
CSC307-f15-L6 1

CSC 307 Lecture Notes Weeks 6
The Program Design Process
High-Level Design Patterns
GUI Design in Jav aSwing

I. Major goals of the design process

A. Adhereto the specification.

1. Any deviation from the specification must be recorded and approved in a Specification Change Order
(SCO).

2. Thespecification plus SCOs form a bindingcontractbetween the customer and the design team.

3. No changes to specification can be made without consulting with the customer and completing a signed
SCO.

B. Achieve design quality goals:

1. Tr aceability-- elements of the design trace back to corresponding elements of the specification.

2. Modularity -- elements of the design are organized into logically cohesive modules.

3. Portability -- the design is sufficiently general that it can be implemented on a variety of platforms and a
variety of (related) programming languages.

4. Maintainability -- the system is designed such that it can be easily repaired and enhanced.

5. Re-usability-- where appropriate, modules are designed to promote their reuse in other (future) designs.

II. Details of the 307 design process (see Figures 1 and 2).

A. Design High-Level Architecture.

1. Thestep starts by deriving the high-level architecture of the program from the requirements model con-
structed in theSpecify step.
a. Themodularization defined for the structural model is carried forward into the packaging of the pro-

gram design.
b. This enforces traceability between the abstract specification and the corresponding architectural pro-

gram design.

2. Thehigh level architecture of a program is defined in terms of data classes and computational functions.
a. Theseare derived, respectively, from the objects and operations of the abstract requirements model.
b. The program classes and functions derived directly from the requirements model constitute themodel

portion of the design.
c. Theprogram classes derived directly from concrete user interface are theviewportion of the design.

B. Apply Design Patterns.

1. Oncethe top-level design elements are derived from the requirements specification, software design pat-
terns are applied.

2. A design pattern is a pre-packaged piece of design, based on experience that has been gained over the
years by software engineers.

3. High level design patterns can be used to improve the software architecture, which entails how the major
software components relate to one another and communicate.

4. A widely-used design pattern for end-user software isModel-View-Process(MVP).

5. TheMVP pattern organizes the design into three major segments:
a. theModel is directly traceable to the abstract functionality defined in the requirements model, and is

independent of the concrete end-user interface;
b. theViewsegment of the design is devoted specifically and solely to the end-user interface
c. theProcesssegment defines underlying processing support for the model, in particular processing that

encapsulates platform-dependent aspects of the design.

CSC307-f15-L6 2

 to
Implementation

 Design
 High-Level
Architecture

 Apply
Design Patterns

 Refine
Model and Process
 Design

 Refine
User Interface
 Design

 SCO if
necessary

 from
Requirements Spec

 Derive
 View Classes
from User Interface

 Derive
Model Classes
 from Objects

 Derive
Model Functions
 from Operations

 Derive
 Packaging
from ModulesDerive Initial

 Design from
Specification

Design Inter-Package
 Sharing and
 Communication

 Formally Specify
 Design

 Apply
Design Heuristics

 Define SCOs
as Necessary

 Apply
 Architectural
Design Patterns

 Apply MVP
Design Pattern

...

Refine Model
Class Design

 Design Process
Packaes and Classes

 Design
Control Flow

 Define
Member Visibility

 Define Inheritance
and Other Relations

 Choose Appropriate
Data Representations

Associate Functions
 with Classes

 Objectify
Function Signatures

 Design for
Non-Functional
 Requirements

 Refine Model
Package Design

...

Figure 1: The 307 design process.

CSC307-f15-L6 3

Design
Design High-Level Architecture

Derive Architectural Packaging from Modules

Derive Model Classes from Objects

Derive Initial Design from Specification

Design Inter-Package Sharing and Communication

Derive Model Functions from Operations

Apply Communication Patterns

Apply Other Appropriate Design Patterns

Refine and Customize Applied Patterns

Apply Architectural Design Patterns

Apply Model-View-Process

Apply Data Design Patterns

Apply Control Patterns

Apply Design Patterns

Refine Model and Process Design

Derive View Classes from UI Pictures and Model

Choose Appropriate Data Representations

Associate Functions with Classes

Objectify Function Signatures

Define Class Member Visibility

Define Class Inheritance and Other Relations

Select Data Representations from Libraries

Design Custom Data Representations

Design Controller Classes

Design Adaptor Classes

Design Wrapper Classes

Design External Data Input/Output

Refine Specification Dataflow If Appropriate

Design Functional Control Flow

Design Event Handling

Design Exception Handling

Design Process Packages and Classes

Design Control Flow

Refine Model Class Design

Design Other External Data Interfaces

Refine User Interface Design

Choose User Interface Library Components

Minimize Coupling

Maximize Cohesion

Apply Other Appropriate Heuristics

Employ Appropriate Design Metrics

Fully Identify all Function Inputs and Outputs

Refine Derived Preconditions, Postconditions

Define Preconditions, Postconditions for New Functions

Design User Interface Layouts

Add View-Supporting Functions to Model Classes

Apply Observer/Observable Design Pattern

Formally Specify Design

Apply Design Heuristics

Refine Model Package Design

Refine View Package Design

Define SCOs, Iterate Back as Necessary

Derive Design Properties from Spec Attributes

Derive Design Comments from Spec Comments Design for Non-Functional Requirements

Refine Model/View Communication

Figure 2: Design Process Fully Expanded.

