CSC307-f15-L6 1

CSC 307 Lectue Notes Weeks 6
The Program Design Process
High-Level Design Patterns

GUI Design in Java Swing

I. Major goals of the design process

A. Adhereto the specification.

1.

Any deviation from the specification must be recorded and apdrin a $ecification Change Order
(SCO).
Thespecification plus SCOs form a bindiogntractbetween the customer and the design team.

No changes to specification can be made without consulting with the customer and completing a signed
SCO.

B. Achieve design quality goals:

1.
2.
3.

4,
5.

Traceability-- elements of the design trace back to corresponding elements of the specification.
Modularity -- elements of the design argyamized into logically cohege nodules.

Portability -- the design is sfi€iently general that it can be implemented on a variety of platforms and a
variety of (related) programming languages.

Maintainability -- the system is designed such that it can be easily repaired and enhanced.
Re-usability-- where appropriate, modules are designed to promote their reuse in other (future) designs.

Il. Details of the 307 design process (see Figures 1 and 2).

A. Design High-Level Architecture.

1.

2.

Thestep starts by deriving the high# architecture of the program from the requirements model con-

structed in the&pecify step.

a. Themodularization defined for the structural model is carried forward into the packaging of the pro-
gram design.

b. This enforces traceability between the abstract specification and the corresponding architectural pro-
gram design.

Thehigh level architecture of a program is defined in terms of data classes and computational functions.

a. Thesare dened, respectiely, from the objects and operations of the abstract requirements model.

b. The program classes and functions \eketidirectly from the requirements model constitute niedel
portion of the design.

c. Theprogram classes deead directly from concrete user interface are v portion of the design.

B. Apply Design Patterns.

1.

Oncethe top-leel design elements are dezdl from the requirements specification, software design pat-
terns are applied.

. A design pattern is a pre-packaged piece of design, basederieace that has been gainadrahe

years by software engineers.

. Highlevel design patterns can be used to inverthe software architecture, which entailsvhive major

software components relate to one another and communicate.
Awidely-used design pattern for end-user softwalddel-View-ProcesMVP).

. TheMVP pattern oganizes the design into three major segments:

a. theModelis directly traceable to the abstract functionality defined in the requirements model, and is
independent of the concrete end-user interface;

b. theViewsegment of the design iswited specifically and solely to the end-user interface

c. theProcesssegment defines underlying processing support for the model, in particular processing that
encapsulates platform-dependent aspects of the design.

CSC307-f15-L6 2

SCO if
necessary

from
Requirements Spec

Design
High-Level
Architecture

Derive Initial
Design from
Specification

App!
Design Patterns

Refine
Model and Process
Design

Design Inter-Package
Sharing and
Communication

Apply
Architectural
Design Patterns

Design

Design for
Non-Functional
Requirements

Formally Specify
Design

Apply
Design Heuristics

Define SCOs
as Necessary

Refine
User Interface

to
Implementation

Apply MVP
Design Pattern

Refine Model
Package Design

Refine Model
Class Design

Design Process
Packaes and Classes

Design
Control Flow

Figure I The 307 design process.

Derive
Packaging
from Modules

l

Derive
Model Classes
from Objects

Model Functions
from Operations

Derive
View Classes
from User Interface

Derive |

Associate Functions
with Classes

Objectify
Function Signatures

Define Inheritance
and Other Relations

Choose Appropriate
Data Representations

Define
Member Visibility

CSC307-f15-L6 3

Design
Design High-Level Architecture
Derive Initial Design from Specification
Derive Architectural Packaging from Modules
Derive Model Classes from Objects
Derive Model Functions from Operations
Derive View Classes from Ul Pictures and Model

Refine User Interface Design
Refine View Package Design
Choose User Interface Library Components
Design User Interface Layouts
Add View-Supporting Functions to Model Classes
Apply Observer/Observable Design Pattern

Derive Design Properties from Spec Attributes Refine Model/View Communication

Derive Design Comments from Spec Comments Design for Non-Functional Requirements

Design Inter-Package Sharing and Communication . .
g g g Formally Specify Design

Fully Identify all Function Inputs and Outputs
Refine Derived Preconditions, Postconditions
Define Preconditions, Postconditions for New Functions

Apply Design Patterns

Apply Architectural Design Patterns
Apply Model-View-Process

Apply Data Design Patterns

Apply Control Patterns

Apply Communication Patterns

Apply Other Appropriate Design Patterns
Refine and Customize Applied Patterns

Apply Design Heuristics
Minimize Coupling
Maximize Cohesion
Apply Other Appropriate Heuristics

Employ Appropriate Design Metrics
Refine Model and Process Design

Refine Model Package Design
Refine Model Class Design
Associate Functions with Classes
Objectify Function Signatures
Define Class Member Visibility
Define Class Inheritance and Other Relations
Choose Appropriate Data Representations

Define SCOs, Iterate Back as Necessary

Select Data Representations from Libraries
Design Custom Data Representations
Design Process Packages and Classes
Design Controller Classes
Design Adaptor Classes
Design Wrapper Classes
Design External Data Input/Output
Design Other External Data Interfaces
Design Control Flow
Refine Specification Dataflow If Appropriate
Design Functional Control Flow
Design Event Handling
Design Exception Handling

Figure 2 Design Process Fully Expanded.

6. Othematterns are employed to assist with design of program data, control, and communication.

C. Refine Model and Process Design.

1. Thederived, pattern-based design produced by the firstdeps must be refined into a concrete, object-
oriented program design.

