grouping of related Ul components into the Recurringinfo and Remindinfo objects.
a. Thisgrouping in the model is a good cue that the Ul itself cowe hetter visual cues of horelated
components go together.
b. Eg., the recurring and reminder areas could be surrounded by a box.
3. Also,the number of components violates the 7+/-2 rule.
a. Thisis a cue that the dialog itself may be too compte a single windw.

b. Some form of better gonomic oganization could be used, such as toggles tavsimore or less
detail.

CSC307-f15-L4 Bge 15

C. Meeting
Confirma Meeting 05
Titl e:| |
Dat e: | | start Time:[]
hr nmn
Dur ati on:

Recurring?[]

Cat egor y: | V| Security:|public v]
Locat i on:| | Priority]must V]
Reni nd?[]
Att endees:
A
[]
v
Detail s:
A
[]
v
M nut es: |

(o) (cear) (cace)

class Meeting {
String title;
Date start Dat e;
Dat e endDat €;
Time startTine;
Durati on duration;
Recurringlnfo recurringlnfo;
Cat egory category;
Location | ocation;
Appoi nt nent Security neetingSecurity;
AppointnentPriority priority;
Rem ndl nf o rem ndl nf o;
At t endees attendees;
Text Details;
Text M nutes;

CSC307-f15-L4 Bge 16

D. Task

Schedul e a Task O F

TitIe:| |

Due Date:|

Recurring?]

Cat egory:| V| sSecurity:|public v|

Reni nd?[]

Detail s:

[>

4

cl ass Task {

String title;

Dat a dueDat e;

Dat e endDat e;

Cat egory category;
Security security;

int Priority;

Rem ndl nf o rem ndl nf o;
Text details;

bool ean carryOver Fl ag;
bool ean conpl et edFl ag;

1. Notethat there is &onpl et edFl ag in the model object that does not appear in the task scheduling
dialog.

2. Thereis a to-do item in the Milestone 6 task-scheduling scenario that describdhehcompleted flag
should appear once a task is scheduled.

3. Thisis an example of where the model is temporarily furtheeldped than the requirements scenarios.

CSC307-f15-L4 Bge 17

E. Derving theschedul eEvent operation.

Schedul e an Event O [
Titl e:| |
Start Date:] | End Date:] |
Cat egor y:| V] Location:] |
[T] W) Cancel '
/

Confirms operation Clears input dialog. Cancels operation
scheduleEvent. (GUI only; there is scheduleEvent
(There is no operation no operation (There is no operation
named "ok".) named "clear".) named "cancel".)

cl ass Cal endar {

voi d schedul eEvent (Event);

1. Asdiscussed in Lecture Notes 4, a major collection object has been identifie€Cal #nedar .

2. Eachof the four scheduling operationsadditivein that it tales a form of scheduled item and adds it to
the Calendar.

3. Anadditive eration takes a collection component as input In an object-oriented langeagedik

Hence, the functional form of the operation signature ha€ahendar as both an input and output.

F. Refining the scheduling objects and operations.
1. Initial refinement of scheduled items using inheritance.

cl ass Schedul edl t em {
title;, startOrDueDate; endDate; category; }

cl ass Appoi ntment extends Schedul edltem {...}
class Meeting extends Schedul edltem{...}
cl ass Task extends Schedul edltem {...}
cl ass Event extends Scheduledltem {...}
2. Secondefinement pass, which adds component details, further refines inheritance, and refines operation
signatures.

/*

*

CSC307-f15-L4 Bge 18

* This file defines objects and operations related to cal endar schedul i ng.
* See Sections 2.2, 2.4, and 2.5 of the Ml estone 6 requirenents.

*/

nport java.util.Collection;

/**

* The Cal endar object is derived froman overall view of Sections 2.1 through
* 2.5 of the requirenments. The functionality described in those sections

* makes it clear that a Calendar is the primarily data object of the Cal endar
* Tool .

*

* The data component of a Calendar is a collection of scheduled itenms. The

* operations are those that schedul e each of the four types of schedul ed

* item In the case of nmeetings, there are two operations involved -- one to
* conpute a list of possible times, and another to confirma specific selected
* meeting tine.

*/

abstract class Cal endar ({

Col | ecti on<Schedul edl t en> dat a;

/**
* Schedul eAppoi nt ment adds the given Appointnent to this.data, if an
* appoi ntment of the sane tinme, duration, and title is not already
* schedul ed.
*/
abstract void schedul eAppoi nt ment (Appoi nt nent appoi nt ment);
/ *
Schedul eMeeti ng uses the given MeetingRequest to determn ne possible
times that the requested neeting mght be held, within the existing set
of scheduled itens in the this.data. The Possi bl eMeetingTines output is
a list of zero or nore possible tines and dates that the nmeeting can be
* hel d.
*/
abstract Possi bl eMeeti ngTi mes schedul eMeet i ng(

Meet i ngRequest neeti ngRequest);

E I I

/**
* Confirmveeting takes a MeetingRequest, |ist of PossibleMeetingTines, and
* a Selected tine fromthe list. 1t adds a neeting to this.data,

* conprised of the given request, scheduled at the selected tine. Further
* details of output constraints are forthcom ng.
*/
abstract void confirmveeting(
Meet i ngRequest request,
Possi bl eMeet i ngTi mes ti mes,
int sel ectedTine);

/**

* Schedul eTask adds the given Task to this.data, if a task of the sane
* time, duration, and title is not already schedul ed.

