CSC307-f15-L5 Bge 1

CSC 307 Lectue Notes Week 5
Introduction to Formal Specification

I. Somepractical benefits of formal specification.

A. Betterunderstanding of software.

B. Precisecommunication among delopers.

. Basisfor thorough testing.

. Basisfor formal verification (when appropriate).

Basidfor automatic programming (dream on).

Mmoo

Here's a notivational bottom line:

1. Supposgour boss says:
| want you to do whatever it takes to build me soféwairhe best possible qualjtthat has the small-
est possible likelihood of failing.

2. For some academics and software professionals, formal specificatiorysparkof addressing a man-
date lile this.

Formal specification with preconditions and postconditions.
A. As model object and operation definitionsdakape, we are ready to formalize the definitions fully.

B. Theformal technique we will use in 307 is based on operglienonditionsandpostconditions
1. Aprecondition is a predicate (i.e., boolean-valued expression) that is true before an opexaiies.e
2. Apostcondition is a predicate that is true upon completion of an operation.
3. Sincepre- and postconditions are predicates, this style of formal specificationmaitkcative

C. Thepre- and postconditions are used to specify fully what the system does, including-EVeisequire-
ments for the system.

D. Thisformal specification is part of theverall requirements specification process we're following, with these
steps:

cpther user-teel requirements via usage scenarios

identify objects and operations

formalizeoperations with pre- and postconditions

refineuser-level requirements based on formal specs

refineformal specs based on userderefinements

6. iteratesteps 1-5 until done

o~ wnh e

E. The"until done" step imolves two levds of validation.
1. First,we must validate that the specified system is complete and consistent from the engersget-
tive.
a. Thatis, the system meets all end-user needs and does sainthatis wholly satisfactory to the end
user.
b. This is accomplished by continued consultation with the end user.

2. Thesecond leel of validation irvolves completeness and consistefrom a formal perspeet.
a. Thiscan be accomplished in a number of ways.

b. In the case of mechanized specification languages, such as Spest, some completeness ang consistenc

checking is done using a computer-based analyzer.

c. Anothervaluable validation technique is peer ravieia formal walk-throughs.

d. Also,there are techniques for formal specification testing, including the postulation and pgrat#-of
tive theorems

CSC307-f15-L5 Bge 2

i. Suchtheorems define properties of the system thatxpect to be true, and which can bevae
true formally with respect to the pre- and postconditions.
ii. We will discuss putatie theorems briefly in 307, but not use them.

[ll. Formal specification maxims.

A. In developing ary formal software specification, it is useful to obsethe following two maxims:
1. Nothing is obvious.
2. Never trust the mgrammer.

B. Thefirst maxim relates primarily to uservig requirements.
1. Itis often easy to think that a requirement is sufficiently obvious that it need not be stated formally.
2. Theproblem with this thinking is that one persoabvious is not akays the same as another’s.
3. To ensure that a specification is sufficiently precise, stating the "obvious" is necessary.

C. Thesecond maxim is necessary tmid nasty surprises in an implementation.

1. Inmary cases, we might consider an application to bécsently simple that we can trust the program-
mer to get a useryel requirement right if we forget to specify it.

2. Ingeneral, such trust is a bad idea.

3. ltis better for the specifier to maintain a respectfully and cordially adversarial relationship with the imple-
mentor.

IV. Overview of Spest predicate notation.

A. Predicatesn Spest use standardvdaotation for Boolean expressions, augmented with additional predicate
logic operators.

B. In addition to Jaa Boolean expressions, we'll use standareaJaithmetic, and methodsvailable on Jaa
Col I ections andStri ngs.

C. Theseperations are summarized in Table 1.
1. Thepredicate logic operators are used in boolean-valued expressions.

a. Logicaland, or and not hae the same meaning as their e@ents in a programming language, e.g.,
"&&","||", and "I"in C and C++.

b. Logical implication and equélence hae their standard logical meanings, per the following truth

tables

p q if(p)q p g piffg
0|o0 1 0o 1
01 1 01 0
110 0 1]0 0
11 1 1] 1 1

¢. Theconditional choice operator has the truth table:
p X y p?x:y

O| x|y | vy
1| x|]y| X

where expressionsandy must hae the same type.

d. Theuniversal and existential quantifiersveatheir standard logical meanings, but will be applied in
specific ways, as upcoming examples illustrate.

CSC307-f15-L5

Bge 3

Predicate Logic: Relational:
Operator Description Operator Description
&& logical and == primitive equality
[] logical or I - primitive inequality
! logical not < primitive less than
if (e) (e? logical implication > primitive geater than
i ff logical equvalence <= primitive less than or equal to
if (el) (e else (e3d conditional choice >= primitive gtr than or equal to
forall universal quantification .equal s object equality
exi sts existential quantification . conpareTo object comparison
Logical Extensions: Arithmetic:
Operator Description Operator Description
X’ value after eecution + addition
return return value of method - subtraction
* multiplication
/ division

Collections, Lists, Strings:
Operator

Description

.size() size of collection
.cont ai ns(Cbj ect 0) collection membership
.get(int i) get ith list element

.length(String s)
other collection ops
other list ops

other string ops

length of s

seeCol | ecti on docs
seelLi st docs

seeSt ri ng docs

Table 1: Spest Expression Operators.

2. Thearithmetic operators are used in numeric-valued expressions.
a. Addition,subtraction, division, and multiplicationveatheir standard mathematical meanings.
b. Remember that preconditions and postconditions amayal boolean valued, so arithmetic must
always be performed in the context of a boolean expression.
c. E.g.,a + bisnot algd postcondition, buteturn == a + bis.
d. Notealso that in specifications, we are assuming idealized mathematical arithmetic, witrtiatvo
or underflow
e. Ifthe precision of numeric expressions is an issue in a specification, then it must be degfiliwith e
logic.
3. Thecollection operators are used with valueg a/a. util. Col |l ection orjava.util.List,
the latter used to model collections in which order must be specified.

4. All other standard ¥a gerators and library methods can be used in predicate expressions.

5. Asalways in Jaa programs, we must benare of when to useequal s versus==.
a. For Spest specifications= should only be used for primig typesi nt , doubl e, andbool ean.
b. For all other class-defined types, includiBigr i ng, . equal s is used for testing equality.
c. Forinequality of class types, useonpar eTo.

D. Furtherdetails of the notation are w&ed in the Jea and Spest reference manualgaikable in the 307 doc

CSC307-f15-L5 Bge 4

directory.

E. Thelogic of Spest is comparable to other formal specification languages.

1.

A difference between our use of Spest and a number of contemporary languages is collections of instead
of mathematical sets.

. Formally, both collections and sets can be fully axiomatized (i.e., mathematically defined), so there is no

lack of formality in the use of collections.

In fact, Spest provides definitions piire Java mllections, which are defined with fully sidefesft-free
methods.

. Owerall, the use of collections instead of sets results in little difference in a specification.

a. Setnotation makes certainuslevel specification easier than with lists, such as operations that can be
modeled with set union and difference.

b. On the other hand, collection and list notation makes other forms of specification easier than with sets,
such as specification of ordering constraints.