2. Modelpackage design is refined using object-oriented design principles, information hidiegtioors,
and other design guidelines.

3. Derived functions must be associated with specific model classes, along with other class refinements.
a. Thefunction-assignment step is necessary because the operations of the functional specification do
not necessarily belong to specific objects.
b. In terms of typical nomenclature, functions associated with classes becomaetasdswith appro-
priate adjustment to method signatures based on object-oriented design concepts.

CSC307-f15-L6 4

c. Othernecessary design refinements are in the areas of class member vigibititance, and the
selection of concrete data representations.

d. In a modern program design, data representations are typically selected from reusable program
libraries.

Processlass design entails determining the underlying processing support that is necessary to produce an

efficient program.

a. To encapsulate platform-dependent data processing, process classes are interfaced with model classes
via controller adaptor and wrapper classes.

b. These model/process interface classes encapsulate aspects of the program that are specific to specific
operating systems, hardware platforms, and external data stores.

. Animportant part of model and process refinement is detailed conteadidlgign.

a. Dataflev relationships defined in the specification are refined into concrete procedural or multi-
process control flow

b. Other important aspects of controlulaesign are functional control fig event handling, andxep-
tion handling.

D. Refine User Interface Design.

1.
2.

Thefourth step of design is deted to refining the end-user interface.

Inthe current state of the art, user irded design typically relies heavily on libraries of reusable-inter
face classes.

Theclass libraries define commonly-used interface elements and layouts.

In a Model-View design, the model classes must be refined to support theclasses, based on the
specifics of the user interface.

A particularly useful design pattern in thigaad is called the "Observer/Observable" pattern.

. Thispattern defines theay in which viev classes can be systematically updated in response to changes

made by the user to data values stored in the model classes.

E. Design for Non-Functional Requirements

1.

2.

Any non-functional requirements that were not modeled in the specification or are not yet incorporated in
the design are dealt with in this step.

The purpose of this step is to ensure that all system-related non-functional requirements are fully
addressed in the design.

F. Formally Specify Design.

1.
2.

Asthe detailed program design is established, the design is formally specified.

Thisentails the precise definition of function (i.e., method) input/output signatures, followed by the speci-
fication of preconditions and postconditions for all functions.

For the model functions derd directly from the specification, the function conditions are vedri
directly from the preconditions and postconditions defined in theedefiom operations.

For other model and process functions, preconditions and postconditions are defined with the same
methodology used in the abstract specification model.

Namely preconditions arex@ressions that must be true before functiomgation; postconditions must
be true after functionxecutions.

G. Apply Design Heuristics.

1.
2.

4,

Various design heuristics (i.e., general guidelines) can be applied throughout the process of design.

Minimizing coupling among program elements aims to reduce the depgnaethcommunication to
only that which is essential

Maximizing cohesion means that program elements that are functionally related are grouped, together
without extraneous unrelated elements.

Otherheuristics can be applied, such as controlling the size of various program components.

H. Define SCOs and Iterate Ba@as Necessary.

1.

During the course of program design, theveleper may disceer aspects of the requirements

CSC307-f15-L6 5

specification that need to be modified or enhanced.

2. Insuch cases, the designer definspecification bange ader that clearly states the necessary modifica-
tions or enhancements.

3. Thisformalized change order is in keeping with the higlellprocess decomposition into problem defi-
nition and problem solution phases.
a. Asdiscussed abw, the Analyze andSpecify process steps comprise the problem definition phase.
b. TheDesign andimplement steps then comprise the problem solution phase.

4. In this software process, as in a traditional problem-solving process, changing the problem definition
while the solution is underway requires careful consideration.

5. Thespecification change order codifies this careful consideration in a precise way.

[ll. Comments on the 307 Design Process.

A. Theprocess employs techniques from a number of design methodologies, including:
1. TheUML (unified modeling language) of Rumbaugh, et al.
2. Thestructured design techniques of Yourdon, et al.

3. TheMVP (Model-View-Process) technique (aka, MVC -- ModdkeW-Controller), used originally with
the Smalltalk language, andwaised extensely in Java designs.

B. Theprocess wrks well for information processing systems with substantial end-user interfaces, which are
the types of systemsgoped in 307.

C. For other types of system, similar process steps can be uggmhdsibly in a different ordeand with differ-
ent domain-specific methodologies.
D. Othermajor system types include:
1. Realtimesystems, such as communications software.
2. Utility systems, such as compilers and operating systems.
3. Embeddedystems, such as devicewdrs and process controllers.

IV. The languages of system specification and design.

A. Oneof the problems to be confronted in designing from a formal specification is the translation from the
requirements/specification language into the design/implementation language.

B. In some cases, specification languages may differ from programming languages, since theferene dif
forces influencing the design of theattypes of languages.

C. Inthe case of specs written in the first half of 307, the specs are written in a subgatwlfiidh is the same
as the 307 design and implementation language.

V. So what exactly is (software) design?

A. In aword, design is aabstractionof the implementation.
1. Theidea of abstraction is th#tings get left out
2. Thesimplest definition of what implementation detail gets left out of the design is thequential
code bodies of methads
3. Thisby itself is an wer smplification of the design process.
4. Thereare sgeral levels of design abstraction, each one leaving out more information.