*/

abstract void schedul eTask(Task task);

/**

* Schedul eEvent adds the given Event to this.data, if an event of the sane
* time, duration, and title is not already schedul ed.

*/

abstract void schedul eEvent (Event event);

CSC307-f15-L4 Bge 19

L B T R R S R . I T T I . S]

*

*

*

A Schedul edltemis the generic definition for the types of itenms stored in a
calendar. The Title conponent is a brief description of what the itemis
for. The startO DueDate and endDate conponents indicate when the itemis
schedul ed. The category conponent is used to organize itens into rel ated
col or-coded cat egori es.

<p>
There are four extensions of Schedul edltem They are Appointnment, Meeting,
Task, and Event. A Schedul edltemis derived from exam ning the conmon data
fields of these four types of item and the requirenments narrative that
descri bes these itens.

<p>
The startOrDueDate is a multi-purpose conponent of Scheduledltem Its
pur pose depends on whether an itemis a Task and whether it is recurring
(Events cannot recur). For non-recurring appointnents and neetings,
Start OrDueDate is used as the single date on which the itemis schedul ed.
If the itemis recurring, StartOrDueDate is the first date on which it
occurs. For a non-recurring Task, StartOrDueDate is the single date the
task is due. |If the task is recurring, StartODueDate is the first date it
i s due.

<p>
In recurring appointments, meetings, and tasks, the endDate defines the |ast
date on which the itemw !l recur. |In events, the end date defines the | ast

date of a nulti-day event. Wen the value of end date is enpty, the

start OrDueDat e conmponent is interpreted as the single date on which the item
occurs.

/

abstract class Schedul edltem {

Lo T R S T B R

*

*

String title;

Dat e start OrDueDat e;
Dat e endDat €;

Cat egory cat egory;

*

An Appoi ntment adds a nunmber of conponents to a generic Schedul ediltem The
StartTime and Duration indicate when the appointment starts and how long it
lasts. The Location is where it is held. The Security indicates who can
see that the appointnment is scheduled. AppointmentPriority is how inportant
the appointment is. Remindinfo indicates if and how the user is remn nded of
the appointment. Details are free formtext describing any specific

appoi nt ment details.

<p>

This object is derived from Section 2.2 of the Ml estone 6 requirenents, in
particul ar Figure 6.
/

abstract class Appointment extends Schedul edltem {

}

Time startTine;

Dur ati on duration;

Recurringl nfo recurringl nfo;
Location | ocati on;

Security security;
AppointmentPriority priority;
Rem ndl nfo reni nd;

Text details;

/**

*

*

A Meeting adds two conponents to an Appointnent. The Attendees conponent
reflects the fact that a nmeeting is scheduled for nore than one person,

CSC307-f15-L4 Bge 20

* whereas an appointnment is for a single user. The MeetingM nutes conponent

* is a URL for the mnutes of a nmeeting, once it has been hel d.

* <p>
* This object is derived from Section 2.4.1 of the Ml estone 6 requirenents, in
* particular Figure 46.

*/

abstract class Meeting extends Appointnent {
Att endees attendees;
Meet i ngM nut es mi nut es;

*

A neeting request has all the conponents of a neeting plus three additional
conponents to specify the latest dates and tine at which the nmeeting can be
schedul ed. A neeting request is used to specify a range of possible neeting
times, to allow scheduling alternatives to be considered. In the neeting
request, the inherited fields for startDate, endDate, and tine are used for
the earliest dates and time at which the neeting can be held, i.e., for the
begi nni ng val ues of each range. The description of the Schedul eMeeting
operation has further details on how neeting requests are handl ed.

<p>
This object is derived fromSection 2.4.1 of the Mlestone 6 requirenents,
in particular Figure 45.