V. "Programming" with predicates.

A. Thelanguage of predicates used in pre- and postconditions can be thoughtoof @®ceduralprogram-
ming.
Therules for this style of "programming" are different than the procedural kind.

B.

1.

2.
3.

We define data, but only in abstract terms and from an end-users 'oed!' \werspectie, not from a
computer efficieng perspectre.
We cefine functions, but only in abstract terms of what the functions do, nathiep work.
Hencethe only "code" we h& ae boolean xpressions at the beginning and ending of functions, no
code bodies.
Theclosest thing we he t© traditional control constructs are theohguantifiersf or al | andexi st s.
a. Havever, these quantifiers are fundamentally different than normal programming language controls.
b. Namely they only return boolean values, and yrdon’t make anything "happen".
Insteacbf procedural descriptions of Wwdfunctions work (i.e., what happeimsidea function), we hee
only true/false descriptions of what functions do (i.e., vehaie beforeandafter the function happens).
a. Time does not pass within pre- or postconditiomen@nes with quantifiers.
b. Rather pre- and postconditions are simply statements of mathematical fact, that are instantaneously
true or false.
c. Hencegven though & or al | may seem somewhat éla or-loop, it is just a boolearxpression that
is only true or false.
d. Itmay be a big boolean expression that is true in a lot of casessHill itist a boolean expression.

Insome cases, it may be necessary to specify certain procedural aspects of a system, specifically the order in
which operations occur.

1.
2.

However when we do this we need to be careful not to lapse inteeatianal programming.

Thereforewe will specify ordering constraints non-procedurally by writing the precondition of a succes-
sor operation to be dependent on the postcondition of a predecessor operation.
a. E.g.,if operationB must follov operationA, we write the postcondition o such that the only ay
the precondition oB can be true is iA's postcondition is true.
b. In general, this is accomplished byviray A's postcondition require some unique value for one or
more outputs, and then\hag B's precondition state that its inputs mustéahe \alues required by
A
c. Inthis way we require thath must eecute beforeB, if B is ever to happen.

. Asalways, we will specify procedural (i.e., step-by-step) behavior only wheruh@&amentato the way

the user operates.

In particular we reed to be careful not to specify procedural details of a particular GUI, when it is only
one particular way to access the abstract operations.

. Heres the way to think about it -- if the userustperform a series of operations in a particular qQrithen

we'll specify the order.

CSC307-f15-L5 Bge 5

VI. An initial example of fully formal specification.

A. For starters with pre- and postconditions, Wiégin with some Calendar tool operations that are simpler
than the scheduling and viewing operationswee»amined in recent weeks.

B. Specificallywe’ll look at operations for adding and finding registered Calendar Tool users and groups.

C. Theseperations hae wseful but relatiely straightforward specifications.

D. Next week we’ll return to the specification of the moreolied scheduling a viewing operations.

VII. Synopsisof requirements for user database admin functions.

A. Whenthe user selects thelser s . . . "item in the Adni n’ menu, the system displays the screen shown in
Figure 1.
1. UserNane is a free-form stringt d is a unique system id of eight characters or |Esgj | address is

free-form string; phondér ea code is three digitd\unber is seven digits;

. TheAdd command adds a weuser;| d field must be unique.
. TheFi nd command finds biXane or | d or both.

a. Iffind is by name and the name is not unique, the system displays list of ids for users of that name.
b. The user clicks on an item in the list to see the full record for that id.
c. If no user of the gen name or id is found, the system displays a "no users found" pop-up dialog.

. Change works after the user changes the most recently displayed record.

a. Typically, the user run&i nd command first, then changes.
b. The original record is renved, nev record is added.

. Del et e removes the most recently displayed record, typically located with ad command; the sys-

tem displays an "are you sure" pop-up dialog for confirmation.

B. Whenthe user selects th&' oups ...’ item in the Adm n’ menu, the system displays the screen in
shown Figure 2.

1.

GroupNane is a free-form string that is unique for all groupsader s andG oups are lists of user
| ds for the group leaders and members, respaytiall leaders must be listed as members.

TheAdd command adds a wegroup; theNanme must be unique.

. TheFi nd command finds a group by name.

Mani nt ai n User Dat abase O FE
Nane: [|
area nunber
1d:[__] phone:[_]
Emai | : | |

[Add J C Fi nd) CChangeJ [Del et e)
[Clear) [Close]

Figure 1 User database maintenance dialog.

CSC307-f15-L5 Bge 6

Mai ntai n Group Dat abase 0 FEl
Nane: [|
Leaders: Menber s:
A A
v v
[Add J C Fi nd) [Change) [Del et e]
[d ear) [Cancel]

Figure 2 Group database maintenance dialog.

4. Change works after the user changes the most recently displayed group record.
a. Typically, the user runs théi nd command first, then changes.
b. The original record is renved, the n& record is added.

5. Del et e removes the most recently displayed record, typically located with ad command; the sys-
tem displays an "are you sure" pop-up dialog for confirmation.

VIII. Basic definitions for user database objects and operations.
A. Hereare the releant object and operation definitions:

inmport java.util.Collection;

/**

* UserDB is the repository of registered user information.
*/

abstract class UserDB {

/**

* The col |l ection of user data records.
*/

Col | ecti on<User Recor d> dat a;

/**
* Add the given UserRecord to the given UserDB. The Id of the given user

* record nust not be the sanme as a user record already in the UserDB.
* The | d conmponent is required and nust be eight characters or less. The

* emni| address is required. The phone nunber is optional; if given, the
* area code and nunber nust be 3 and 7 digits respectively.

*/

abstract void add(UserRecord ur);

/**

* Find a user by unique id.

*/

abstract UserRecord findByld(String id);

CSC307-f15-L5 Bge 7

/**

* Find a user or users by real-world name. |If nore than one is found,
* the output list is sorted by id.

*/

abstract Col | ection<User Record> findByName(String nane);

/**

* Change the given old UserRecord to the given new record. The old and
* new records nust not be the same. The old record nust already be in

* the input db. The new record nust neet the sane conditions as for the
* input to the AddUser operation. Typically the user runs the FindUser

* operation prior to Change to |locate an existing record to be changed.

*/

abstract void change(UserRecord ol d_ur, UserRecord new_ur);

/**

* Delete the given user record fromthe given UserDB. The given record
* nust already be in the input db. Typically the user runs the FindUser
* operation prior to Delete to |locate an existing record to delete.

*/

abstract void del ete(UserRecord ur);

}

/**
* A UserRecord is the information stored about a registered user of the
* Cal endar Tool. The Nanme conponent is the user‘s real-world name. The
Id is the unique identifier by which the user is known to the Cal endar
Tool. The Enmil Address is the electronic nail address used by the
Cal endar Tool to contact the user when necessary. The PhoneNunber is
for information purposes; it is not used by the Cal endar Tool for
* contacting the user.
*/
abstract class UserRecord {

String nane;

String id;

String email;

PhoneNunber phone;

*
*
*
*

}

abstract class PhoneNunber {
int area;
int nunber;

B. For a little practice with UML, Figure 3 shows diagrams for these definitionspieguivalent formats.

C. Theobjects and operations were ded from the usefevel requirements, per the model detion process
discussed in Lecture Notes 5 last week.