B. Thelevels of design abstraction from highest to lowest can be broken down as follows:
1. Packaging Design
a. Thehighest leel of architectural design abstracts owesything but the largest modular units, which
in Java cesign terminology are the packages.
b. We gve names to the packages, describe them, and discuss abstract communication and dependencies
between them.

CSC307-f15-L6 6

c. We cefine the separatexecutable components of the program, including separate application pro-
grams and servers.

2. Abstract Class Design
a. Classeare added as components of the packages.
b. We rame and describe the classes but do not define their contents or inheritance relationships.

3. Mid-Level Class Design
a. We ad methods and data fields to classes.
b. We nrame and describe the methods and fields, but do not define method signatures or concrete data
representations for the fields.
c. We define inheritance relationships among classes.

4. Detailed Class Design
a. We ad full input/output signatures to methods.
b. We =lect concrete data representations for data fields.

5. Functional Design
a. We ad pre- and postconditions to all methods.
b. We define control flav anong methods using function diagrams or egait notation.

C. Atary and all of these lels, we can apply suitable design techniques (a.k.a., design patterns), when and if
such patterns exist.

D. For us, we're going to start with the following dvpatterns, the one of which is quite general and widely
used, the second of which is rather specific to our particular kind of software.
1. The"Model/View/Process" pattern, addressing design abstractieis [2 through 5.
2. The"Information Processing Tool" pattern, addressing design abstracted le

VI. What is a design pattern?
A. Thebuilding architect Christopher Alexander defined a design pattern as follows:

"Each pattern describes a problem which occwes and over agan in our environment, and then
describes the core of the solution to that problem, in suchyetvat you can use the solution a mil-
lion times aer, without ever doing it the same way twice."

B. Thissame concept applies to software as well as it does to buildings, with appropriate change in notation.

C. For software, the notation is softwe design diagrams, templates of software code, and step-by-step descrip-
tions of pattern application.

VII. The MVP pattern
A. The Model/View/Process (MVP) pattern is used to separate the core processing of an application from the
concrete GUI and underlying support processing.

1. TheModel is the part of the design that is directly traceable to the abstract specification, representing the
core processing.

2. TheView mnsists of concrete GUI processing

3. TheProcess is the underlying support processing thaiges the functionality needed by the model to
get the work done efficiently.

B. Thereis a direct correspondence between each model class and one or more compariasses.

1. Typically, there is a standard, oanonicalview class that presents a complete interface from the model to
the user.

2. Theremay be additional auxiliary wes that she selected portions a model, presented in ways that are
helpful to the user.

3. Inall cases, both model and wielasses are afys directly traceable to the requirements specification.

C. Figure3is a general diagram of MVP.
1. Thefigure shows the data members and methods for the abstract Model ardiagses.

CSC307-f15-L6 7

Tool-Specific

Model Model Class A [<>

View

Model %_

ggtttl/ilgvv\\// Tool-Specific O /\
Model Class Z

- Canonical View O

View Class for Model A

Model

Screen . .

: Auxilary View
Window Class for Model ARL—
View
run %_ P
compose
show Auxilary View >
hide Class for Model A
setModel
getModel
getWindow
isShown
isEditable Canonical View <>
setEditable Class for Model Z

Auxilary View C
Class for Model Z
Auxilary View O

Class for Model Z

Figure 3 MVP Pattern.

2. For 307, these classes are defined in the 3@¥ disss library.

VIIl. The "Inf o Processing Tool" pattern.

A.
B.
C.

This pattern is used to layout the higlvdepackaging of a software application.
It is used in conjunction with both the Dexifrom-Spec and MVP patterns.

Thepattern applies to the of the kind of applications we are building in 307.

1. Theseare programs that perform a specific set of information-processing tasks, under the continued direc-
tion of a human user.

2. Thethe application uses a graphical user i@tezfof the form that has become common in computer
operating environments, with a menu-based and/or toolbar-based¢bple

In this pattern, each major functional grouping iganized into a pair of packages, one for model classes,

the other for vier classes.

1. Thesdunctional packages are contained in a togHlpackage that houses the topdemodel class for
the tool itself, as well Main class that contains the topAmain method.

2. Atop-level view package contains the topvk view classes for the tool, typically a menubar and zero or
more main tool windows.

CSC307-f15-L6 8

3. Figured is a hgh-level diagram of the pattern.

E. Whenapplied in conjunction with the D&g-from-Spec pattern:
1. Eachfunctional model package is desdl from a specification module.
2. Theview packages and the topvie application package are weo the design.

F. Overall, this pattern uses information from the following sources:

1. The organization of the end-useqguirements scenariom which each major section of the scenarios is a
candidate for a package in the design.

2. The organization of the top-level GUh which each major unit in the Ul is a candidate for a package in
the design; "major units" of the Ul include pulldown menus, free-floating toolbars, other well-delineated
components of the interface.

3. Modular organization of the Java modai which each module (or separasé file) is a candidate for a
package in the design.

IX. Applying the patterns to the Calendar Tool example.

A. Lastquarter we lookd at the requirements specification for a Calendar Tool application that is similar in size
and scope to your 307 projects.

B. We'll continue this quarter with the design and implementation of the Calendar Tool.

X. Applying Info-Processing-Tool patten to derive CalendarTool packages.

A. Thereare sgen modules in the Calendan®l specification, one for each of the six functional command cate-
gories (as shown on the pulldown menu), and one for the underlying calendar database:

1. File-- file command processing

—

Functional
Model Package
A

—

Top-Level
Model Package <

—

| Functional
—| Model Package
N

Top-Level
Tool Package <

—

Companion
View Package
A

Top-Level
View Package <

—

| Companion
—| View Package
N

Figure 4 IPT pattern.