6. Otherpatterns are employed to assist with design of program data, control, and communication.

C. Refine Model and Process Design.

1. Thederived, pattern-based design produced by the first two steps must be refined into a concrete, object-
oriented program design.

2. Modelpackage design is refined using object-oriented design principles, information hiding conventions,
and other design guidelines.

3. Derived functions must be associated with specific model classes, along with other class refinements.
a. Thefunction-assignment step is necessary because the operations of the functional specification do

not necessarily belong to specific objects.
b. In terms of typical nomenclature, functions associated with classes become classmethods, with appro-

priate adjustment to method signatures based on object-oriented design concepts.

CSC307-f15-L6 4

c. Othernecessary design refinements are in the areas of class member visibility, inheritance, and the
selection of concrete data representations.

d. In a modern program design, data representations are typically selected from reusable program
libraries.

4. Processclass design entails determining the underlying processing support that is necessary to produce an
efficient program.
a. To encapsulate platform-dependent data processing, process classes are interfaced with model classes

via controller, adaptor, and wrapper classes.
b. These model/process interface classes encapsulate aspects of the program that are specific to specific

operating systems, hardware platforms, and external data stores.

5. An important part of model and process refinement is detailed control flow design.
a. Dataflow relationships defined in the specification are refined into concrete procedural or multi-

process control flow
b. Other important aspects of control-flow design are functional control flow, event handling, and excep-

tion handling.

D. Refine User Interface Design.

1. Thefourth step of design is devoted to refining the end-user interface.

2. In the current state of the art, user interface design typically relies heavily on libraries of reusable inter-
face classes.

3. Theclass libraries define commonly-used interface elements and layouts.

4. In a Model-View design, the model classes must be refined to support the view classes, based on the
specifics of the user interface.

5. A particularly useful design pattern in this regard is called the "Observer/Observable" pattern.

6. Thispattern defines the way in which view classes can be systematically updated in response to changes
made by the user to data values stored in the model classes.

E. Design for Non-Functional Requirements

1. Any non-functional requirements that were not modeled in the specification or are not yet incorporated in
the design are dealt with in this step.

2. The purpose of this step is to ensure that all system-related non-functional requirements are fully
addressed in the design.

F. Formally Specify Design.

1. Asthe detailed program design is established, the design is formally specified.

2. Thisentails the precise definition of function (i.e., method) input/output signatures, followed by the speci-
fication of preconditions and postconditions for all functions.

3. For the model functions derived directly from the specification, the function conditions are derived
directly from the preconditions and postconditions defined in the derived-from operations.

4. For other model and process functions, preconditions and postconditions are defined with the same
methodology used in the abstract specification model.

5. Namely, preconditions are expressions that must be true before function invocation; postconditions must
be true after function executions.

G. Apply Design Heuristics.

1. Various design heuristics (i.e., general guidelines) can be applied throughout the process of design.

2. Minimizing coupling among program elements aims to reduce the dependency and communication to
only that which is essential

3. Maximizing cohesion means that program elements that are functionally related are grouped together,
without extraneous unrelated elements.

4. Otherheuristics can be applied, such as controlling the size of various program components.

H. Define SCOs and Iterate Back as Necessary.

1. During the course of program design, the developer may discover aspects of the requirements

CSC307-f15-L6 5

specification that need to be modified or enhanced.

2. In such cases, the designer defines aspecification change order that clearly states the necessary modifica-
tions or enhancements.

3. Thisformalized change order is in keeping with the high-level process decomposition into problem defi-
nition and problem solution phases.
a. Asdiscussed above, theAnalyze andSpecify process steps comprise the problem definition phase.
b. TheDesign andImplement steps then comprise the problem solution phase.

4. In this software process, as in a traditional problem-solving process, changing the problem definition
while the solution is underway requires careful consideration.

5. Thespecification change order codifies this careful consideration in a precise way.

III. Comments on the 307 Design Process.

A. Theprocess employs techniques from a number of design methodologies, including:

1. TheUML (unified modeling language) of Rumbaugh, et al.

2. Thestructured design techniques of Yourdon, et al.

3. TheMVP (Model-View-Process) technique (aka, MVC -- Model-View-Controller), used originally with
the Smalltalk language, and now used extensively in Java designs.

B. Theprocess works well for information processing systems with substantial end-user interfaces, which are
the types of systems developed in 307.

C. For other types of system, similar process steps can be used, but possibly in a different order, and with differ-
ent domain-specific methodologies.

D. Othermajor system types include:

1. Realtimesystems, such as communications software.

2. Utility systems, such as compilers and operating systems.

3. Embeddedsystems, such as device drivers and process controllers.

IV. The languages of system specification and design.

A. Oneof the problems to be confronted in designing from a formal specification is the translation from the
requirements/specification language into the design/implementation language.

B. In some cases, specification languages may differ from programming languages, since there are different
forces influencing the design of the two types of languages.

C. In the case of specs written in the first half of 307, the specs are written in a subset of Java, which is the same
as the 307 design and implementation language.

V. So what exactly is (software) design?

A. In a word, design is anabstractionof the implementation.

1. Theidea of abstraction is thatthings get left out.

2. Thesimplest definition of what implementation-level detail gets left out of the design is thesequential
code bodies of methods.

3. Thisby itself is an over simplification of the design process.

4. Thereare several levels of design abstraction, each one leaving out more information.

B. Thelevels of design abstraction from highest to lowest can be broken down as follows:

1. Packaging Design
a. Thehighest level of architectural design abstracts out everything but the largest modular units, which

in Java design terminology are the packages.
b. We giv e names to the packages, describe them, and discuss abstract communication and dependencies

between them.