D. Theoperation signatures are quite represerdafithose defined for a collection object.
1. User DB. add is aconstructiveoperation, with a signature of the general form

class ACol |l ection {
Col | ecti on<AnEl enent > dat a;
voi d constructi veOp(AnEl enent) ;
}
with the effect of adding an element to the data collection.
2. Theversions ofUser DB. f i nd areselectiveoperations, with signatures of the general form
class ACol |l ection {

AnEl enent sel ecti veOp(Uni queEl enment Sel ector);
Col | ecti on<AnEl enent > sel ecti veQp(NonUni queEl erment Sel ect or) ;

}
with the effect of finding zero or more elements in a collection.

CSC307-f15-L5 Bge 8

One-part box format:

UserDB K> Raser, K> String

_ — Strring

_ | | string
— || Phone
Number

int

SOt

Equivalent three-part box format (with operation signature details):

UserDB UserRecord PhoneNumber
UserRecord* String name int area
String id int number
void add(UserRecord ur) String email
void delete(UserRecord ur) PhoneNumber
void change(UserRecord old_ur, UserRecord new_ur)

UserRecord findByld(String id)
Collection<UserRecord>findByName(String name)

Figure 3 UML diagrams for UserDB objects and operations.

a. Inboth forms, the input is a componentAofEl enent used as a searclek

b. In the first form,Uni queEl enent Sel ect or is a component whose value is required to be unique
among all elements of the collection.

c¢. Inthe second form\lonUni queE!l enment Sel ect or is a component whose value is not required to
be unique among all elements of the collection.

3. User DB. del et e is adestructiveoperation, with the same signature form as a consteugpieration,
but with the effect of removing rather than adding an element.

4. User DB. change is amodifyingoperation (combined construai and destructie), with a general sig-
nature of the form

cl ass ACol |l ection {
voi d nodi fyi ngOp(AnEl enent ol dEl enent, AnEl enent newEl enent);

}
with the effect of removing th@l dEl ement and adding thé&lewEl errent .

E. Inmodeling, it can be useful tve&rload operation names, for better traceability to the Ul.

CSC307-f15-L5 Bge 9

1. Interms of model accurgcoverloading works well in a case where the same operational widget (e.g.,
button) can be used with different input values.
2. Hencewe might werload thef i nd operation thusly:

abstract UserRecord find(String id);
abstract Coll ecti on<UserRecord> find(String name);

3. Theproblem is, this form of werloading is not supported invla since Jaa requires input signatures to
differ.

4. Hencewhere necessargperations need to be disambiguated by name, faisridBy| d andf i ndBy-
Name.

IX. An initial formal definition ofUser DB. add.
A. For operation pre- and postconditions, we will start by stating a predicate in English, and then refine it into
formal logic.
B. Aswe refine the logic, the English version will be retained as a comment, to aid in the human understanding
of the specification.
C. So,here is an initial version of the formal spec for tlseer DB. add operation:

inmport java.util.Collection;
abstract class UserDB {
Col | ecti on<User Recor d> dat a;

/*
* Add the given UserRecord ur to this.data. The Userld of the given user
* record nust not be the sane as a user record already in this.data. The
* Userld conmponent is required and nust be eight characters or less. The
* emni| address is required. The phone nunber is optional; if given, the
* area code and nunber nust be 3 and 7 digits respectively.

* <pre>

/1 The id of the given user record nust be unique and | ess than or
/1 equal to 8 characters; the emmnil address nust be non-enpty; the
/1 phone area code and nunber nust be 3 and 7 digits, respectively.

/1 The given user record is in this.data.

*/
abstract void add(UserRecord ur);

}
D. Now let’s formalize the logic.

1. TheEnglish comment for thadd postcondition specifies the most fundamental property of an\aditi
collection operation -- upon completion of the operation, thengdement to be added is in the output
collection.

2. Formally,
import java.util.Collection;
abstract class UserDB {

Col | ecti on<User Recor d> dat a;

/**

* Add the given UserRecord ur to this.data. The Userld of the given user

CSC307-f15-L5 Bge 10

* record must not be the sane as a user record already in this.data. The
* Userld conponent is required and nust be eight characters or less. The
* emai|l address is required. The phone nunber is optional; if given, the
* area code and number must be 3 and 7 digits respectively.
*
pre:
/1
/1 The id of the given user record nmust be unique and | ess than or
/1 equal to 8 characters; the emmil address nust be non-enpty; the
/1 phone area code and nunmber must be 3 and 7 digits, respectively.
/1
[/ *** Com ng soon ***
post :

/1
/1 The given user record is in this.data.
/1

data’.contains(ur);
*

*/
abstract void add(UserRecord ur);

}

3. Thesimple expressiondat a. cont ai ns(ur)’ "is al there is to it.
a. cont ai ns is a method defined jnava. uti |l . Col | ecti on.
b. Its operand is a value of the element type contained in the collection.
c. l.e.,in this case the operand itJser Recor d.

E. Asit standsUser DB. add still has no precondition formally defined, only a comment indicating what needs
to be defined.

1. Having no explicit precondition is equalent to a precondition of true.

2. Inmary cases, true preconditions are fine/egithat there is no specific condition that must be met before
the operation begins.

3. Inthe case of thélser DB. add operation, a defult true precondition definitelyam't do, since we can
see from the requirements that a number of conditions must be meteéor®B. add can proceed.

4. We will address these requirements step by step, as we refine the formal defiritsar &B. add.

X. RefiningtheUser DB. add postcondition.
A. Oneof the fundamental questions that must be asked of pre- and postconditionsyisiié gimng enough
1. Ingeneral, adding additional predicate clauses strengthens the conditions.
2. For example, the true precondition foser DB. add is relatively wealker than one that specifies that
there is ndJser Recor d of the same id already in the input database.

B. Ingeneral, there are tmaims to strengthening a specification.
1. Ensuringhat all user-leel requirements are met (cf. Maxim 1 &bp
2. Ensuringhat a system implementation works properly (cf. Maxim 2).

C. Theformer is accomplished via continued consultation with the end user; the latter requixper@gneed
analyst, who understands the kinds of problems that may arise in a system implementation.

D. Inthe case of the user and group databases, as well as similar database applications, an area of potential
implementation error is the introduction of spurious entries into the database and/or the spurious deletion of
entries.

E. To avoid such spurious effects, the specificatiotugpér DB. add is strengthened as follows:
inmport java.util.Collection

abstract class UserDB {

CSC307-f15-L5 Bge 11

Col | ecti on<User Recor d> dat a;

/*
post:
/1
/1 The given user record is in this.data.
/1
data’.contains(ur)
&&
/1
/1 Al the other records in the output db are those fromthe input db,
/1 and only those.
/1
forall (UserRecord ur_other ; !ur_other.equal s(ur)
if (data.contains(ur_other))
data’ . contai ns(ur_other)
el se
ldata’ . contains(ur_other));
*/

abstract void add(UserRecord ur);

}

F. This specification introduces the use of thevensial quantification operatdror al | .
1. Uniersal quantification in Spest has the same meaning as in standard typed predicate logic.
2. Thegeneral format is the following:

forall (T x;constraint ; predicate)

a. Thisis read "for all valueg of typet, such thatconstraintholds,predicateis true."
b. Theconstraintexpression is optional.
¢. Thequantified variable& must appear igonstraint(if present) angbredicate

3. Ingeneral, uniersal quantification is used frequently when specifying predicates on collection objects, as
upcoming examples illustrate.