CSC307-f15-L6 9

Edit-- edit command processing

Schedule- calendar item scheduling

View -- viewing calendars and lists

Admin-- managing the user and group databases
Options-- managing user options

CalDB-- the calendar database for all registered users

No og~owd

Applyingthe dervation pattern, we get sen model packages for these.
Applyingthe IP tool pattern, we add a topdktool package, and companionwipackages for each model

A diagram is shown in Figure 5.

moOow

Itis notevorthy that there are no companion Ul packages for the CalDB anérSmekages; these are pro-
cessing packages thatveao direct user interface.

m

A derived version of the top-leel tool class is the following, which is defined in the filgplementa-
tion/source/java/caltool/CalendarTool.java :

package caltool.model;

import caltool.view.*;

import caltool.model.file.*;
import caltool.model.edit.*;
import caltool.model.schedule.*;
import caltool.model.view.*;
import caltool.model.admin.*;

file

edit

schedule

view
— model

admin

options

caldb

server

schedule
L— view

view

file

edit

3 L B

Il

admin

options

Figure 5 Calendar Tool packages.

CSC307-f15-L6 10

import caltool.model.options.*;
import caltool.model.help.*;
import caltool.model.caldb.*;
import mvp.Model;

/****

*

Class CalendarTool is the top-level model class for the regular-user

Calendar Tool program. CalendarTool has references to the functional model
c lasses of the tool: File, Edit, Schedule, View, Admin, Options, and Help.

T here is also a reference to the CalendarDB class that houses the tool's

major data bases.

*

*

*

*

*

*

* F unctionalitywise, all of the model classes are autonomous units. They each
* do t heir own work as invoked by the user. All that this top-level class

* d oes is to construct the work-doing model classes and set up the initial

* s tate of the tool when it is invoked from the outside operating system.

*
*
*
*
*
*
*

S ee also the companion view class
CalendarToolUl.

@author Gene Fisher (gfisher@calpoly.edu)
@version 13aprl5

*
public class CalendarTool extends Model {

/**
* Construct this with the given companion view. Call the submodel
* c onstructors. Initialize the start-up state based on default options
* and command-line arguments.
*
public CalendarTool(CalendarToolUI calToolUl) {

/*
* Call the parent constructor.
*

super(calToolUl);

/*
* Construct and store the submodel instances. Note that the
* CalendarDB is constructed before the File so the latter can observe
* t he former for changes.
*

caldb = new CalendarDB(null);

file = new File(null, caldb);

edit = new Edit(null);

schedule = new Schedule(null, caldb);

calView = new View(null, caldb);

admin = new Admin(null);

options = new Options(null);

/*
* Set up the initial state of the tool.
*
initialize();
}
/**

* | mplement the exit method to pass the buck to file.exit(). Per set up
* p erformed in the companion CalendarToolUl view, this method is called
* when the user closes the top-level menubar window, e.qg., via the window
* manager close button.
*
public void exit() {
file.exit();

}

/** Return the File model. */
public File getFile() { return file; }

CSC307-f15-L6 11

/** Return the Edit model. */
public Edit getEdit() { return edit; }

/** Return the Schedule model. */
public Schedule getSchedule() { return schedule; }

/** Return the View model. */
public View getCalView() { return calView; }

/** Return the Admin model. */
public Admin getAdmin() { return admin; }

/** Return the Options model. */
public Options getOptions() { return options; }

/** Return the Help model. */
public Help getHelp() { return help; }

[x*
* Protected methods
*/

/**

* Set up the initial state of the tool, based on default option values and
* ¢ ommand-line arguments, if any. Details TBD.
*

void initialize() {}

[**

* Data fields
*/

[** File-handling module */
protected File file;

[** Basic editing module */
protected Edit edit;

/** Scheduling module */
protected Schedule schedule;

[** Calendar viewing module */
protected View calView;

/** Calendar administration module */
protected Admin admin;

/** Tool options module */
protected Options options;

/** Tool help module */
protected Help help;

[** Calendar database */
protected CalendarDB caldb;

Xl. Class diagram for derived Calendar design.

A. Figure6 shows a class diagram for theykdasses in the design of the Milestone 6 example.
1. Asnoted abwe, the design and implementation for the 307 Milestone 4 example are at
users.csc.calpoly.edu:"dfisher/classes/307/examples/milestone4

2. Theabstract model from which the design is dadiwas begun in the 307

CSC307-f15-L6 12

srelaq

oju|
pulay

Auoud

Aunoss

uoneooT

oyu|
Burnosy

uoneing

Aobare)d

aregpu3l

aregang
Iouels

L

usng

>

way
panpayds

Buines
salinbay

suondo
19sn

Cll=]

puasn

ssel

awiL1elS

Sa99puaNy

—<> Bunsaiy

luawjuloddy

X809 aoeds |
uonos|es Nlopiasn
suondo
uonoses |— g [
preoqdi|d [— gqwooy |—
alelrs .
snonald || gqdnoio
suondo | qaiesn —
JEND)
repuajed slepusred aa
JEg . 1asn repusjed
presn —' suondo
Juang
a|npayds ulwpy
yse) MBIA
||npayds “repusjed
Bunasi
wiuod —<>| @npayds
Bunasin
SINPALIS up3
ElE]
KioBereny —<> el |
Aobare)d

— lepused

ad —

lool
Jepuajed

Figure 6 Class diagram for Calendar Tool design in Notes 2.