L T R T R

*

*/
abstract class MeetingRequest extends Meeting {
Date | atest St art Dat e;
Dat e | at est EndDat e;
Time | atestStartTi ne;

}
/**
* The Possi bl eMeeti ngTi nes object is a collection of (start tine, start date)
* pairs at which a neeting could be held.
*/
abstract cl ass Possi bl eMeetingTi mes {
Col | ecti on<Ti neAndDat e> ti nesAndDat es;
}

/**

* A TimeAndDat e object is an element of a possible neeting tine list.
*/

cl ass Ti meAndDat e {

Time startTine;
Dat e startDate;

}

/**
* Like an Appointment, a Task adds a number of components to a generic
* Schedul edltem A Task differs froman Appointnent as follows: (1)
* Appoi ntnments have StartTinme, Duration, and Location; Tasks do not. (2) For
* Appointnments, the priority is either "Must’ or 'Optional’; for Tasks,
* priority is a positive integer indicating the relative priority of a task
* conpared to other tasks. (3) For appointments, remninders can be set to
* occur at hour or mnute granularity; for tasks, the smallest granularity of
* reminder is a day. (4) Tasks have a conpl etedFl ag, and conpl eti onDate
* conponents; appoi ntments do not.
* <p>
* The conpletedFlag is true if a Task has been conmpleted, false if not. The
* system does not enforce any specific constraints on the setting of a task’s
* Conpl etedFlag. That is, the user may set or clear it at will. Hence the
* meani ng of the conpletedFlag is up to user interpretation, particularly for
*

recurring tasks.

CSC307-f15-L4 Bge 21

<p>
The completionDate is the date on which as task is conpleted. The system
does not enforce any specific constraints on the setting of a task’s
conpl etionDate (other than it being a legal Date value). As with the
conpl et edFl ag, the meaning of the conpletionDate value is up to user
interpretation, particularly for recurring tasks.

<p>
This object is derived from Section 2.4.2 of the Mlestone 6 requirenents,
in particular Figure 47.

L T R

*

*/

abstract class Task extends Schedul edltem {
Recurringl nfo recurringl nfo;
Security security;
TaskPriority priority;
TaskRem ndl nf o rem nd;
Text details;
bool ean conpl et edFl ag;
Dat e conpl eti onDat e;

*

An Event is the sinplest type of Scheduledltem The only conponent it adds
to is Location.
<p>
This object is derived fromSection 2.4.3 of the Mlestone 6 requirenents,
* in particular Figure 48.
*/
abstract class Event extends Schedul edltem {
Location | ocati on;

* Ok kX F

}
/**
* An AppointnentPriority indicates whether an appointment is a nust or if it
* is optional. This information is used to indicate the general inportance of
* an appointnent to the user. The operational use of AppointmentPriority is
* in the Schedul eMeeting operation, where the neeting schedul er can elect to
* consider optional appointnments as allowable tinmes for a neeting.
*/
enum AppointnentPriority {
Must ,
Opt i onal
}
/**
* A TaskPriority is a positive integer that defines the priority of one
* task relative to others. 1It’s defined as a separate class in case we want
* to enforce the value range restriction within the class constructor.
*/
abstract class TaskPriority {
int val ue;
}
/**
* For now, a Date is just as string. This definition will expand soon.
*/

abstract class Date {
String val ue;

/**

* Aux function used in schedul eEvent specs.
*/

abstract bool ean isValid();

CSC307-f15-L4 Bge 22

}

/**
* Duration is the time length of a scheduled item in hours and m nutes.
*/
abstract class Duration {
int Hours;
int Mnutes;

}

/**
* As with Date, Time is for now just as string. This definition will expand
* soon.
*/
abstract class Tinme {
String val ue;

}
/**
* Recurringlnfo has conponents to specify the nature of a recurring item The
* isRecurring conponent is an on/off flag that indicates whether an item
* recurs. The interval is one of Wekly, Biweekly, Mnthly, or Yearly. The
*

Interval Details conponent defines the precise neans to define recurrence for
* the different interval |evels.
*/

abstract class Recurringlnfo {

bool ean i sRecurring;

Interval interval;

Interval Details details;

*

Interval specifies the granularity at which recurring itens are defined.

The Weekly and Biweekly settings allow the user to specify recurrence on one
or nore days of the week. The Monthly setting allows the user to specify
recurrence on one or nmore days in one or nore weeks of each nmonth. The
Yearly setting allows the user to specify recurrence on one or nore specific
dates in the year.

* 0% kX F Sk k¥

~

enum I nterval {
Weekl y, Biweekly, Mnthly, Yearly

}

/**

* Interval Details are either weekly or nmonthly. This parent class is used
* generically for either kind of details.

*/

abstract class Interval Details {}

/**
* Weekl yDetails has an on/off setting for each day of the week on which
* an itemrecurs. These details are also used for the Bi Wekly setting
* of the recurrence interval.
*/
abstract class WeklyDetails extends Interval Details {
int onSun;
i nt onMon;
int onTue;
i nt onWed;
int onThu;
int onFri;
int onSat;

CSC307-f15-L4 Bge 23

}

/**

* Monthl yDetails can be specified on a day-of-the-week basis or on specific

* date(s) basis. The two extending classes have the specific details for these
* two types of settings. This parent class is used generically for either

* kind of details.