G. Whilethis example is a good illustration of specification strengthening, there are easier ways to specify the
same meaning logically.

1. For example, the postcondition logic can be simplified to the following:
import java.util.Collection;
abstract class UserDB {
Col | ecti on<User Recor d> dat a;

/*

/1

/1l A user record is in the output data if and only if it is the new

/1 record to be added or it is in the input data.

/1

post :

forall (UserRecord ur_other ;
(data’.contains(ur_other)) iff
ur _ot her. equal s(ur) || data.contains(ur_other));

*/
abstract void add(UserRecord ur);

2. Ingeneral, predicate simplification is beneficial when it helps clarify the specification.
3. Simplificationis not necessaras bng as the logic is clear and accurate.

CSC307-f15-L5 Bge 12

H. Anotherway to amplify this specification is to use a construetiist operataras bllows:
inmport java.util.Collection;
abstract class UserDB {

Col | ecti on<User Recor d> dat a;

/*
/1
/1 The given user record is in this.data, per the semantics of
/1 Coll ection. add.
/1
post:
data’ . equal s(data. add(ur));
*/

abstract void add(UserRecord ur);

}
whereadd in this context is thgava. uti | . Col | ecti on. add method.

1. A constructivespecification such as this describes the output of an operation using a coestpest-
tion on the inputs.

2. In contrast, aranalytic specification (such as the previous spec using the bootdaee\cont ai ns
method) describes output without using constvectperations.

3. In307, we will defineanalytic specifications whewer possible.
a. Specificallywe won't used methodthat construct or modify collections.
b. There is debate among so#tie engineers as to the relatimerits of constructie vesus non-con-
structive gecification; we will discuss the issues a bit later.

Xl. Refiningthe postconditions for the otheser DB operations.

A. Basedon the deelopment of theUser DB. add specs sodr, we an provide a comparablevi of formal
specification for the other thrésser DB operations.

B. For example, here is the idea for formalizing thendBy| d postcondition:
inmport java.util.Collection;
abstract class UserDB {

Col | ecti on<User Recor d> dat a;

| **

* Find a user by unique id.
<pre>
/1 1f there is arecord with the given id in the input db, then the
/1 output record is equal to that record, otherw se the output record
/Il is enpty.

*/
User Record findByld(String id);

C. Hereare the initial formal specifications for tlié ndByl d, f i ndByNane, ChangeUser, and Del e-
t eUser operations, with the "no spurious data" requirements.

inmport java.util.Collection;

abstract class UserDB {

CSC307-f15-L5 Bge 13

Col | ecti on<User Recor d> dat a;

/*

* Find a user by unique id.

* <pre>
pre: // None yet.

post :

/1
/Il If there is a record with the given id in the input data, then the
/] output record is equal to that record, otherw se the output record
/1 is null.
/1
exists (UserRecord ur_found ; data.contains(ur_found)

ur_found.id. equal s(id) & ur_found. equal s(return))

[

lexists (UserRecord ur_found ; data.contains(ur_found)

ur_found.id. equals(id)) &k return == null;

*
*/
abstract UserRecord findByld(String id);

/*
* Find a user or users by real-world name. |f nore than one is found,
* list is sorted by id.
* <pre>
pre: // None yet.
post:
/1
/1 Arecordis inthe output list if and only it is in the input UserDB
/1 and the record nane equal s the nanme bei ng searched for.
/1
forall (UserRecord ur
return.contains(ur) iff
dat a. contai ns(ur) && ur.name. equal s(nane));
*
*/

abstract Col | ection<User Record> findByName(String nane);

/**

* Change the given old UserRecord to the given new record. The old and

* new records nust not be the same. The old record nust already be in

* the input db. The new record nust neet the sane conditions as for the

* input to the AddUser operation. Typically the user runs the FindUser

* operation prior to Change to |locate an existing record to be changed.

*/

/* <pre>
pre: // None yet.

post:
/1
/Il A user record is in the output data if and only if it is the new
/1 record to be added or it is in the input data, and it is not the old
/'l record.
/1
forall (UserRecord ur_other
data’.contains(ur_other) iff
ur _ot her. equal s(new_ur) ||
(data. contains(ur_other) &&
lur_other.equal s(old_ur)));
*
*/
abstract void change(User Record ol d_ur, UserRecord new_ur);

/**

CSC307-f15-L5 Bge 14

}

* Delete the given user record fromthe given UserDB. The given record

* nust already be in the input db. Typically the user runs the FindUser

* operation prior to Delete to locate an existing record to delete

* <pre>
pre: // None yet.

post :
/1
/1 A user record is in the output data if and only if it is not the

/] existing record to be deleted and it is in the input data
/1

forall (UserRecord ur_other
data’.contains(ur_other) iff

lur_other.equal s(ur) && data.contains(ur_other))
*

*/
abstract void del ete(UserRecord ur)

D. Obsenrations.

1.
2.

All of the preconditions are commentdédbhe yet . "; we will refine preconditions shortly.

Thepostcondition forff i ndBy| d uses the existential quantifiexi st s; details of quantifier formats are
coming up.

. Thepostcondition foif i ndByNane is missing an important piece of logic vis a vis tiseel require-

ments. Whats it? (Hint: see the methaltomment.)

Thepostcondition logic fochange anddel et e are adaptations of the postcondition logicddd.
a. Thiskind of logic is sometimes called the "no junk, no confusion” rule for collection classes.
b. Namely when we put something into or takbomething out of a collection,

i. wedon't put in or tale aut anything superfluous (no junk),

ii. wedo putin or tak aut exactly what we intend to (no confusion).
¢. You should study the logic closely to clarify your understanding of it.

XIl. On the use of quantifiers.
A. Universal and existential quantification areotways to state multiple conditions in a single expression.

1.
2.

With universal quantificationf(or al |), the quantifier expression is trualf cases considered are true.

With existential quantificationeki st s), the quantifier expression is trueaif least oneof the cases is
true.

Logically you can think of or al | andexi st s as forms of repeated logicahd andor , respectiely.
Theres even a generalized DeMayan’s law that makes the tavforms of quantifier interchangeable:
forall (T x ; p) iff lexists (T x ; !p)

and
Iforall (T x ; !p) iff exists (T x ; p)

B. Inthe software modeling task upon which we’re focused, the use of logical quantifiers is focusedym tw
cific objectves:

1.