CSC307-f15-L6 13

Milestone 4 example

and is refined into a design specification in the
Milestone 6 example

3. TheHCI from which the GUI design is de&d is in the 307
Milestone 4 requirements

which is further refined and finalized in the 307
Milestone 6 requirements

B. Inthe 307 design, th€alendarTool and its seen components are derd using the IPT design patter
applied to the top-iesl Calendar Tool GUI.

C. Themethods of thé&schedule class are a refinement of the abstract specification, with added information
hiding.

D. Thecomponents of th€alendarDB are a refinement of the specification that is part of the model refine-
ment work of Milestones 5 and 6.

XIl. Obsewations and further details about the Milestone 6 design example.
A. Cal endar DB. j ava
1. Traceability to spec is quite direct.

2. Thisis managerial-style class, as opposed to a data abstraction.
a. ltcontains references to other major model classes which are themselves data abstractions.
b. CalendarDB has contains no traceable methods.

3. Aswith other directly traceable classes, the tollelass comment is dend directly from description
in theCalendarDB abstract model
a. Whernthe spec object descriptions are complete and well-written, use the text directly.
b. When the descriptions are missing or incomplete, (re)write an appropriately desdeipti
c. Ineither case, class comments must be enhanced with additional information, as described in the 307
SOP Volume 2 on Ja cesign and implementation cgmtions.
4. Thederived data fields of clas€alendarDB trace directly to th&€€alendarDB spec object, including
the comments.

B. Schedul e. j ava

1. ClassSchedule.java does not trace to a spec object, but is rathreaaayerial class designed to hold
methods that trace to spec operations.
a. Ingeneral, the abstract model spec does nadyal define objects for the topvig functional group-

ings that correspond to the command pulldown menus.

b. This in an @ample of where the functionally-oriented abstract spec requires some refinement when
translated to an object-oriented concrete program.

i. In particular methods that are in th8chedule class, were originally defined in the abstract
model'sCalendar class.

ii. Inthe concrete design, there ar@ti@vds of refinement for the calendarSahedule class that
contains the usdevel calendar operations, andWserCalendar class that contains Wer-
level implementations of the calendar operations.

iii. The user-leel methods communicate with the wigand perform data validation.

iv. The laver-level methods encapsulate the concrete data structure for the calamtlarovide an
efficient implementation.

C. Schedul edltem j ava
1. Thisclass traces quite directly to the corresponding abstract iBotleduleditem object.

D. Appoi nt nment . j ava, Meeti ng. j ava, Task. j ava, andEvent . j ava
1. Theseclasses also trace quite directly to their corresponding abstract model objects.
2. Notethat the inheritance relationships among the abstract objects are retained invéaelaexidasses.

CSC307-f15-L6 14

E. Date.java
1. Dateis a straightforward translation of its abstract model object.
2. Asthe model is refined, this class will likely be replaced with a date representation fromvetlileraay.

XIll. Design and Implementation of GUIs in dvaSwing

A. In 307, the default GUI library is ¥ya Swving; as noted in the Milestones 5-6 writeup, your team may choose
to use a different by comparable library.

B. TheSwing library is rooted in the package nanj@eax.swing , which contains manclasses and sub-
packages for building GUIs.

C. Key Swing classes include the following:
* Box -- a simple way to layout GUI components.
* ButtonGroup -- for grouping buttons, particular radio buttons.
* JButton -- a standad command button; used all over the place.
» JCheckBox -- a typical on/df ched box.
» JCheckBoxMenultem -- a menu itme with a chledox next to it.
» JColorChooser -- a standard-looking color selection diglo
» JComboBox -- a pulldown that allows typing too.
» JComponent -- the top-level of the Swing component hielngr
» JDialog -- a handy pop-up diatp
» JEditorPane -- a way to viev and edit text, in particular HTML.
» JFileChooser -- a standard-looking file chooser.
» JFrame -- the outermost container for a GUI window.
» JLabel -- a simple piece of text within a GUI.
* JLayeredPane -- away to layer GUI frames in a 3D stack.
« JList -- alist of GUI components, typically with a scroll bar.
* JMenu -- a pulldown or pop-up menu.
* JMenuBar -- a standad menubarytypically at the top of a JBme.
* JMenultem -- an item in a JMenu.
» JOptionPane -- a parent class for a set of standamption dialogs.
* JPanel -- Typically the inner-wrapper of a d&me for managing GUI layout.
» JPasswordField -- a way to enter passwords without echoing.
» JProgressBar -- a typical-looking "throbber"
* JRadioButton -- a typical-looking radio button
«JScrollBar -- horizontal or vertical scrollbattypically in a JScrollPane
» JSeparator -- spacing in a menu.
« JSlider -- typical-looking slidertypically for numeric input
» JTabbedPane -- tabbing pane for organizing things dikreferences.
«JTable -- atwo-dimensional tabjenvith many display options.
» JTextArea -- a simplgeunformatted multi-line text area.

* JTextField -- a single-line text field.

» JToggleButton -- an on/of button.

*JToolBar -- a container for buttons that select other tools.
*JToolTip -- roll-over help for tool buttons or menu items.

*JTree -- a hierarchical tree displayin a Wndows Explorer style.