CSC307-f15-L6 6

c. We define the separate executable components of the program, including separate application pro-
grams and servers.

2. Abstract Class Design
a. Classesare added as components of the packages.
b. We name and describe the classes but do not define their contents or inheritance relationships.

3. Mid-Le vel Class Design
a. We add methods and data fields to classes.
b. We name and describe the methods and fields, but do not define method signatures or concrete data

representations for the fields.
c. We define inheritance relationships among classes.

4. Detailed Class Design
a. We add full input/output signatures to methods.
b. We select concrete data representations for data fields.

5. Functional Design
a. We add pre- and postconditions to all methods.
b. We define control flow among methods using function diagrams or equivalent notation.

C. At any and all of these levels, we can apply suitable design techniques (a.k.a., design patterns), when and if
such patterns exist.

D. For us, we’re going to start with the following two patterns, the one of which is quite general and widely
used, the second of which is rather specific to our particular kind of software.

1. The"Model/View/Process" pattern, addressing design abstraction levels 2 through 5.

2. The"Information Processing Tool" pattern, addressing design abstraction level 1.

VI. What is a design pattern?

A. Thebuilding architect Christopher Alexander defined a design pattern as follows:

"Each pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use the solution a mil-
lion times over, without ever doing it the same way twice."

B. Thissame concept applies to software as well as it does to buildings, with appropriate change in notation.

C. For software, the notation is software design diagrams, templates of software code, and step-by-step descrip-
tions of pattern application.

VII. The MVP pattern

A. The Model/View/Process (MVP) pattern is used to separate the core processing of an application from the
concrete GUI and underlying support processing.

1. TheModel is the part of the design that is directly traceable to the abstract specification, representing the
core processing.

2. TheView consists of concrete GUI processing

3. TheProcess is the underlying support processing that provides the functionality needed by the model to
get the work done efficiently.

B. Thereis a direct correspondence between each model class and one or more companion view classes.

1. Typically, there is a standard, orcanonicalview class that presents a complete interface from the model to
the user.

2. Theremay be additional auxiliary views that show selected portions a model, presented in ways that are
helpful to the user.

3. Inall cases, both model and view classes are always directly traceable to the requirements specification.

C. Figure3 is a general diagram of MVP.

1. Thefigure shows the data members and methods for the abstract Model and View classes.

CSC307-f15-L6 7

Model

View

Model
getView
setView

View

Model
Screen
Window

View
run
compose
show
hide
setModel
getModel
getWindow
isShown
isEditable
setEditable

Tool-Specific
Model Class Z

Tool-Specific
Model Class A

 Auxilary View
Class for Model A

 Auxilary View
Class for Model A

 Canonical View
Class for Model Z

 Auxilary View
Class for Model Z

 Auxilary View
Class for Model Z

 Canonical View
Class for Model A

. . .

. . .

Figure 3: MVP Pattern.

2. For 307, these classes are defined in the 307 Java class library.

VIII. The "Inf o Processing Tool" pattern.

A. Thispattern is used to layout the high-level packaging of a software application.

B. It is used in conjunction with both the Derive-from-Spec and MVP patterns.

C. Thepattern applies to the of the kind of applications we are building in 307.

1. Theseare programs that perform a specific set of information-processing tasks, under the continued direc-
tion of a human user.

2. Thethe application uses a graphical user interface of the form that has become common in computer
operating environments, with a menu-based and/or toolbar-based top-level UI.

D. In this pattern, each major functional grouping is organized into a pair of packages, one for model classes,
the other for view classes.
1. Thesefunctional packages are contained in a top-level package that houses the top-level model class for

the tool itself, as well aMain class that contains the top-level main method.
2. A top-level view package contains the top-level view classes for the tool, typically a menubar and zero or

more main tool windows.

CSC307-f15-L6 8

3. Figure4 is a high-level diagram of the pattern.

E. Whenapplied in conjunction with the Derive-from-Spec pattern:

1. Eachfunctional model package is derived from a specification module.

2. Theview packages and the top-level application package are new to the design.

F. Overall, this pattern uses information from the following sources:

1. The organization of the end-user requirements scenarios, in which each major section of the scenarios is a
candidate for a package in the design.

2. The organization of the top-level GUI, in which each major unit in the UI is a candidate for a package in
the design; "major units" of the UI include pulldown menus, free-floating toolbars, other well-delineated
components of the interface.

3. Modular organization of the Java model, in which each module (or separate.sl file) is a candidate for a
package in the design.

IX. Applying the patterns to the Calendar Tool example.

A. Lastquarter we looked at the requirements specification for a Calendar Tool application that is similar in size
and scope to your 307 projects.

B. We’ll continue this quarter with the design and implementation of the Calendar Tool.

X. Applying Info-Processing-Tool pattern to derive CalendarTool packages.

A. Thereare seven modules in the Calendar Tool specification, one for each of the six functional command cate-
gories (as shown on the pulldown menu), and one for the underlying calendar database:

1. File-- file command processing

 Top-Level
Tool Package

 Functional
Model Package
 N

 Functional
Model Package
 A

 Top-Level
Model Package

 Companion
View Package
 N

 Companion
View Package
 A

 Top-Level
View Package

Figure 4: IPT pattern.