Statinga requirement about all values of a particular type, e.g.,

forall (UserRecord ur ; requirenent-predicate)

2. Statinga requirement that must be true for at least one value of a particular type, e.g.,

exists (UserRecord ur ; requirenent-predicate)

C. Constrainedorms of qualification provide further focus.
1. Statinga requirement about all values (or at least one value) in a particular data collection, e.g.,

CSC307-f15-L5 Bge 15

D.

forall (UserRecord ur ; data.contains(ur) ; requirenent-predicate)

exists (UserRecord ur ; data.contains(ur) ; requiremnment-predicate)

2. Statinga requirement about allalues (or at least one value) of a particular type, with some further restric-
tions on the alues. E.g.,

forall (int i ; i > 0 ; requirenent-predicate)
exists (int i ; i > 0 ; requirenent-predicate)

Keeping these specific focuses in mind will help namlown when and hw to use quantifiers.

XIll. Formally specifying user-lel requirements.

A.
B.

To this point, we hee formalized some basic requirements for our database operations.

Specifically we havefocused on postconditions related to the second of our formal specification maxims --
not trusting the programmer.

. Itis now time to consider the formal definition of udevel requirements per the first maximnething is

obvious

. To dart, there are a number of "obvious" useeleequirements, including the following:

1. Duplicateentries are not allowed in théser DB.
2. Inputvalues are checked for validity.

3. Ifthef i ndByName operation outputs more than one record, the output should be sorted in some appro-
priate order.

. We haveconsidered these requirements to some extent in the requirementseaarrati

1. However, the process of fully formalizing the specification careatimportant details we may Y& ove-
looked in the requirements scenarios.

2. For example, in the Milestone 6 scenarios we initiallyerdooked the sorting requirement for multiple
outputs fronf i ndByNane.

3. Suchoversights are common, and one of the main reasons we're doing the fully fovehaff lihe spec.

An historical note is of interest withgerds to such requirements.

1. In software engineering methodologies less formal than whatewssing, the process of formalizing a
specification can takthe form of "firming up" the English prose in which the requirements are stated.

2. For example, the first of the almrequirements could be stated "formally" as follows:
A UserDB shall not contain duplicate entries.

3. Whilethis may not seem to be a substantial impmeent to the original statement of the requirement, it
represents a seriously-proposed approach to formalization.
a. With this approach, a number of possible forms of natural language are standardized with a restricted
vocabulary.
b. For example, all formal requirements are expressed using "shall" instead of other comparable English

words such as "should", "ought to", or "allowed to".
4. Thisidea of formalizing English is naoterthy because it has been widely used in practice, and significant
documents hze keen "formalized" in this manner.
5. While such rules can indeed help with the formalization procesg,fttliewell short of a fully formal
basis for requirements specification.

XIV. No Duplicates

A.
B.

Analysisof the no duplicates requirement provides fine support for the "nothing-is-obvious" maxim.
While we may expect reasonable people to understand what "no duplicates" means, theradra in f

CSC307-f15-L5 Bge 16

number of plausible interpretations here.

C. Threesuch interpretations are the following:
1. Notwo User Recor ds in aUser DB have exactly the same values for &lser Recor d components.
2. Notwo User Recor ds in aUser DB have the same name.
3. Notwo User Recor ds in aUser DB have the same id.

D. Whichof these interpretations to choose is categoricadta matter for a programmer to decide.

1. Ratherit should be decided at the user specificatiorJeby the analyst in consultation with the end
users.

2. We mould even grant that most programmers are reasonably smart, so in this case we might safely assume
that a programmer could makhe correct decision, or kmoenough to consult with the user to resolv
the ambiguity.

3. Supposehowever, we were specifying data records in a much more complicated application domain, such
as aeronautics.

4. Inthis domain we might hv@ a cta object such as an anomaly list, with record fieldsHilkeFl i ght ,
Taxi Qut, I nFl i ght, Appr oach, andLandi ng.
a. Whatdoes it mean to disalloduplicates in an anomalies database?
b. Which field, if ary, could be used as a uniqueyR

5. Thepoint is that such questions need to be answered by end users and/or application domain experts.

6. Suchquestions should most certainly not be left unanswered when the programmer begins work, since the
programmer may well not kmohow to answer them, orven that the need to be asked.

E. Inour User DB case, we hae dready determined with the customer that kit component of dJser -
Recor d is the unique &y.
1. Thismeans thatUser Recor ds in theUser DB need only differ in the Id value.
2. Inparticulay there may be multiplelser Recor ds with the same name.

F. The basic strategy for disallowing duplicates is to define a preconditiobeenDB. add that checks for an
element of the same Id as theer Recor d being added.

G. Hereis the refined specification folser DB. add; for brevity the postcondition is omitted:
inmport java.util.Collection;
abstract class UserDB {

Col | ecti on<User Recor d> dat a;

/**
* Same comrent as above ...
* <pre>
pre:
/1
/1 There is no user record in the input UserDB with the sane id as the
/1 record to be added.
/1
lexists (UserRecord ur_input ; data.contains(ur_input) ;
ur_input.id.equal s(ur.id));

post:
/1 Same postcondition as above ...

*/
abstract void add(UserRecord ur);

CSC307-f15-L5 Bge 17

H.

A discussion of the exact nature of a precondition is in order here.
1. Bydefinition, failure of a precondition means that the operation i@pied from &ecuting.
2. Moreprecisely precondition failure means that the operation fails.

3. Thisabstract meaning of preconditioailire does not define wooperation failure is percegd by the
end user.
a. Generallythe end-user should see an appropriate error message when an operation fails.
b. The details of such error messages are typically abstracted out of the formal specification.

XV. Input value checking.

A.

Inputvalue constraints for a user record are described in the requirements scenarios as follows:
1. theld of a user record is a unique system id of eight characters or less;

2. theemail address is a free-form string;

3. thephone area code is three digits, the numbeviengigits.

. Theseconstraints are defined formally as follows, with accompanying commentary:

inmport java.util.Collection;
abstract class UserDB {
Col | ecti on<User Recor d> dat a;

/* <pre>
pre:
/1
/1 There is no user record in the input UserDB with the sane id as the
/1 record to be added.
/1
lexi sts (UserRecord ur_other
dat a. cont ai ns(ur _ot her)
ur_other.id.equal s(ur.id))

&&
/1
/1 The id of the given user record is not enpty and 8 characters or
Il less.
/1
(ur.id !'=null) & (ur.id.length() > 0) && (ur.id.length() <= 8)
&&
/1
/1l The email address is not enpty.
/1
(ur.email !'=null) && (ur.emil.length() > 0)
&&
/1

/1 1f the phone area code and nunber are present, they nust be 3 digits
/1l and 7 digits respectively.
/1
(if (ur.phone.area != 0)
Integer.toString(ur.phone.area).length() == 3) &&
(if (ur.phone. nunber != 0)
I nteger.toString(ur.phone. nunber).length() == 7);

post: // Sane as above ;

CSC307-f15-L5 Bge 18

*/
abstract void add(UserRecord ur);

C. Obserations

1.

Thestandard way to strengthen a precondition &rtd on additional clauses.
a. Herethe previous "no duplicates" clause remains.
b. The nev requirements are added apding them on.