D. Key Swving subpackages are:

* javax.swing.colorchooser -- color chooser support classes

* javax.swing.event -- low-level classes representing GUI events

* javax.swing.filechooser -- file chooser support classes

* javax.swing.table -- JTable support classes

* javax.swing.text -- text display and editing support classes

* javax.swing.text.html -- HTML support (thex is dso XML support)
* javax.swing.text.html.parser -- low-level HTML support

* javax.swing.tree -- JTree aupport classes

CSC307-f15-L6 15

* javax.swing.undo -- simple undo/redo support

XIV. There is dso a companion packaggava. awt for | ower-level GUI support.

A. "awt " stands for the "abstract windowing tools".

B. Theclasses and interfaces include the following:
» Color -- low-level color support
» Component -- THE most generic GUI component, parent of JComponent
» Container -- THE most generic GUI containgarent of JFame
* Event -- all the details of a GUI event
» Graphics2D -- the way to draw graphic shapes, e.g., lines, circles, etc.
» GridLayout -- a nasty way to do 2D layout (I #Boxes muls better)
* Image -- a GIF or JPEG imge
ejava.awt. ActionListener -- the way buttons and menu items list for events

XV. Designing GUIs with Swing components.

A. Thelist of the Jaa sving components gen ébove ae those that you are most likely to use in the GUI inter
faces for your CSC 307 projects.

B. Figure7 shows an annotated version of a typical menubar and its menus, indicating which swing components
are used for which pieces.

C. Figure8 shows an annotated version of a typical editing dialog indicating which swing components are used
for which pieces.

D. Figure9 shows an annotated version of the editing dialog showimwg ¢amponents are laid out using Swing
Boxes ; layout can also be done usi@gidBags and other forms of layout managersit b find these
much more tedious than sim@Bexes .

XVI. GUI class naming corentions.
A. A standard set of name suffixes is used fowdkasses in the 307 examples.

B. Thesuffixes indicate the general usage of a GUI class, as shown in Table 1.

XVII. Coordination of Model and View classes in a high-lel design.
A. Basedon the design patterns discussed in these notes, there is a parallel decomposition of Mo&l and V
classes in a highel design.
1. Thelibrary Model andView classes are at the top of the inheritance hieyarch
2. Tool-specific model and weclasses inherit from these.

B. To ensure traceabilitythe high-leel class decomposition in the design should be structurally the same as
what we called th&unctional hierachy in the requirements specification.

1. Atthe spec ledl, the functional hierarghwas embodied in tavforms.
a. For the end usethe high-leel Ul organization of pulldown menus and dialogs embodies the func-
tional hierarcly.

b. In the formal Spest spec, the package and object structure embodies the functional/hierarch

2. Whenwe move the design ledl, this very samdunctional hierarct should be embodied in the pack-
age and class structure.

C. Themost important issue here is that functional hierarohies sense.
1. Thephysical embodiments of it are just different views of the same abstgantaation.

2. If the requirements- or specificatiorvéeembodiments don’make €nse or are inconsistent, then this
should be fixed in the designw&t.

3. If we had the time, wd’'go back and fix both the requirements and specification to agree with the design.

4. Sincewe dont havethe time to do this in 307, we describe in the SCOs what changedéden made to
the design-leel hierarcty with respect to the requirements and specification.

CSC307-f15-L6 16

Operating-system-maintained banner, except title is set using JFrame.setTitle

/

JFram\

Cal endar Tool /4 Il
JMenuBar—»{ File Edit Schedule View Admin Options N Help
Box, containing a horizontal
strut for blank spacing
JMenu —
>~ Appointment ...
— Meeting ...
JMenuItemsé>Task ng JMenus
~Event ... ““ /
JSeparato Categories ...
Table
Lists
Next
Previous i
Goto Date ... o Appointments
e Meetings
Lot L,
Filter > DRSNS () All ltems
Other User ... ™. Custom ...
Windows -> .
Edit ...
Windowing Mode ...

Figure 7. Annotated menus showing swing components used.

CSC307-f15-L6 17

JFram\ Schedul e an Appoi nt nent mN
JLabel ——Title: | I JTextFields
~—_

Date: | | Start Time: :l/
\ hr min
Duration: |:|]‘ JCheckBoxes

JTextField | — (disabled)
(disable“')/REC/""‘@’?-EI e
JCheckBox—T _ Categery: | Y] securiy:
JComboBox/mvl | prioriy:
Remind?]
Details:
YN
JTextArea I:l
JScrollBar
L ina
v JScrollPane

(OK] (Clear] (Cancel]

~

JButtons

Figure 8 Annotated dialog showing swing components used.

Schedul e an Appoi nt nent O e

: B Vertical
?‘:" Title: | | Box

Recurring? [

Category: | V] security: [public v
dPanel— | Location: | | Prioriy
in the

content pane | : ",
of the JFrame | : Remind?(]

s 5

iy

Figure 9@ Annotated dialog showing layout using boxes.

CSC307-f15-L6 18

Suffix

Example Meaning

ul

Dialog

Editor

Display

ScheduleUl A top-level view that contains all of the inter-
face components for a companion topele
model. Theseomponents are the pulldown
command menu and all of the other views
that are launched from menu commands.

$cheduleAppointmentDialog A top-level view that allows the user to pro-
vide inputs for a single operatiofypically

it hasOK Cancel , andClear buttons. The
OKbutton is used to confirm the operation for
which the user is entering the input.

ategoriesEditor A top-level view that provides for the editing
Has more command buttons than just OK,
e.g., Add, Delete.

flonthlyAgendaDisplay A read-only displayi.e., where no model da-
ta are editable.