*/

abstract class MnthlyDetails {}

/*

* Mont hl yDayDetail s contains a weekly details conponent for each possible week
* of a month. The First- through ThirdWekDetails are distinct for all

* possible months. Depending on the configuration of a particular nmonth in a
* particular year, there is potential conflict in specifying recurrence in the
* fourth, fifth, or last weeks. The conflicts are resolved as foll ows:

* <p>
* For months with 4 weeks only, the settings in FifthWekDetails do not apply,
* and the settings in LastWekDetails, if present, override any settings in

* FourthWekDetails. For nonths with 5 weeks only, the settings in

* Last WeekDetails, if present, override any settings in FifthWekDetails.

* (For months with 6 weeks, the LastWekDetails conponent applies to the 6th

* week, and there are no conflicts.)

*/

abstract class MonthlyDayDetails extends MnthlyDetails {
Weekl yDetai |l s firstWekDetails;
Weekl yDet ai | s secondWeekDet ai | s;
Weekl yDet ai | s t hi rdWeekDet ai | s;
Weekl yDet ai | s fourthWekDet ai | s;
Weekl yDet ai |l s fifthWekDetails;
Weekl yDet ai | s | ast WeekDet ai | s;

}

/**
* Mont hl yDateDetails is a collection of zero or nore specific dates in a nonth
* on which an itemrecurs.
*/
abstract class MonthlyDateDetails extends MnthlyDetails {
Col | ecti on<Dat eNunber > dat es;

}

/**

* A DateNunber is a positive integer between 1 and 31. It’'s defined as a

* gseparate class in case we want to enforce the value range restriction within
* the class constructor.

*/
abstract class Dat eNunmber {
int val ue;
}
/**

* A Category has a name and StandardCol or, which serve distinguish it from
* other categories. Colored-coded categories serve visual cues to the user
* when viewing lists of scheduled itens in sone form Categories can also be
* used in filtered view ng.
*/
abstract class Category {
String nane;
St andar dCol or col or;

CSC307-f15-L4 Bge 24

/**

* A StandardColor is one of a fixed set of possibilities, per the requirenents
* scenari o0s.
*/
enum St andar dCol or {
Bl ack, Brown, Red, Orange, Yellow, Geen, Blue, Purple

}

/**

* For now a Location is a free-formstring indicating i n what physi cal

* |ocation an itemis scheduled. It nmay be refined to sonmething |ike
* (building,room) pair.
*/

abstract class Location {
String val ue;

}
/**
* Security is one of four possible levels, each of which is described
* individually in the body of the enum The selected |evel specifies the
* degree of visibility a scheduled itemhas to other users. For an
* appoi ntnment, task, or event, "other users" are defined as all users other
* than the user on whose cal endar the schedul ed item appears. For a neeting,
* "other users" are defined as all users not on the Attendee list of the
* meeting.
*

~

enum Security {

/**

* Public security means other users can see the scheduled itemand all the
* information about the item

*/

Publi c,

/*

* PublicTitle security neans other users can see the title of the
* schedul ed item but none of the other information about the item
*/

PublicTitl e,

*

/
Confidential security means other users can only see that a user is
unavail able for the tinme period of a scheduled item no other

informati on about the scheduled itemis visible. Since confidential
security applies to a specific tine period, it is meaningful only for
appoi nt ments and neetings, not for tasks or events; tasks and events do
not have specific time conponents.

* 0% kX kX X X

~

Confidential,

*

/
Private security neans other users see no information at all about a
schedul ed item not even that the itemis scheduled. Note that private
security hides a scheduled itemfromthe Schedul eMeeti ng operati on,
g.-v., so that a neeting nay be scheduled at the same time as a private
appointment. It is up to the user to handle this situation by
accepting or refusing the schedul ed neeting. G ven the nature of
private security, it does not apply to neetings. 1l.e., only

appoi nt ments can have private security.

* 0% k3 kX kX X X

~

Private

CSC307-f15-L4 Bge 25

Rem ndlnfo has a flag that indicates if a scheduled itemw Il have a

rem nder sent and defines one of three ways that the user is alerted when a
schedul ed event is to occur. OnScreen neans the user is reminded with a
pop-up alert on her conputer screen. BeepOnly means the user is rem nded
with a sinple audible tone on the conputer. Email neans the user is sent an
* electronic mail message remni nder.