. Theprocess of formally specifying these requirements led to thewdiscof one unnoticed requirements

detail, which will be updated in the scenario naveati

. Specificallyin considering the formal specification for the constraint on email address, we were alerted to

the question of whether it should be required.

a. Inconsultation with the customéhe answer turns out to be "yesVee though we had not originally
considered the issue explicitly in the scenarios.

b. Hence, there is the precondition clause

(ur.email !'=null) && (ur.emil.length() > 0)

c. Thissays that while the email address can be a free-form string, it cannot be null or of length 0, i.e.,
the user cannot lga it empty in the dialog.
a. Notethat we include a standardvadgractice of checking for a null reference value before access-
ing a component of that reference.
b. Redicates should not thmoexceptions, unless theare explicitly dealt with in the specification,
which subject we will address next week.
d. Suchare just the kind of details we hope to catch while formalizing.

XVI. Orderingof multi-record output lists.

A.

Theversion off i ndByName input produces a list dfiser Recor ds, since thenamne input is not required
to be a unique-valued component of a record.

As noted abwe, the initial requirements scenarigablooked what order the outputs should be in, if there are
two or nore.

Themost reasonable choice is to sort the output list by Id field.

1.
2.

4,

Thescenario narrate will be updated to reflect this decision.

As with other such requirements, we should not trust that a programmer will do the right thing in the
absence of a formal statement.

In this case, the programmer may negrethink there is problem if an output list is displayed in some
internal ordersuch as the orddgser Recor ds ae stored in a hash table.

Suchan order is as good as random to most human users, and as such reeebatistactory.

To gpecifyUser Recor d list ordering, we must strengthen thiendBy Nane postcondition. Herd is:

inmport java.util.Collection;
inmport java.util.List;

abstract class UserDB {

Col | ecti on<User Recor d> dat a;

/**

* Find a user or users by real-world name. |f nore than one is found,
* the output list is sorted by id.

* <pre>

pre: // Not defined yet.

CSC307-f15-L5 Bge 19

post :
/1
/1 The output list consists of all records of the given nane in the
/1 input data.
/1
forall (UserRecord ur ;
return. contains(ur) ;
dat a. contai ns(ur) && ur.nane. equal s(nane))

&&

/1

/1 The output list is sorted |exicographically by id, according to the

/1 semantics of java.lang.String.conpareTo().

/1

forall (int i ; (i >=0) & (i < return.size() - 1) ;
return.get(i).id.conmpareTo(return.get(i+1).id) < 0);

*
*/
abstract List<UserRecord> findByNane(String nane);

E. AnEnglish translation of the sorting logic is the following:

"For each position i in the output list, such that i is between the first and the second to the last positions in the
list, the ith element of the list is less than the i+1st element of the list."

F. You should study this logic to be satisfied that it specifies sorting satisfactorily.

G. Notethat we hae wsed thg ava. uti | . Li st interface to define our collection object.
1. We'll uselLi st instead ofCol | ect i on in a specification when we need to specify ordering
2. java. util. Col | ecti on does not hee theget method for selecting thet h element.

XVII. Unboundedquantification.

A. What would happen to the meaning of the sorting predicate if the constraint on the range of i were not
present?

B. l.e.,if the sorting logic in the postcondition were changed to the following:

forall (int i ; return.get(i).id.conpareTo(return.get(i+1).id) < 0)

C. Themeaning here is ambounded quantification

1. Thatis, the quantifier operatesa the unbounded range of all integers.
a. Inpure mathematical terms, unbounded means infinite.
b. Interms of a J&a pogram, numbers are bounded by th@rdvsize of a particular computer architec-
ture, but we are abstracting that out of our specifications at the moment.
2. Inprinciple, there is nothing wrong with unbounded quantification.
3. For example, the original anti-spurious requirementdJoer DB. add are expressed using unbounded
quantification
a. l.e.forall (UserRecord ur ...)
b. The range of th&lser Recor d type is unbounded, since it constrains string componentsathesv
of which are conceptually unbounded, due to their conceptually unbounded length.

4. Onemight ague for range restrictions on the grounds &tieihgy, but as noted earligefficiengy of this
nature is not of concern in an abstract specification.

D. Thepotential problem with unbounded quantification is that the body of thversal quantifier may not
have the correct value in an unbounded range, and hence the value of the entire qugntifssian may be

CSC307-f15-L5 Bge 20

false when we expect it to be true, or may them eception, which we do not want.
1. Thisis in fact the case in the unbounded quantification used in the sorting predi¢atad&y Namne.

2. Specifically the evaluation of r et urn. get (i) thronvs an exception if is outside the bounds of
return.

E. Theexact outcome of the unbounded quantification depends on the semantics, i.e., formal definition, of a par
ticular specification language.

1. Ingeneral, howeer, unbounded quantification is potentially problematic undgriagical semantics.

2. Thepoint is that one needs to be careful when using unbounded quantification to ensure that the body of
the quantifier has a well understood valuerdhe entire unbounded range of quantification.

3. Thisis particularly the case when quantifyingepthe elements of a list.

XVIII. Using auxiliary functions.

A. Thepostcondition in the most recent definitiorf @hdByNane is a little lengtly.

1. Inpractice, predicates significantly longer than this can appear in the specification of axcupephe
tion.

2. Whenpre- or postconditions become unduly long, it is useful toausdiary functionsto omganize the
logic.

3. In Spest, an auxiliary function is defined as a booledued method in the class where the function is
used in a predicate.

4. Thelogic of the auxiliary function is defined with a postcondition of the format'urn == ..."
where " . . "is a boolean expression that appears in one or more predicates.

5. Thepurpose of an auxiliary function is simply to modularize a piece of logie,iga rnemonic name,
and allav that logic to be imoked in one or more places.

6. l.e.,the purpose is to malredicates more readable and understandable.
B. Asan example, here is the preceding definitiohiaidBy Name using two auxiliary functions.

inmport java.util.Collection;
inmport java.util.List;

abstract class UserDB {

Col | ecti on<User Recor d> dat a;

/**

* Find a user or users by real-world nane. |If nore than one is found,

* the output list is sorted by id.

* <pre>

pre: // Not defined yet.

post:
recor dsFound(name, return)
&&
sortedByl d(return);

*
*/
abstract List<UserRecord> findByNane(String nane);

/**
* Return true if the given list consists of all records of the given nane
* in this.data
* <pre>
post:
return ==

CSC307-f15-L5 Bge 21

forall (UserRecord ur ;
list.contains(ur) iff

dat a. contai ns(ur) && ur.name. equal s(nane));
*

*/
abstract bool ean recordsFound(String name, Collection<UserRecord> list);

/**

* Return true if the given list is sorted |exicographically by id,
* according to the semantics of java.lang. String.conpareTo().

* <pre>

post :
return ==
forall (int i ; (i >=0) && (i < list.size() - 1) ;
list.get(i).id.conpareTo(list.get(i+1).id) < 0);
*
*/
abstract bool ean sortedByl d(List<UserRecord> list);

XIX. Moving on to the specs for the GroupDB.

A.