Q

=

ButtonListener ~ OKScheduleAppointmentButtonListener An event listener for a button or menu item.

Panel

XVIIL.
A.
B.

SchedulingOptionsPanel The internal component of a tiled or tabbed
layout.

Table 1: GUI Class Naming Camntions.

Example of high-level M odel/View class diagram (see Figer10).
TheabstracModel andView classes are the root of the modeMviaheritance hierargh

Inheritingfrom these are the topvd model and vier classes for a particular application tool, in this case
CalendarTool andCalendarToolUI

Theseop-level tool classes in turn ka cmponents that arsubmodelsand subviewsdecomposed folla-
ing the tools functional hierarch

Submodelsand subiews also inherit from the abstragtodel andView classes, since submodel and sub-
view instances communicate directly with one another using the modepiateern.

XIX. Example of high-level M odel/View function diagram (see Figue 11).

A.

Thefirst three function calls are to class constructors for the Ul screen, thevébpetd model Calen-
darTool) and the top-leel tool view (CalendarToolUl)

1. Thecall to theScreen constructor constructs and initializes the GUI screen on whichighef\Mnctions
will display the user interface elements; in the case \&, J&s a ro-op unless the look and feel of the
screen are to be changed.

2. Thecall to theCalendarTool constructor constructs the topskCalendar model, which in turn calls
constructors for all subsidiary model classes and the data objgctsdire.

3. Thecall to theCalendarMenuUIl constructor constructs the top#k elements of the user intade,
which in turn calls constructors for all subsidiarywiglasses and the Ul objects ylrequire.

Thecall to CalendarToolUl.compose performs all specific details of Ul layout (in the diagraom-
pose is invoked through theCalendarToolUl variable nameaalToolUl).

1. Anumber of subfunctions arevisked to layout the various Ul pieces.

2. Thefunctions with bold borders in the diagram are supplied by treeaia 307 libraries.

. Thecall to CalendarTool.setView sets the model to point at the view

1. Sincethe model and vie mutually refer to each othemsne of the pair must use a set function.
2. Inthis design, the Model is constructed first and thev\denstructor is then passed a Model pointer.

3. Then,Model.setViev is called to set the iéw pointer within the Model (the CalendarTool in this case,
with the variable namealTool).

CSC307-f15-L6 19

Model

View

CalendarTool

Model
getView
setView

File

Edit
Schedule
View

Admin
Options
CalendarDB

Schedule

CalendarDB
Categories

CalendarTool
getFile
getEdit
getSchedule
getCalView
getAdmin
getOptions
getHelp

Schedules
scheduleAppointment
scheduleMeeting
confirmMeeting
scheduleTask
scheduleEvent

View

Model
Screen
Window

CalendarToolUl

View

run
compose
show

hide
setModel
getModel
getWindow
isShown
isEditable
setEditable

FileUl
EditUl
ScheduleUl
ViewUl
AdminUl
OptionsUl

ScheduleUl

ScheduleMenu
ScheduleAppointmentDialog
ScheduleMeetingDialog
ConfirmMeetingDialog
ScheduleTaskDialog

CalendarToolUl
constructSubviews
compose
composeMenuBar
composeHelpSpacing

ScheduleEventDialog
CategoriesEditor

ScheduleUl
compose

getScheduleMeetingDialog
getConfirmMeetingDialog
getScheuleTaskDialog
getSchduleEventDialog
getCategoriesEditor

getScheduleAppointmentDialog

Figure 10: High-level Model/View class diagram.

CSC307-f15-L6 20

second-level model
constructor functlons

top-level —+(schedule
constructor functions H

)
)
T e e)) s
—+(__calendarTool j——_[Admin j —H(__ Fileur Bl
i ‘-.
)

second-level view
constructor functions

—”C Options ——C Editul

—C ScheduleUl

)

‘: i)
—-CCaIendarTooIUl J———' ---------- super ------------ ' C Viewul j
--------------------------- | e)| [Aamno)|
B)

)

—::‘-E:onstructSubviews j—-——-—[OptionsUl

—'—E:aITooIUI compose j— (" mvp.window) R

"""""""""""""""""" ! (composeMenuBar)——(__Fileul.compose)
_CcaITooI.setView J ' setMenuBar) —CEditUI.compose j

C setTitle) — ScheduIeUI.composej

(pack) —{ Viewul.compose j

o GUi layout functions, (_ AdminUl.compose)
(bold-borders are H . :
library functions) i (LoptionsUt.compose)
—C HelpUl.compose j

second-level view
compose functions

display the GUI
—C caltoolUl.show j on the screen

Figure 11: Highest-level function diagram for Model/Vig application.

4. Thisenables full two-way communication between the Model and.Vie

D. Thecall to theView.show method inserts the wés main windav into the Ul screen; (in the diagram,
View.show is invoked through theCalendarToolUl variable namedalToolUl).
E. Dependingn the GUI toolkit being used, a call to tiiew.run method. maye necessary.

1. Inthe case of da, therun function is a no-op, since thevdamuntime environment automatically starts
an event loop wheneer one or more windows are shown on the screen.

2. Inother toolkits, an explicit call to tiren method causes the GUamt handling loop to be started.

F. Once the eent loop is started, all program control is assumed by the toolkit.
1. Inthe case of 3@, the event loop is in a separate thread of control.