CSC307-f15-L6 9

2. Edit-- edit command processing

3. Schedule-- calendar item scheduling

4. View -- viewing calendars and lists

5. Admin-- managing the user and group databases

6. Options-- managing user options

7. CalDB-- the calendar database for all registered users

B. Applying the derivation pattern, we get seven model packages for these.

C. Applyingthe IP tool pattern, we add a top-level tool package, and companion view packages for each model

D. A diagram is shown in Figure 5.

E. It is noteworthy that there are no companion UI packages for the CalDB and Server packages; these are pro-
cessing packages that have no direct user interface.

F. A derived version of the top-level tool class is the following, which is defined in the fileimplementa-
tion/source/java/caltool/CalendarTool.java :

package caltool.model;

import caltool.view.*;
import caltool.model.file.*;
import caltool.model.edit.*;
import caltool.model.schedule.*;
import caltool.model.view.*;
import caltool.model.admin.*;

caltool

schedule

edit

 file

view

options

admin

caldb

server

view

model

schedule

edit

 file

view

options

admin

Figure 5: Calendar Tool packages.

CSC307-f15-L6 10

import caltool.model.options.*;
import caltool.model.help.*;
import caltool.model.caldb.*;
import mvp.Model;

/****
*
* Class CalendarTool is the top-level model class for the regular-user
* Calendar Tool program. CalendarTool has references to the functional model
* c lasses of the tool: File, Edit, Schedule, View, Admin, Options, and Help.
* T here is also a reference to the CalendarDB class that houses the tool’s
* major data bases.
* < p>
* F unctionalitywise, all of the model classes are autonomous units. They each
* do t heir own work as invoked by the user. All that this top-level class
* d oes is to construct the work-doing model classes and set up the initial
* s tate of the tool when it is invoked from the outside operating system.
* < p>
* S ee also the companion view class
* CalendarToolUI.
* < p>
* @author Gene Fisher (gfisher@calpoly.edu)
* @version 13apr15
*
*/

public class CalendarTool extends Model {

/**
* Construct this with the given companion view. Call the submodel
* c onstructors. Initialize the start-up state based on default options
* a nd command-line arguments.
*/

public CalendarTool(CalendarToolUI calToolUI) {

/*
* Call the parent constructor.
*/

super(calToolUI);

/*
* Construct and store the submodel instances. Note that the
* CalendarDB is constructed before the File so the latter can observe
* t he former for changes.
*/

caldb = new CalendarDB(null);
file = new File(null, caldb);
edit = new Edit(null);
schedule = new Schedule(null, caldb);
calView = new View(null, caldb);
admin = new Admin(null);
options = new Options(null);

/*
* S et up the initial state of the tool.
*/

initialize();
}

/**
* I mplement the exit method to pass the buck to file.exit(). Per set up
* p erformed in the companion CalendarToolUI view, this method is called
* when the user closes the top-level menubar window, e.g., via the window
* manager close button.
*/

public void exit() {
file.exit();

}

/** Return the File model. */
public File getFile() { return file; }

CSC307-f15-L6 11

/** Return the Edit model. */
public Edit getEdit() { return edit; }

/** Return the Schedule model. */
public Schedule getSchedule() { return schedule; }

/** Return the View model. */
public View getCalView() { return calView; }

/** Return the Admin model. */
public Admin getAdmin() { return admin; }

/** Return the Options model. */
public Options getOptions() { return options; }

/** Return the Help model. */
public Help getHelp() { return help; }

/*-*
* P rotected methods
*/

/**
* S et up the initial state of the tool, based on default option values and
* c ommand-line arguments, if any. Details TBD.
*/

void initialize() {}

/*-*
* Data fields
*/

/** File-handling module */
protected File file;

/** Basic editing module */
protected Edit edit;

/** Scheduling module */
protected Schedule schedule;

/** Calendar viewing module */
protected View calView;

/** Calendar administration module */
protected Admin admin;

/** Tool options module */
protected Options options;

/** Tool help module */
protected Help help;

/** Calendar database */
protected CalendarDB caldb;

}

XI. Class diagram for derived Calendar design.

A. Figure6 shows a class diagram for the key classes in the design of the Milestone 6 example.

1. Asnoted above, the design and implementation for the 307 Milestone 4 example are at

users.csc.calpoly.edu:˜gfisher/classes/307/examples/milestone4

2. Theabstract model from which the design is derived was begun in the 307

CSC307-f15-L6 12

C
at

eg
or

y

C
al

en
da

r

 D
B

C
at

eg
or

y

 D
B

 S

ch
ed

ul
e

A
pp

oi
nt

m
en

t

S
ch

ed
ul

e
 M

ee
tin

g

C
on

fir
m

M
ee

tin
g

S
ch

ed
ul

e

T
as

k

S
ch

ed
ul

e
 E

ve
nt

U
se

rD
B

 U

se
r

C
al

en
da

rs

G
ro

up
D

B

U
se

rW
or

k

S
pa

ce

R
oo

m
D

B

 G
lo

ba
l

O
pt

io
ns

*

F
ile

 U
se

r
O

pt
io

ns

R
eq

ui
re

s
 S

av
in

g

U
se

rI
d

S
ch

ed
ul

ed

 It
em

*

U
se

r
C

al
en

da
r

 U
se

r
O

pt
io

ns

C
lip

bo
ar

d

U
se

rI
d

P
re

vi
ou

s

S
ta

te

S
el

ec
tio

n
 C

on
te

xt

S
el

ec
tio

n

F
ile

ca
le

nd
ar

.
 V

ie
w

E
di

t

S
ch

ed
ul

e

A
dm

in

O
pt

io
ns

C
al

en
da

r

 D
B

C
al

en
da

r

 T
oo

l

. .
 .