Figure2 on mge 6 shows the Ul for the other uselated database in the Calendar Tool -- the database of
user groups.

. Thespecs for the GroupDB are quite similar to UserDB.

1. Bothdatabases are clear examples of collection objects with typical collection operations.

2. Thespecs for GroupDB are slightly simpleiven that there is only one searchable component, the group
name, which must be unique among all groups in the database.

. A significant specification issue does arise in the area of interaction between user database operations with

the group database.

1. Specificallywhat happens to groups that/bas a nember a user who is deleted from the user database?
2. Possiblavays to deal with this problem include the following:
a. Adeleted user is automatically rewed from all groups of which she is a member.
b. If a deleted user is in one or more groups,aning message is output indicating what groups the user
was in, but the users must be manually deleted from the groups; in the meantiraekown users
are simply ignored in the group member lists.
c. Thesystem preents deletion of a user until she has first been deleted from all groups; to assist the
deletion, the system outputs a message indicating the affected groups.

. Thisis yet another example of where formalizing the specs has led to theedyseban important require-

ments issue.
1. Inthis case, user consultation results in the automaticva smution.

2. Thisin turn leads to another issue, which is what should be done with groups vehmHeadey due to
the automatic deletion of a member or was the only leader of a group.

3. Thisissue is resolved by allowing leaderless groupshbving the system output a warning when the sit-
uation arises.

All of the issues having been resolved, the resulting complete spec for the user and group databases is as fol-
lows:

/

This file defines the objects and operations related to naintaining the
user, group, and |location databases of the cal endar system See Section 2.6
of the Ml estone 8 requirenents.

/

* ok ok Ok % F

CSC307-f15-L5 Bge 22

inmport java.util.Collection;
inmport java.util.List;

/**

* UserDB is the repository of registered user information.

*/

abstract class UserDB {

/**

*

The col |l ection of user data records.

*/
Col | ecti on<User Recor d> dat a;

/**

/

*

Ref erence to G oupDB needed for change and del ete met hods.

*/
GroupDB groupDB;

L

*

Add the given UserRecord to the given UserDB. The Id of the given user
record nmust not be the same as a user record already in the UserDB.

The 1d conponent is required and nmust be eight characters or less. The
enai |l address is required. The phone nunber is optional; if given, the
area code and nunber nust be 3 and 7 digits respectively.

<pre>

pre:

/1

/1 There is no user record in the input UserDB with the sane id as the

/1 record to be added.

/1

lexi sts (UserRecord ur_other

dat a. cont ai ns(ur _ot her)
ur_other.id.equal s(ur.id))

/1

/1 The id of the given user record is not enpty and 8 characters or
Il less.

/1

(ur.id !'=null) & (ur.id.length() > 0) & (ur.id.length() <= 8)

&&

/1

/1l The email address is not enpty.

/({Jr.errail !'= null) & (ur.email.length() > 0)
&&

/1

/1 1f the phone area code and nunber are present, they nust be 3 digits
/1 and 7 digits respectively.
/1
if (ur.phone.area != 0) (
Integer.toString(ur.phone.area).length() == 3) &&
if (ur.phone.nunber !'= 0) (
I nteger.toString(ur.phone. nunber).length() == 7);

post :
/1
/1l A user record is in the output data if and only if it is the new
/1 record to be added or it is in the input data.
/1
forall (UserRecord ur_other
(data’.contains(ur_other)) iff

CSC307-f15-L5 Bge 23

ur_other.equal s(ur) || data.contains(ur_other));
*
*/
abstract void add(UserRecord ur);
/**
* Find a user by unique id.
* <pre>
post:
I/
/Il If there is a record with the given id in the input data, then the
/1 output record is equal to that record, otherw se the output record
/1 is null.
I/
exi sts (UserRecord ur_found ; data.contains(ur_found)
ur_found.id. equal s(id) & ur_found. equal s(return))
[
lexi sts (UserRecord ur_found ; data.contains(ur_found)
ur_found.id.equals(id)) &k return == null;
*
*/
abstract UserRecord findByld(String id);
/**
* Find a user or users by real-world name. |f nore than one is found,
* then the output list is sorted by id.
* <pre>
post:
I/
/1 The output list consists of all records of the given nane in the
/1 input data.
I/
forall (UserRecord ur
return. contains(ur)
dat a. contai ns(ur) && ur.nane. equal s(nane))
&&
I/
/1 The output list is sorted |exicographically by id, according to the
/1 string conparison semantics of java.lang. String.conpareTo().
I/
forall (int i ; (i >=0) & (i < return.size() - 1) ;
return.get(i).id.conmpareTo(return.get(i+1).id) < 0);
*
*/

abstract List<UserRecord> findByNane(String nane);

/**
* Change the given old UserRecord to the given new record. The old and
* new records nust not be the same. The old record nust already be in
* the input db. The new record nust neet the sane conditions as for the
* input to the AddUser operation. Typically the user runs the FindUser
* operation prior to Change to |locate an existing record to be changed.
*
* |f the user record id is changed, then change all occurrences of the
* old id in the group db to the new id.
* <pre>
pre:

I

/1 The old and new user records are not the sane.

I

1ol d_ur. equal s(new_ur)

&&

CSC307-f15-L5 Bge 24

/1

/1 The old record is in this.data
/1

dat a. contai ns(ol d_ur)

&&

/1
/1 There is no user record in the input UserDB with the sane id as the
/1 new record to be added
/1
| exists (UserRecord ur_other
dat a. cont ai ns(ur _ot her)
ur_other.id.equal s(new_ur.id))

/1

/1l The id of the newrecord is not enpty and 8 characters or |ess

/1

(new_ur.id !'= null) & (new_ur.id.length() > 0) &&
(new_ur.id.length() <= 8)

&&

/1

/1l The email address is not enpty.

2aemLur.enail '= null) && (new_ur.email.length() > 0)
&&

/1

/1 1f the phone area code and nunber are present, they nust be 3 digits
/1l and 7 digits respectively.

/1
if (new_ur.phone.area != 0) (
Integer.toString(new_ ur.phone.area).length() == 3) &&
if (new_ur.phone. nunmber != 0) (
I nteger.toString(new_ur. phone. nunber).length() == 7)
post :
/1

*

*/

/Il A user record is in the output data if and only if it is the new
/1 record to be added or it is in the input data, and it is not the old
/Il record

forall (UserRecord ur_other
data’.contains(ur_other) iff
ur _ot her. equal s(new_ur) ||
(data.contains(ur_other) &&
lur_other.equal s(old_ur)))

/1
/1 If newid is different than old id, then all occurrences of old id
/1 in the GoupDB are replaced by newid
/1
if (lold_ur.id.equals(new ur.id) (true)
Il Logic left as exercise for the reader

abstract void change(

/**

User Record ol d_ur, UserRecord new_ur);

CSC307-f15-L5

/

L

*

*

* Delete the given user record fromthe given UserDB. The given record
* nust already be in the input db. Typically the user runs the FindUser
* operation prior to Delete to |locate an existing record to delete.
*
* In addition, delete the user fromall groups of which the user is a
* menber. |If the deleted user is the only | eader of a one nore groups,
* output a warning indicating that those groups have becone | eaderl ess.
* <pre>
pre:

I/

/1 The given user record is in this.data.