*/

abstract class Rem ndlnfo {

bool ean i sRem nded;

HowRen nded howReni nded;

L I R

}

enum HowRem nded {
OnScr een,
BeepOnl vy,
Emai |

}

/**
* Appoi nt ment Reni ndl nf o extends Renindl nfo by adding information for how
* soon before a scheduled itemthe rem nder is to be sent. For appointments,
* the tine units are minutes, hours, or days (cf. TaskRem ndl nfo).
*/
abstract class Appoi nt ment Rem ndl nfo extends Remi ndlnfo {
doubl e howSoonBef or e;
Appoi nt ment Rermi nderUnits units;

}

/**
* TaskReni ndl nfo extends Renindlnfo by adding information for how soon before
* a task the reminder is to be sent. For tasks, the tine unit is days. A
* fractional day can be used for smaller granularity if desired.
*/
abstract class TaskRem ndl nfo extends Renindlnfo {
doubl e howSoonBef or e;

}

/**
* Appoi ntment reninders can cone mnutes, hours, or days before an
* appointnment. The units for these can be fractional, for nmaxinum
* flexibility.
*/
enum Appoi nt nent Renmi nderUnits {

M nut esBef ore, HoursBefore, DaysBefore

}

/**
* Attendees is a collection of nanes of those who attend a neeting.
*/
abstract class Attendees {
Col | ection<String> nanes;

}

/**
* MeetingMnutes is current defined as the URL for the location of the minutes
* of a meeting. This definition nmay be refined in upcom ng versions of the
* requirenents.
*/
abstract class MeetingM nutes {
String url;
}

CSC307-f15-L4 Bge 26

/**

* The details of the Text object are TBD. It may just turn out to be a

* plain string. O it my a limted formof HIM, so we can include |inkable
* URLs init.

*/

abstract class Text {}

G. Obseruations.
1. Inheritances generally easier to dee ottom up, than top down.
2. Remembet- "what the user thinks" is the driving factor in determining model acgaratcorrectness.

XXV. Another example -- viewing objects and operations from the Calendar Tool.

A. Basedon the Milestone 6 excerpt from Lecture Notes 3, the following shows some initial objeeticleri

~
E I I S . T I R I S R I

~

This file defines the objects and operations related to the different
cal endar views available to the user. See Section 2.3 of the MIestone 6
requi renents.

The structural viewing levels are item day week, nonth, and year. There
are operations to go to the previous and next views at any level, as well as
an operation to go to a specific date. Lists of scheduled itens can be
viewed in a variety of ways. A general view filter operation can be applied
to both structural and list views. Operations are available to view other
users’ calendars and to view a list of active view ng w ndows.

NOTE: this is work in progress. A good deal of objects are yet to be
defi ned.

import java.util.Collection;

/**
* A Dail yAgenda has a full day nane and a list of time-slot descriptors. The
* Ful | DayNane consists of the day nane itself (e.g., Wdnesday), the nonth,
* the date, and the year. Each itemin the TineSlotDescriptor |ist consists
* of a starting tine (e.g., 8 AM and a list of zero or nore scheduled itens.
>/
abstract class Dail yAgenda {

Ful | DayNane nane;

Col | ecti on<Ti neS| ot Descri ptor> tines;

}

/**
* A Ful | DayNane has the conpl ete and uni que designation of a cal endar day.
>/
abstract class Full DayNane {
DayNane day;
Mont hNane nont h;
Dat eNunber dat e;
Year Nunber vyear;

}

enum DayNanme {
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
}

enum Mont hNare {
January, February, March, April, My, June,

CSC307-f15-L4 Bge 27

July, August, Septenber, Cctober, Novenber, Decenber

}

/**
* Atime slot descriptor represents one slot (physically, arow) in a daily
* agenda. The Ti neSl ot Name conponent is the start time for the slot. The
* |list of BriefltenDescriptors contains the itens that begin within the slot,
* where "within" is defined as the start tine plus the current tine increment.
*

The overl aps conponent is a list of items with start tines that overlap with
* an itemin the BriefltemDescriptor I|ist.

*/

abstract class TinmeSlotDescriptor {

Ti mreSl ot Nanme sl ot Nane;

Col | ection<BriefltenDescriptor> itenDescriptors;

Overl aps overl aps;

}
/**

* A Ti meSl ot Name consists of a nuneric TinmeValue and an AmOr Pm i ndi cat or.
* TODO this definition should be reconciled as appropriate with the
* definition of Tinme in schedul e.java.
*/
abstract class TineSl ot Name {
int tineVal ue;
AMbr PM anOsr Pm

}
/**

* A brief itemdescriptor contains a subset of the information for a full
* scheduled item The information is a Title, StartTine, Duration, and
* Category.
*/
abstract class BriefltenDescriptor {

String title;

Tinme startTine;

Dur ati on duration;

Cat egory category;

}
/**
* Qverlaps contain zero or nore BriefltenDescriptors that overlap with with
* the master itemin a given tinme slot. An overlapping itemis one with a
* start time within the sane tinme slot as other itens. The "master” itemin a
* tinme slot is the itemthat is first in a sorted order based on start tine,
*

duration, and al phabetic title as the prinmary, secondary, and tertiary sort
* keys, respectively.