*

S
ta

rt
T

im
e

D
et

ai
ls

Lo
ca

tio
n

D
ur

at
io

n

R
ec

ur
rin

g

 I
nf

o

R
em

in
d

In

fo

S
ec

ur
ity

P
rio

rit
y

T
as

k

E
ve

nt

A
pp

oi
nt

m
en

t

 S
ta

rt
O

r
D

ue
D

at
e

T
itl

e

E
nd

D
at

e

C
at

eg
or

y

A
tte

nd
ee

s
M

ee
tin

g

Figure 6: Class diagram for Calendar Tool design in Notes 2.

CSC307-f15-L6 13

Milestone 4 example

and is refined into a design specification in the

Milestone 6 example

3. TheHCI from which the GUI design is derived is in the 307

Milestone 4 requirements

which is further refined and finalized in the 307

Milestone 6 requirements

B. In the 307 design, theCalendarTool and its seven components are derived using the IPT design patter
applied to the top-level Calendar Tool GUI.

C. Themethods of theSchedule class are a refinement of the abstract specification, with added information
hiding.

D. Thecomponents of theCalendarDB are a refinement of the specification that is part of the model refine-
ment work of Milestones 5 and 6.

XII. Observations and further details about the Milestone 6 design example.

A. CalendarDB.java

1. Traceability to spec is quite direct.

2. Thisis managerial-style class, as opposed to a data abstraction.
a. It contains references to other major model classes which are themselves data abstractions.
b. CalendarDB has contains no traceable methods.

3. As with other directly traceable classes, the top-level class comment is derived directly from description
in theCalendarDB abstract model
a. Whenthe spec object descriptions are complete and well-written, use the text directly.
b. When the descriptions are missing or incomplete, (re)write an appropriately descriptive text.
c. In either case, class comments must be enhanced with additional information, as described in the 307

SOP Volume 2 on Java design and implementation conventions.

4. Thederived data fields of classCalendarDB trace directly to theCalendarDB spec object, including
the comments.

B. Schedule.java

1. ClassSchedule.java does not trace to a spec object, but is rather amanagerial class designed to hold
methods that trace to spec operations.
a. In general, the abstract model spec does not always define objects for the top-level functional group-

ings that correspond to the command pulldown menus.
b. This in an example of where the functionally-oriented abstract spec requires some refinement when

translated to an object-oriented concrete program.
i. In particular, methods that are in theSchedule class, were originally defined in the abstract

model’sCalendar class.
ii. In the concrete design, there are two lev els of refinement for the calendar: aSchedule class that

contains the user-level calendar operations, and aUserCalendar class that contains lower-
level implementations of the calendar operations.

iii. The user-level methods communicate with the view, and perform data validation.
iv. The lower-level methods encapsulate the concrete data structure for the calendar, and provide an

efficient implementation.

C. ScheduledItem.java

1. Thisclass traces quite directly to the corresponding abstract modelScheduledItem object.

D. Appointment.java, Meeting.java, Task.java, andEvent.java

1. Theseclasses also trace quite directly to their corresponding abstract model objects.

2. Notethat the inheritance relationships among the abstract objects are retained in the derived Java classes.

CSC307-f15-L6 14

E. Date.java

1. Dateis a straightforward translation of its abstract model object.

2. Asthe model is refined, this class will likely be replaced with a date representation from the Java library.

XIII. Design and Implementation of GUIs in Jav aSwing

A. In 307, the default GUI library is Java Swing; as noted in the Milestones 5-6 writeup, your team may choose
to use a different by comparable library.

B. TheSwing library is rooted in the package namedjavax.swing , which contains many classes and sub-
packages for building GUIs.

C. Key Swing classes include the following:
• Box -- a simple way to layout GUI components.
• ButtonGroup -- for grouping buttons, particular radio buttons.
• JButton -- a standard command button; used all over the place.
• JCheckBox -- a typical on/off check box.
• JCheckBoxMenuItem -- a menu itme with a check box next to it.
• JColorChooser -- a standard-looking color selection dialog.
• JComboBox -- a pulldown that allows typing too.
• JComponent -- the top-level of the Swing component hierarchy.
• JDialog -- a handy pop-up dialog.
• JEditorPane -- a way to view and edit text, in particular HTML.
• JFileChooser -- a standard-looking file chooser.
• JFrame -- the outermost container for a GUI window.
• JLabel -- a simple piece of text within a GUI.
• JLayeredPane -- a way to layer GUI frames in a 3D stack.
• JList -- a list of GUI components, typically with a scroll bar.
• JMenu -- a pulldown or pop-up menu.
• JMenuBar -- a standard menubar, typically at the top of a JFrame.
• JMenuItem -- an item in a JMenu.
• JOptionPane -- a parent class for a set of standard option dialogs.
• JPanel -- Typically the inner-wrapper of a JFrame, for managing GUI layout.
• JPasswordField -- a way to enter passwords without echoing.
• JProgressBar -- a typical-looking "throbber"
• JRadioButton -- a typical-looking radio button
• JScrollBar -- horizontal or vertical scrollbar, typically in a JScrollPane.
• JSeparator -- spacing in a menu.
• JSlider -- typical-looking slider, typically for numeric input.
• JTabbedPane -- tabbing pane for organizing things like preferences.
• JTable -- a two-dimensional table, with many display options.
• JTextArea -- a simple, unformatted multi-line text area.
• JTextField -- a single-line text field.
• JToggleButton -- an on/off button.
• JToolBar -- a container for buttons that select other tools.
• JToolTip -- roll-over help for tool buttons or menu items.
• JTree -- a hierarchical tree display, in a Windows Explorer style.