I/

dat a. contai ns(ur);
post:

I/

/1 A user record is in the output data if and only if it is not the
/] existing record to be deleted and it is in the input data.
/1
forall (UserRecord ur_other
data’.contains(ur_other) iff
lur_other.equal s(ur) && data.contains(ur_other))

&&

/1

/1 The id of the deleted user is not in the |eader or menber |ists of

/1 any group in the output G oupDB. (NOTE: This clause is not as

/1 strong as a conplete "no junk, no confusion" spec. Wy not? Should

/1l it be?)

/1

forall (G oupRecord gr ; groupDB.data.contains(gr)
lgr.leaders.contains(ur.id) & !gr.nmenbers.contains(ur.id))

&&

/1
/'l The Leaderl| essGoupsWarning |list contains the ids of all groups
/1 whose only | eader was the user who has just been del eted.
/1
forall (G oupRecord gr ; groupDB.data.contains(gr)
forall (String id ;
(return. groupNanes. contains(id) iff
gr.leaders.size() == 1) &&
(gr.leaders.get(0).equal s(ur.id))));

*

*/

abstract Leaderl essG oups\Warni ng del ete(UserRecord ur);
*

A UserRecord is the information stored about a registered user of the
Cal endar Tool. The Name conponent is the user's real-world nane. The
Id is the unique identifier by which the user is known to the Cal endar
Tool. The Enmil Address is the electronic nail address used by the

Cal endar Tool to contact the user when necessary. The PhoneNunber is
for information purposes; it is not used by the Cal endar Tool for
contacting the user.
/

abstract class UserRecord {

String nane;
String id;

String email;
PhoneNunber phone;

Bge 25

CSC307-f15-L5

abstract class PhoneNunber {
int area;
int nunber;

}

/**
* Leader| essGroupsWarning is a secondary out put of the UserDB.change and
* User DB. del ete operations, indicating the names of zero or nore groups that
* have becone | eaderless as the result of a user having been del eted.
*/
abstract class Leaderl essG oupsWarni ng {
Col | ection<String> groupNanes;

}
/**
* GroupDB is the repository of user group information.
*/
abstract class G oupDB {
/**
* The collection of group data records.
*/

Col | ecti on<G oupRecor d> dat a;

/**

* Reference to G oupDB needed for change and del ete met hods.
*/

User DB user DB;

/**

* Add the given G oupRecord to the given GoupDB. The nane of the given

* group nust not be the same as a group already in the GoupDB. All
* group nenbers nust be registered users. The |eader(s) of the group
* nmust be menbers of it.
* <pre>
pre
I/
/1 Al group nenmbers are registered users.
I/

forall (String id ; gr.nmenbers.contains(id)
exi sts (UserRecord ur ; userDB.data.contains(ur)
ur.id.equals(id)))

&&
/1
/1 Al group |eaders are nenbers of the group.
/1

forall (String id ; gr.leaders.contains(id)
gr.nenbers. contains(id));

post :
/1
/1 A group record is in the output db if and only if it is the new
/! record to be added or it is in the input db.
/1
forall (G oupRecord gr_other
data’.contains(gr_other) iff
gr_other.equal s(gr) || data.contains(gr_other));
*
*/
abstract void add(G oupRecord gr);

/**

* Delete the given group record fromthe given GoupbDB. The given record
* nust already be in the input db. Typically the user runs the FindG oup
* operation prior to Delete to |locate an existing record to delete.

Bge 26

CSC307-f15-L5 Bge 27

*

*

*

<pre>

pre:

/1

/1 The given G oupRecord is in the given G oupDB.
/1

dat a. contai ns(gr);

post :

/

/1
/1 A group record is in the output db if and only if it is not the
/] existing record to be deleted and it is in the input db.
/1
forall (G oupRecord gr_other
data’.contains(gr_other) iff
Igr_other.equal s(gr) && data.contains(gr_other));

abstract void del ete(G oupRecord gr);

/

/**

L I

*

*

Change the given old G oupRecord to the given new record. The old and

new records nust not be the sane. The old record nust already be in

the input db. The new record nust neet the sane conditions as for the

input to the AddG oup operation. Typically the user runs the Fi ndG oup

operation prior to Change to locate an existing record to be changed.
<p|’e>

pre:

/1

/1 The old and new group records are not the sane.
/1

lol d_gr. equal s(new_gr)

&&
/1
/1 Al group nenmbers are registered users.
/1

forall (String id ; new_gr.nenbers.contains(id)
exists (UserRecord ur ; userDB.data.contains(ur) &&
ur.id.equals(id)))

&&
/1
/1 Al group |eaders are nenbers of the group.
/1

forall (String id ; new_gr.l|leaders.contains(id)
new_gr.nenbers. contains(id));

post :

*/
abstract void change(G oupRecord ol d_gr, G oupRecord new gr);

/1
/1 A group record is in the output db if and only if it is the new
/Il record to be added or it is in the input db, and it is not the old
/'l record.
/1
forall (G oupRecord gr_other
data’.contains(gr_other) iff
gr _ot her. equal s(new_gr) ||
dat a. contai ns(gr_other) &&
I gr_other.equal s(old_gr));

* Find a group by uni que nane.

*

<pre>

CSC307-f15-L5 Bge 28

/*

*

E N I T

post :
/1
/Il 1f there is a record with the given nane in the input db, then the
/] output record is equal to that record, otherw se the output record
/Il is enpty.
/1
exists (G oupRecord gr_found ; data.contains(gr_found) ;
gr _found. nanme. equal s(id) && gr_found. equal s(return))
[
lexi sts (G oupRecord gr_found ; data.contains(gr_found)
gr_found. nanme. equal s(id) && return == null);

*
*/
abstract G oupRecord findByld(String id);

A GroupRecord is the information stored about a user group. The Nane
conponent is a unique group name of any length. Leaders is a list of zero
or nore users designated as group |eader. Menbers is the list of group
menbers, including the | eaders. Both lists consist of user id's. Nornmally
a group is required to have at |east one leader. The only case that a
group becones | eaderless is when its only leader is deleted as a registered
user.

/

abstract class G oupRecord {

}

/*

*

String nane;
Li st<String> | eaders;
Li st<String> nenbers;

* The LocationDB contains the |ocation records that provide information about
* the locations at which items are schedul ed.

*/
abstract class LocationDB {

}
!

L

*

*

*/
abstract class Locati onRecord {

}

Col | ecti on<Locati onRecor d> dat a;

A LocationRecord has a nane and nunber which serve to identify where
the location is. Both fields are free-formstrings and the Cal endar
Tool enforces no constraints on their values. The Bookings conponent
isalist of the titles of the items that are scheduled in the
location. The Renmarks conponent is a free-formtext that can be used
to describe any other pertinent information about the room

String nane;
String nunber;
Booki ngs booki ngs;
Renmar ks renarks;

abstract class Bookings { /* ... */ }
abstract class Remarks { /* ... */ }