*/

abstract class Overlaps {

Col | ection<BriefltenDescriptor> descriptors;

}

abstract class Dail yFormat Options {
Nor mal Ti meRangeOpti on nor nal Ti mreRangeOpti on;
Ti mel ncrenment Opti on tinel ncrenent Option;
int increnentHeightOption;
ShowOr H de showHi de24Hour sOpt i on;
ShowOr H de showHi deExact Ti meOpt i on;
ShowOr H de showHi deDashedLi nesOpti on;
ShowOr H de showHi deExt ensi onArrowsOpti on;
OnOr O f proportional Spaci ngOnOf f Opt i on;
Di spl ayOver| apsOption di spl ayOverl apsOpti on;
Def aul t Hei ght AndW dt hOpt i on def aul t Hei ght AndW dt hOpt i on;

CSC307-f15-L4 Bge 28

}

abstract class Normal Ti neRangeOption {Tinme startTinme; Tine endTine;}
abstract class TinelncrenentOption {int hours; int mnutes;}

enum ShowOr Hi de {Show, Hi de}

enum ONOr o f {On, Of}

enum Di spl ayOver | apsOption {Horizontal, Vertical}

abstract class Defaul t Hei ght AndW dt hOption {int height; int Wdth;}

abstract class Hour {
int val ue; /1 Must be | egal hour val ue

}

abstract class Mnute {
int val ue; /1 Must be |egal mnute value

}

enum AMorPM { AM PM }

abstract class Wekl yAgendaTabl e {
Ful | WeekNane nane;
Col | ecti on<Weekl yTi meSl ot > sl ot s;

}

abstract class Ful | WekNane {
Mont hName nont h;
Dat eNumber Range dat eRange;
Year Nunber year;

}

abstract cl ass Dat eNunmber Range {
Dat eNunber start;
Dat eNunber end;

}

abstract class Wekl yTi neSl ot {
Col | ecti on<Weekl ylt enDescri ption> itemns;

}

abstract class WeklyltenDescription {
DayNane day;
Ti meRange range;
String truncatedTitle;

}

abstract class Ti neRange {
Tinme start;
Ti me end;

}

abstract class Wekl yAgendalLi st {
Ful | WeekNane nane;
Col | ecti on<Dail yltenList> itenmns;

}

abstract class Dailylteniist {
DayName nane;
Dat eNunber dat e;
Col | ecti on<Dai l yl t emDescri pti on> itens;

CSC307-f15-L4 Bge 29

abstract class Mnthl yAgenda {
Ful | Mont hName nane;
DayName firstDay;
Nurmber OfF DaysPer Mont h nunber O Days;
Col | ecti on<Dai l yl t emDescri pti on> itens;

}

abstract class DailyltenmDescription {
String val ue; // to be refined

}

abstract class Ful |l Mont hName {
Mont hName nont h;
Year Nunber year;

}
cl ass Number O DaysPer Mont h {

int val ue; /1 Must be between 28 and 31, inclusive
}

abstract class YearlyCal endar {
Year Nunber year;
Col | ecti on<Smal | Mbnt hVi ew> nont hs;

}
abstract class Small Monthview { /* ... */ }
/**
* A YearNunmber is a positive integer between 0 and 9999. |It’'s defined as a

* separate class in case we want to enforce the value range restriction within
* the class constructor.

*/

abstract class YearNunmber {
int val ue;

}

/*

* Model operations to place in the appropriate class:
*

Dai | yAgenda vi ewbDay(Cal endar) ;
Weekl yAgendaTabl e vi ewWéekTabl e(Cal endar) ;
Weekl yAgendali st vi ewéekLi st (Cal endar) ;
Mont hl yAgenda vi ewibnt h(Cal endar) ;
Year | yCal endar vi ewYear (Cal endar) ;

*

*/

B. Obserations.
1. Modelsof the agenda at differentvds have all necessary info, some of which may be filtered out from
view based on option settings.
2. To get a complete model picture, all of the examples in the scenarios need to be examined.
a. E.g.consider the components of obj@ctneS| ot Descri pt or:

String tineSl ot Nane;
Col | ecti on<briefltenmDescriptor> itens;
Col | ecti on<briefltenmDescri ptor> overl aps;

b. FHgure 10 (in the Milestone 6 requirements excerpt) shows the fgiomvponents.
c. Figurel3 clarifies that the third componef¥/er | aps) is necessary.

CSC307-f15-L4 Bge 30

C.

XXVI.

XXVII.

Questions:

1. ShouldtheDai | yAgenda object hae aDai | yFor mat Opt i ons component?
a. Why or why not?
b. If not, what object does fi@Dai | yFor mat Opt i ons as a component?

2. Isthere ag reason to consider a parent class from which the differegitdgenda objects inherit?

Summaryobservations about the analysis and specification phases of the software.

Thegoal of requirements modeling is to buildastractmodel of the user-l@l requirements.
1. Abstractmeans that certain details of the useelldescription are left out.