D. Key Swing subpackages are:
• javax.swing.colorchooser -- color chooser support classes
• javax.swing.event -- low-level classes representing GUI events
• javax.swing.filechooser -- file chooser support classes
• javax.swing.table -- JTable support classes
• javax.swing.text -- text display and editing support classes
• javax.swing.text.html -- HTML support (there is also XML support)
• javax.swing.text.html.parser -- low-level HTML support
• javax.swing.tree -- JTree support classes

CSC307-f15-L6 15

• javax.swing.undo -- simple undo/redo support

XIV. There is also a companion packagejava.awt for l ower-level GUI support.
A. "awt " stands for the "abstract windowing tools".
B. Theclasses and interfaces include the following:

• Color -- low-level color support
• Component -- THE most generic GUI component, parent of JComponent
• Container -- THE most generic GUI container, parent of JFrame
• Event -- all the details of a GUI event
• Graphics2D -- the way to draw graphic shapes, e.g., lines, circles, etc.
• GridLayout -- a nasty way to do 2D layout (I like Boxes much better)
• Image -- a GIF or JPEG image
• java.awt. ActionListener -- the way buttons and menu items list for events

XV. Designing GUIs with Swing components.

A. Thelist of the Java swing components given above are those that you are most likely to use in the GUI inter-
faces for your CSC 307 projects.

B. Figure7 shows an annotated version of a typical menubar and its menus, indicating which swing components
are used for which pieces.

C. Figure8 shows an annotated version of a typical editing dialog indicating which swing components are used
for which pieces.

D. Figure9 shows an annotated version of the editing dialog showing how components are laid out using Swing
Boxes ; layout can also be done usingGridBags and other forms of layout managers, but I find these
much more tedious than simpleBoxes .

XVI. GUI class naming conventions.

A. A standard set of name suffixes is used for view classes in the 307 examples.

B. Thesuffixes indicate the general usage of a GUI class, as shown in Table 1.

XVII. Coordination of Model and View classes in a high-level design.

A. Basedon the design patterns discussed in these notes, there is a parallel decomposition of Model and View
classes in a high-level design.

1. Thelibrary Model andView classes are at the top of the inheritance hierarchy.

2. Tool-specific model and view classes inherit from these.

B. To ensure traceability, the high-level class decomposition in the design should be structurally the same as
what we called thefunctional hierarchy in the requirements specification.

1. At the spec level, the functional hierarchy was embodied in two forms.
a. For the end user, the high-level UI org anization of pulldown menus and dialogs embodies the func-

tional hierarchy.
b. In the formal Spest spec, the package and object structure embodies the functional hierarchy.

2. Whenwe move to the design level, this very samefunctional hierarchy should be embodied in the pack-
age and class structure.

C. Themost important issue here is that functional hierarchymakes sense.

1. Thephysical embodiments of it are just different views of the same abstract organization.

2. If the requirements- or specification-level embodiments don’t make sense or are inconsistent, then this
should be fixed in the design-level.

3. If we had the time, we’d go back and fix both the requirements and specification to agree with the design.

4. Sincewe don’t hav ethe time to do this in 307, we describe in the SCOs what changes have been made to
the design-level hierarchy with respect to the requirements and specification.

CSC307-f15-L6 16

Item
Day
Week ->
Month
Year

Next
Previous
Goto Date ...

Lists ->
Filter ->

Other User ...

Windows ->

Help

Appointment ...
Meeting ...
Task ...
Event ...

Categories ...

Appointments
Meetings
Tasks
Events
All Items
Custom ...

File Edit Schedule View Admin

Calendar Tool

Table
Lists

Windowing Mode ...

Edit ...

Options JMenuBar

Operating-system-maintained banner, except title is set using JFrame.setTitle

JMenu

JMenuItems

JSeparator

JMenus

Box, containing a horizontal
 strut for blank spacing

JFrame

Figure 7: Annotated menus showing swing components used.

CSC307-f15-L6 17

public

must

Start Time:

Duration:

Date:

End Date:

Title:

weeklyRecurring?
S M T W Th F S

Interval:

Location:

Details:

Priority:

Schedule an Appointment

Security:Category:

hr min

on screenminutes beforeRemind? 15

OK CancelClear

JLabels JTextFields

JTextField
(disabled)

JCheckBoxes
 (disabled)

JCheckBox

JComboBox

JTextArea
JScrollBar
 in a
JScrollPane

JButtons

JFrame

Figure 8: Annotated dialog showing swing components used.

public

must

Start Time:

Duration:

Date:

End Date:

Title:

weeklyRecurring?
S M T W Th F S

Interval:

Location:

Details:

Priority:

Schedule an Appointment

Security:Category:

hr min

on screenminutes beforeRemind? 15

OK CancelClear

Horizontal
 Box

Vertical
 Box

 JPanel
 in the
 content pane
of the JFrame

Figure 9: Annotated dialog showing layout using boxes.