CSC307-f15-L6 21

2. AsGUI events are handled, such as mouse clicks and typingyéné leop calls application methods that
have keen set up tbstenfor certain gents.

XX. Overview of event-based design.

A.

In the function diagram of Figure 11, when therg loop takes wer at the end of theMain method, the
application program has lost control.

1. InJava, the event loop eecutes in a separate threagava.awt.EventDispatchThread
2. Thethread in which thélain method was runningMainThread) has terminated.

3. Whatthis means is that the only way application methods canvbkenhis through an eent that is han-
dled by the eent loop.

B. Thisform of event-based processing is common to a#re-based GUI toolkits.

XXI.

1. Thedetails of gent handling vary rather widely among the different toolkit environments.

2. Eachhas what is called ament model- the precise way in which theent loop is itvoked and commu-
nicates with the application.

3. Despitethe differences, what is fundamentally the same in all toolkits is that the initiating main program
looses control and all subsequexagation of application methods is througlreets.

Designing &ent-based programs.

A. Thereare two important aspects of designingest-based programs:

XXII.

A.

C.

1. settingup the gent handlers
2. handlingthe events

Settingup the gent handlers is what enables to program to respond toéhése

1. Inthe case of GUI-based programeerds are the actions performed by the end,sseh as mouse and
key clicks.

2. InJava, setting up an eent handler is a matter of constructing Ewent Li st ener object, which is
attached to a GUI element with which the user interacts.

3. Avery typical case is attaching &ct i onLi st ener to aJMenultem or JButton
Theactual handling of vents by the application program is performed when\amtehandler imokes an
application method.

1. Inthe case of GUI-based programs, thren&invoked methods are typically referred to asall-bacK
methods.

2. InJara, call-backs are woked from theact i onPer f or ned method of arEvent Li st ener.
3. Thisact i onPer f or med method is specialized for each listener.

4. Whateach specialized version a€tionPerformed does is to call the application model method that
should be triggered by theent being handled.

Design diagram notation.

In our high-level function diagram notationyent-based imocation is shown with a double line labeled with
the name of the triggeringyent.

Figure12 is an gcerpt from the 307 handout on the graphical modeling notation which illustrates the dia-
gramming format.

1. Figurel2a illustrates the normal mode of methogbaation, where thenain method iwvokes methodA ,
methodB , and methodC.

2. Figurel2b illustrates thewent-based imocation, where thevent named EventName" triggers the
invocation ofmethodD andmethodE .

Thisnotation is used in the example diagrams thatvollo

CSC307-f15-L6 22

XXIII.
A.

main EventName
[methodD J (methodE J
methodA methodB methodC

a. Normal method invocation b. Event-based method invocation

Figure 12: Event diagramming notation.

Examples of setting up and handling eents.

Figure13 shows excerpts from the Calendar Tool main function diagram related to setting vgntheae-
dlers.

Figurel4 shows excerpts from the Calendar To@hébased ivocation hierarch related to handling GUI
events.

Thesaliagrams correspond to the following implementation source files:
 CalendarTool.java
 CalendarToolUl.java
* File.java
* FileUl.java
* FileMenu.java
 Schedule.java
* ScheduleUl.java
» ScheduleMenu.java
» Scheduleditem.java
 Event.java
» ScheduleEventDialog.java
* OKScheduleEventButtonListener.java
* MonthlyAgenda.java
* SmallDayView.java
» MonthlyAgendaDisplay.java
« SmallDayViewDisplay.java
e Lists.java
» AppointmentsListDisplay.java

1. Thecode in these files implements the design diagrams shown in the figures.
2. We'll do a detailed walk-through of the code during class.

CSC307-f15-L6 23

main

)

CalendarToolUl.
compose

composeMenuBar

CalendarToolUl. j

—[FileUl.compose j

|—CFiIeMenu.com|30Se j

—C addNewltem j
—C JMenultem J

@ddActionListener j

—C addOpenltem j

C JMenultem j

@ddActionListener j

{

ScheduleUl.
compose

| | scheduleEvent
Dialog.compose

‘—CcomposeButtonRow j
—C JButton J

|| OKScheduleEvent
ButtonListener

@ddActionLiStener j

ScheduleMenu.
compose

‘—C addEventltem j

—C JMenultem j
—@ddActionListener J

Figure 13: Setting up Calendar Toolent handlers.

CSC307-f15-L6 24

actionPerformed

MonthlyAgendaDisplay.]

show

remaining menu item action listeners

MouseButton
Event
JMenultem. —_— :
actionListener. —[File.fileNew] [System.out.prmtln]
actionPerformed
JMenultem. JFileChosser.
actionListener. showOpenDialog
actionPerformed
File.open]—[System.out.println]
« « « remaining File menu item action listeners
Edit menu item action listeners
JMenultem. ScheduleEventDialog.
actionListener. show
actionPerformed
JMenultem. MonthlyAgendaDisplay. -
actionListener. C update JPanel.removeAll

—C GridLayout.setRows

| MonthlyAgenda.
getfirstDay

| MonthlyAgenda.
getNextDay

| [SmallDayViewDisplay.
SmallDayViewDisplay

OKScheduleEvent
ButtonListener. [Event.Event

J

actionPerformed

—C JPanel.add

) U U

Schedule.
scheduleEvent

* " " remaining button action listeners

]—[System.out.println]

Figure 14: Responding to Calendar Tool GUleats.

CSC307-f15-L6 25