2. Whatis obviously left out is much of the Engliskrbiage that is used to describe the system clearly in
end-user terms.

3. Theother very important aspect of the abstraction is leaving ocbadrete Ul detailssuch as
a. Buttonssuch a<X, Cl ear, and Cancel that are strictly GUI coreniences, not fundamental to the
underlying model.
b. Rurely decoratie aspects of the interface that neaik "easy on the user eyes" but that do not represent
fundamental properties of model objects or operations.

Thereis very beneficial feedback between the requirements analysis and specification phases ofafee softw
development process.

1. Suchfeedback is a natural part ofddpment since the uséavel requirements, written in English prose
and pictures, describe precisely the same system as the formal model, written in the formal specification
language and graphical notations.
a. TheEnglish requirements are understandable to human users and domain experts.
b. The requirements model is understandable to the software analysts.
c. Itis very important that these dweifferent representations are consistent with one another.

2. Thisconsisteng is achieved by deriving the formal model from the uskvel requirements, refining the
model, and then transferring the refinements back to the wgbEtglish and pictures.

3. The"feedback loop" between English requirements and SpecL model specification continues until the
user says the requirements are complete and the specification passes cleanly through the SpecL checker.

Modeling the concrete GUI?

A. Are things like menus and dialog windows objects?

1. TheCSC 307 answer to these questions is "no".

2. Thereason is that we are definimdpstract model specifications in which only data that are directly
manipulatable by the user are modeled.

3. Thetool's mncrete interface is not modeled as an object.

. Thismodeling decision relates to the nature of the tool Uls we are specifying in 307, wimefynanipu-

lation user interfaces.

1. Theterm "direct-manipulation” describes the style of irdeef that gies the human user direct control
over the functions performed by a software system.

2. ModernWIMP interfaces (Whdows, Icons, Menus, Pointing) are almosvajs direct manipulation in
style.

3. Directmanipulation Uls are in contrast to older style Uls in which the system had more ceatnwhen
commands could be performed by the user.

4. With a direct manipulation interface, we wi¢he user as being in control of the operations that are per
formed, not the system.
a. Theend user may iroke any command directly via menus, with no explicit prompting from the sys-
tem.
b. The user may generally cancel commands at will.
c. Conceptuallythe system is an invisible part of what is going on.

5. Whenmodeling a system with a direct manipulation Ul, we can abstract out objects that the user does not

CSC307-f15-L4 Bge 31

change.

C. TheUl structure of the tool does provideganizational guidance.
1. In particular the hierarchical structure of the Ul pides a good basis for the modulagamization of
objects and operations.
2. Hencewe definemoduleshased on hwe the tool Ul is oganized.

D. Someobservations about concrete Ul modeling.

1. Itis notwrongto model a GUI itself as an object.

2. Inour case, we're following a caention to model only those objects that the user can change.
3. Hencdor us, it is nohecessaryo model the unchangeable parts of the tool as objects.
4

. Thereare cases where modeling a tedJI is necessary.
a. For example, some systems allthe user to do things kkdange the format of a toolbar define
entirely nev toolbars.
b. In our 307 projects, we2 not generally considering such tool features; if a 307 project does GUI
building features, theneed not be modeled formally.

XXVIII. Modeling the tool itself.
A. Isthe Calendar Tool itself an object?, an operation?, a module?
B. Thereare a variety of ways to model theemall system itself.

C. Oneapproach is not to model it at all.
1. Inthis approach, we completely abstract out the tool structure from the model.

2. Thishighly abstract vier of the tool is consistent with the almonvention to abstract out objects that
the user does not change.

3. l.e.,if the user cannot change the tool itself, it need not be modeled.

D. If we do choose to model theepall tool, it can be modeled as either an object or an operation, depending on
the kind of processing that it performs.

1. Thereare two high-level models for an information processing tool such as we are building in 307 --
transform-orientedandtransaction-oriented

2. Ina transform-oriented system, processing isvei@ as transforming a single large piece of data from one

form into anotherusing a single large operation.

a. Ina transform-oriented system, the inputs and outputs are typically large pieces of data that are widely
different in structure.

b. The transform operation takes the input, with some additional operational parameters, and transforms
it into the output.

c. A report-generation system is a good example of transform-oriented; it takes as irgatétde
database plus some format parameters, and produces a large report.

d. Atransform-oriented systems is best modeled at the vepds an @eration.

3. Atransaction-oriented system performs its work with gdanumber of smaller operations, each one per
forming some form of incremental action.
a. Intransaction system, the difference between operation inputs and outputs is a typically small, incre-
mental change.
b. A database management system is an example of a transaction-oriented system, where operations to
add, delete, and change database recorde rakatively small changes to theverall database.
c. Atransaction-oriented system is best modeled at thetelpaiean dject.

E. In practice, most information processing systems are a hybrid of theystem types, comprised of both
transformational and transactional components.

1. Atthe top-leel, the CSC 307 projects are transaction-oriented.
2. Theremay be major operations within the systems that are transform-oriented.