CSC307-f15-L6 18

Suffix Example Meaning

UI ScheduleUI A top-level view that contains all of the inter-
face components for a companion top-level
model. Thesecomponents are the pulldown
command menu and all of the other views
that are launched from menu commands.

Dialog ScheduleAppointmentDialog A top-level view that allows the user to pro-
vide inputs for a single operation.Typically
it hasOK, Cancel , andClear buttons. The
OKbutton is used to confirm the operation for
which the user is entering the input.

Editor CategoriesEditor A top-level view that provides for the editing
Has more command buttons than just OK,
e.g., Add, Delete.

Display MonthlyAgendaDisplay A read-only display, i.e., where no model da-
ta are editable.

ButtonListener OKScheduleAppointmentButtonListener An event listener for a button or menu item.

Panel SchedulingOptionsPanel The internal component of a tiled or tabbed
layout.

Table 1: GUI Class Naming Conventions.

XVIII. Example of high-level M odel/View class diagram (see Figure 10).

A. TheabstractModel andView classes are the root of the model/view inheritance hierarchy.

B. Inheritingfrom these are the top-level model and view classes for a particular application tool, in this case
CalendarTool andCalendarToolUI .

C. Thesetop-level tool classes in turn have components that aresubmodelsandsubviews, decomposed follow-
ing the tool’s functional hierarchy.

D. Submodelsand subviews also inherit from the abstractModel andView classes, since submodel and sub-
view instances communicate directly with one another using the model/view pattern.

XIX. Example of high-level M odel/View function diagram (see Figure 11).

A. The first three function calls are to class constructors for the UI screen, the top-level tool model (Calen-
darTool) and the top-level tool view (CalendarToolUI)

1. Thecall to theScreen constructor constructs and initializes the GUI screen on which the View functions
will display the user interface elements; in the case of Java, it’s a no-op unless the look and feel of the
screen are to be changed.

2. Thecall to theCalendarTool constructor constructs the top-level Calendar model, which in turn calls
constructors for all subsidiary model classes and the data objects they require.

3. Thecall to theCalendarMenuUI constructor constructs the top-level elements of the user interface,
which in turn calls constructors for all subsidiary view classes and the UI objects they require.

B. Thecall to CalendarToolUI.compose performs all specific details of UI layout (in the diagram,com-
pose is invoked through theCalendarToolUI variable namedcalToolUI).

1. A number of subfunctions are invoked to layout the various UI pieces.

2. Thefunctions with bold borders in the diagram are supplied by the Java and 307 libraries.

C. Thecall toCalendarTool.setView sets the model to point at the view

1. Sincethe model and view mutually refer to each other, one of the pair must use a set function.

2. In this design, the Model is constructed first and the View constructor is then passed a Model pointer.

3. Then,Model.setView is called to set the View pointer within the Model (the CalendarTool in this case,
with the variable namecalTool).

CSC307-f15-L6 19

ScheduleUI

ScheduleMenu
ScheduleAppointmentDialog
ScheduleMeetingDialog
ConfirmMeetingDialog
ScheduleTaskDialog
ScheduleEventDialog
CategoriesEditor

ScheduleUI
compose
getScheduleAppointmentDialog
getScheduleMeetingDialog
getConfirmMeetingDialog
getScheuleTaskDialog
getSchduleEventDialog
getCategoriesEditor

Schedule

CalendarDB
Categories

Schedules
scheduleAppointment
scheduleMeeting
confirmMeeting
scheduleTask
scheduleEvent

Model

View

Model
getView
setView

CalendarTool

File
Edit
Schedule
View
Admin
Options
CalendarDB

CalendarTool
getFile
getEdit
getSchedule
getCalView
getAdmin
getOptions
getHelp

View

Model
Screen
Window

View
run
compose
show
hide
setModel
getModel
getWindow
isShown
isEditable
setEditable

. . .

CalendarToolUI

FileUI
EditUI
ScheduleUI
ViewUI
AdminUI
OptionsUI

CalendarToolUI
constructSubviews
compose
composeMenuBar
composeHelpSpacing

. . .

Figure 10: High-level Model/View class diagram.

CSC307-f15-L6 20

 FileUI.compose

 EditUI.compose

ScheduleUI.compose

 ViewUI.compose

 AdminUI.compose

 OptionsUI.compose

 HelpUI.compose

calToolUI.run

main

 mvp.Window

composeMenuBar

 setMenuBar

 setTitle

 pack

 Screen

CalendarTool

 top-level
constructor functions

 second-level model
constructor functions

GUI layout functions
(bold-borders are
 library functions)

display the GUI
 on the screen

 execute the GUI
toolkit event loop
 (noop in Java)

CalendarToolUI

calToolUI.compose

caltoolUI.show

calTool.setView

super

JMenuBar

constructSubviews

Help

 second-level view
constructor functions

File

Schedule

View

Admin

Options

Edit

 HelpUI

FileUI

ScheduleUI

ViewUI

AdminUI

OptionsUI

EditUI

second-level view
compose functions

Figure 11: Highest-level function diagram for Model/View application.

4. Thisenables full two-way communication between the Model and View.

D. The call to theView.show method inserts the view’s main window into the UI screen; (in the diagram,
View.show is invoked through theCalendarToolUI variable namedcalToolUI).

E. Dependingon the GUI toolkit being used, a call to theView.run method. maybe necessary.

1. In the case of Java, the run function is a no-op, since the Java runtime environment automatically starts
an event loop whenever one or more windows are shown on the screen.

2. Inother toolkits, an explicit call to therun method causes the GUI event handling loop to be started.

F. Once the event loop is started, all program control is assumed by the toolkit.

1. In the case of Java, the event loop is in a separate thread of control.

CSC307-f15-L6 21

2. AsGUI events are handled, such as mouse clicks and typing, the event loop calls application methods that
have been set up tolistenfor certain events.

XX. Overview of event-based design.

A. In the function diagram of Figure 11, when the event loop takes over at the end of theMain method, the
application program has lost control.

1. InJava, the event loop executes in a separate thread --java.awt.EventDispatchThread .

2. Thethread in which theMain method was running (MainThread) has terminated.

3. Whatthis means is that the only way application methods can be invoked is through an event that is han-
dled by the event loop.

B. Thisform of event-based processing is common to all event-based GUI toolkits.

1. Thedetails of event handling vary rather widely among the different toolkit environments.

2. Eachhas what is called anevent model-- the precise way in which the event loop is invoked and commu-
nicates with the application.

3. Despitethe differences, what is fundamentally the same in all toolkits is that the initiating main program
looses control and all subsequent execution of application methods is through events.

XXI. Designing event-based programs.

A. Thereare two important aspects of designing event-based programs:

1. settingup the event handlers

2. handlingthe events

B. Settingup the event handlers is what enables to program to respond to the events.

1. In the case of GUI-based programs, events are the actions performed by the end user, such as mouse and
key clicks.

2. In Java, setting up an event handler is a matter of constructing anEventListener object, which is
attached to a GUI element with which the user interacts.

3. A very typical case is attaching anActionListener to aJMenuItem or JButton .

C. Theactual handling of events by the application program is performed when an event handler invokes an
application method.

1. In the case of GUI-based programs, the event-invoked methods are typically referred to as "call-back"
methods.

2. InJava, call-backs are invoked from theactionPerformed method of anEventListener.

3. ThisactionPerformed method is specialized for each listener.

4. Whateach specialized version ofactionPerformed does is to call the application model method that
should be triggered by the event being handled.

XXII. Design diagram notation.

A. In our high-level function diagram notation, event-based invocation is shown with a double line labeled with
the name of the triggering event.

B. Figure12 is an excerpt from the 307 handout on the graphical modeling notation which illustrates the dia-
gramming format.

1. Figure12a illustrates the normal mode of method invocation, where themain method invokes methodA ,
methodB , andmethodC .

2. Figure12b illustrates the event-based invocation, where the event named "EventName " triggers the
invocation ofmethodD andmethodE .

C. Thisnotation is used in the example diagrams that follow.

CSC307-f15-L6 22

main

methodA methodB methodC

a. Normal method invocation

methodD methodE

EventName

b. Event-based method invocation

Figure 12: Event diagramming notation.

XXIII. Examples of setting up and handling events.

A. Figure13 shows excerpts from the Calendar Tool main function diagram related to setting up the event han-
dlers.

B. Figure14 shows excerpts from the Calendar Tool event-based invocation hierarchy related to handling GUI
ev ents.

C. Thesediagrams correspond to the following implementation source files:
• CalendarTool.java
• CalendarToolUI.java
• File.java
• FileUI.java
• FileMenu.java
• Schedule.java
• ScheduleUI.java
• ScheduleMenu.java
• ScheduledItem.java
• Event.java
• ScheduleEventDialog.java
• OKScheduleEventButtonListener.java
• MonthlyAgenda.java
• SmallDayView.java
• MonthlyAgendaDisplay.java
• SmallDayViewDisplay.java
• Lists.java
• AppointmentsListDisplay.java

1. Thecode in these files implements the design diagrams shown in the figures.

2. We’ll do a detailed walk-through of the code during class.

CSC307-f15-L6 23

main

. . .

CalendarToolUI.
 compose

CalendarToolUI.
 composeMenuBar

FileUI.compose

FileMenu.compose

. . .

. . .

. . .

addNewItem

JMenuItem

addActionListener

addOpenItem

JMenuItem

addActionListener

. . .

ScheduleUI.
 compose

ScheduleMenu.
 compose

. . .

. . .

addEventItem

JMenuItem

addActionListener

scheduleEvent
 Dialog.compose

composeButtonRow

JButton

OKScheduleEvent
 ButtonListener

addActionListener
. . .

. . .

Figure 13: Setting up Calendar Tool event handlers.

CSC307-f15-L6 24

OKScheduleEvent
 ButtonListener.
 actionPerformed

System.out.println

File.fileNewJMenuItem.
 actionListener.
 actionPerformed

System.out.println

MouseButton
 Event

. . . remaining File menu item action listeners

. . . remaining button action listeners

File.open

ScheduleEventDialog.
 show

Event.Event

JMenuItem.
 actionListener.
 actionPerformed

System.out.println

JFileChosser.
 showOpenDialog

JMenuItem.
 actionListener.
 actionPerformed

Edit menu item action listeners. . .

remaining menu item action listeners

. . .

Schedule.
 scheduleEvent

JMenuItem.
 actionListener.
 actionPerformed

MonthlyAgendaDisplay.
 update

. . .
SmallDayViewDisplay.
 SmallDayViewDisplay

JPanel.removeAll

GridLayout.setRows

MonthlyAgenda.
 getfirstDay

MonthlyAgenda.
 getNextDay

JPanel.add

MonthlyAgendaDisplay.
 show

Figure 14: Responding to Calendar Tool GUI events.

CSC307-f15-L6 25