F. As an aample of top-leel tool modeling, here is the outline for the Calendar Tool teg-faodule.

CSC307-f15-L4 Bge 32

XXIX.

XXX.

/****

*

* Class Cal endar Tool defines the top-level tool object that contains the
* currently active cal endar db, systemstate information, and an abstract file
* space.
*
*/
cl ass Cal endar Tool {
Cal endar DB cal endar DB;
Fi | eSpace fil eSpace;
Systenfst at e systenft at e;

}

class CalendarDB { /* ... */ }
class FileSpace { /* ... */ }
cl ass Systenttate { /* ... */ }

. We'll discuss top-leel tool modeling further in upcoming lectures.

Compiling an abstract 3a nodel.

Usethe standarglavac compiler to check a model.

. Theexamples shown alve ae uncowrentional in that the havemultiple top-level classes in one file.

1. Thej avac compiler is OK with this.
2. Aswe refine the model, we will e © the typical Jaa cmrvention of one class pelj ava file.

Whenwe use Je&d's Col | ect i on interface, we must import at the top of the file with
import java.util.Collection

This is the only import you’'ll need at the current abstrae l&f modeling.

A common error in early model eidopment is to lege dojects undefined.
1. Thecorventions in the 307 examples is to use this style for yet-to-be-defined objects
cl ass Whatever { /* ... */ }

2. Thecomment with ellipses is a place holder indicating that the@nete work to do.

3. Includingthe ellipses comment is a good practice, because the model will compile fine withoutuhem, b
an undefined definition may be easiervertmok without some indication of its unfinished state.

You can use the standgrdvadoc documentation generator to produce a browsable version of the model.

1. It's a good idea to puf avadoc output is a separate sub-directory of the model, so all of the generated
files do not crowd the specification directory.

2. Thecorvention used for the 307 examples is todnaj avadoc sub-directory under the projespec-
i fication directory.

Recapof testing in the software engineering process, and where requirements testing fits in.

In what might be called a traditional weof the software process, testing is seen as the last stepyifigjlo
implementation.

1. Inthis view, the program code itself is the only artifact that is subject to formal testing.

2. Whilecode testing is critically important for quality soéwe, the code is not the only artifact that should
be tested.

3. Infact, all of the other major software process acti§ can be tested formally -- the requirements, the
specification, and the design.

Figure3 compares the position of testing as the final step of the process versus a@aesi

1. Asdiscussed in Lecture Notes Week 1, psixe deps run continuously throughout theveepment
process, or at regularly-scheduled intervals.

CSC307-f15-L4 Bge 33

Analyze Ordered Process Steps
Pervasive Process Steps
Analyze
Specify Manage
i Specify
Prototype .
| Pervasive steps Configure
are performed
continuously oy,
Prototype at regularly-
. scheduled time
Design throughout the
ordered steps. Test
Design
Implement
|
Document
Implement
Test

b. Process with testing as a pervasive step.

a. Traditional process,
with testing at the end.

2.

Figure 3 Two views of testing in the software process.

Inaddition to testing, the other perwasgeps deal with management, configuration, and documentation.

C. Thereare three types of testing that are performed during different stages of the software process.

1

2
3

. Inspection testingntails systematic human inspection of alele of software artifact, from requirements

through implementation.

. Functional testings performed by programmers on the®utable code as it is ddoped.
. Acceptance testinig performed by end users on the released product.

XXXI. Inspectiontesting the requirements.

A. Testing with walkthroughs and reviews.

1.

w

Thepurpose is the same as walkthroughs awigwes conducted during the wi@opment of just about gn
kind of product.

Namely we want to assure that what is beingéleped is on track and meets customer needs.
Walkthroughs and reviews are an important means to "debug" the requirements.

Publicreviews can be held at specific milestones during the course of requireratirgsing and analy-
sis.

Limitedmembers of the technical dtabld detailed walkthroughs to refine requirements specifications.

Suchwalkthroughs are particularly important in the process of requirements analysis since such a wide
range of people are potentiallyoived.

. In307, intra-group walkthroughs are conducted during our weekly meetings.

CSC307-f15-L4 Bge 34

8. Inaddition, each group will gés wo oral reviews to the rest of the class during in the quarter; first is in
week 5 as scheduled ato
B. Formal inspection testing.

1. Startingin week 4, the functional requirements will be formally inspected by a duly appaisfettion
test engineer

2. Duringweeks 4 through 11, each group member willeha me-week assignment as the official inspec-
tion tester (see milestone 3 writeup for exact schedule, since it varies based on team size).

3. Detailsare in the handout entitled "Standard Operating Procedures, Volume 2: Requirements Testing"

C. Modelbuilding as a means of concept testing.

1. A common practice among engineers is to build a model of a proposed engineaxet trtgee if the
high-level ideas about the artifact are sound.

2. For CSC 307, model building is done during the next ordered step of thesoftvocess after require-
ments analysis specification

