
CSC307-f15-L7 Page 1

CSC 307 Lecture Notes Week 7
Design for Independent, Incremental Testing

Refining Model Design Using the Jav aLibrary
A K ey Design Patterns for 307 Projects

I. Designing for independently testable packages.

A. Team developers should design their individual packages and classes to be testable independently from other
team members’ packages.

B. Providing "canned" test data is one aspect of independently testable designs.

1. Suchtest data are used when data-producing packages are not yet implemented by other team members.

2. Thesedata can also be very handy when an implemented package unexpectedly breaks, leaving users of
the package stuck until the broken package is fixed.

C. Ina Java-based implementation, having individualizedmain methods supports independent testing.

1. For convenience, thesemains can be in model classes.

2. Duringthe initial phases of development, it’s fine to have some testing done directly in the model classes.
a. Theseinitial tests are designed to check that an implementation is going in the right direction.
b. The initial tests will evolve into the formal tests that are in thetesting project directory.

D. A testingmain method in a model class does the following steps:

1. Constructmodel class(es) to be tested.

2. Constructand compose companion view(s).

3. Constructcanned test data.

4. Show the top-level view(s).

E. Independently-testabledesigns allow incremental development, meaning the implementation can be tested in
successively refined increments, each with more strenuous and less canned test data.

II. Java Library packages for model and process data.

Question: How many packages and classes in the standard Java 7 library?

Answer: 209 and 4205, respectively

A. Thekey packages we’ll cover in these notes are:

1. java.lang -- the fundamental Java language package, with classes such as Object, String, and System.

2. java.util -- the higher-level Java language package, including the collection classes, date/time classes, and
others.

3. java.io -- file input/output and related processing.

B. Thefunctionality provided in these packages is central to the work you’re doing in 309.

C. Theclasses and interfaces in these packages are summarized in the UML diagrams that follow.

CSC307-f15-L7 Page 2

D. Packagejava.lang

Integer

static Integer valueOf(String)
 ...

String

String(byte[])
int length()
String concat(String)
String substring(int, int)
int indexOf(String)
static String valueOf(...)

Math

static ... abs(...)
static ... min(...)
static ... max(...)
static double sin(double)
static double cos(double)
static double tan(double)
static double pow(double)
static double log(double)
static double random()

System

static PrintStream out
static PrintStream err
static InputStream in

static void exit()
static String getProperty(String)

Runtime

Process exec(String)
static Runtime getRuntime()

Process

InputStream getInputStream()
OutputStream getOutputStream()

Thread

void start()
void run()

Throwable Exception ArtithmeticException

ArrayIndexOutOfBoundsException

NullPointerException

RuntimeException

OutOfMemoryError

StackOverflow

Error

Float

Double

Boolean

Character

Object

CSC307-f15-L7 Page 3

E. Packagejava.util

Interfaces:

Classes: Object

HashMap

TreeMap
 (implements
 SortedMap)

AbstractMap (implements Map)

Object put(Object key, Object value)
Object get(Object key)
Object remove(Object key)

Arrays

boolean equals(...[], ...[])
int binarySearch(...)
void sort(...[])

Collections

int binarySearch(List, Object)
void sort(List)

Date

StringTokenizer

String nextToken()

EventObject

Object source

Collection List

Observer

Iterator ListIterator

SortedMapMap

AbstractCollection
 (implements Collection)

boolean add(Object)
boolean remove(Object)
boolean contains(Object)
int size()
void clear()

AbstractList
 (implements
 List)

 Abstract
Sequential
 List

Linked
 List

ArrayList

Vector Stack

HashSetAbstractSet
 (implements
 Set) TreeSet

 (implements
 SortedSet)

Properties

String getProperty(String)
Object setProperty(String, String)

Set SortedSet

Observable

 . . .

CSC307-f15-L7 Page 4

F. Packagejava.io

Object OutputStream

void write(byte)

FileOutputStream

FileOutputStream(String)

ObjectOutputStream

ObjectOutputStream(OutputStream)
void writeObject(Object)

FileInputStream

FileInputStream(String)

File

File(String)
boolean exists()
boolean createNewFile()
String getPath()

IOException EOFException

FileNotFoundException

Exception

InputStream

int read(byte[])

ObjectInputStream

ObjectInputStream(InputStream)
Object readObject()

Interfaces:

Classes:

Serializable
 . . .

PrintStream

void print(...)
void println(...)

FilterOutputStream

ObjectStreamException

III. Usingjava.io.File and javax.swing.JFileChooser for p latform-independent file access.

A. Usefulgeneral operations of classFile include:

1. canRead

2. canWrite

3. createNewFile

4. delete

5. isDirectory

6. isFile

7. mkdir

B. Packagejava.io provides very classes to read and write file data.

1. To enable a class to be written to and read from a file, the class implements theSerializable interface.

CSC307-f15-L7 Page 5

a. Serializable has no methods, so all you need to do is implement it.
b. Doing so is allows the class data to be "serialized" for sending to a file or any input/output stream.

2. For output, the classes areFileOutputStream andObjectOutputStream

3. For input, the classes areFileInputStream andObjectInputStream

4. Theseclasses are used in conjunction with serializable objects.

5. E.g.,suppose we have

public class SomeModelClass implements Serializable {

...
}

6. To write out such a model object do the following:

model = new SomeModelClass();

/* Put some data in model ... */

FileOutputStream outFile =
new FileOutputStream(

"model.dat");

ObjectOutputStream outStream =
new ObjectOutputStream(outFile);

outStream.writeObject(model);

7. To read the object back in:

FileInputStream inFile =
new FileInputStream("model.dat");

ObjectInputStream inStream =
new ObjectInputStream(inFile);

model = (SomeModelClass)
inStream.readObject();

C. javax.swing.JFileChooser provides a platform-independent UI for file selection; particularly useful methods:

1. showOpenDialog

2. showSaveDialog

3. getSelectedFile

4. setSelectedFile

IV. Review of "canned" model data for initial testing.

A. For initial testing of a model/view design, it is very useful to have sample model data, that are displayed in
corresponding views.

1. In the beginning, these data can be entirely "canned", i.e., defined as constants in the model classes.

2. A good place to get concrete example data values is from the requirements.

B. Themodel data can be delivered to the view using the same methods that will ultimately produce the real
data.

1. For example, if an iterator method is used to access model data, the body of the method can produce the
canned data.

2. If collection-valued data are returned by the model, canned data can be generated by temporary testing
methods

C. Examplesof the preceding two forms of canned data generation are illustrated in the Calendar Tool code

CSC307-f15-L7 Page 6

from the Week 3 notes.

1. The iterator methods in theMonthlyAgenda model class deliver a fixed month of data to the
MonthlyAgendaDisplay view class.

2. In theLists model class, there is agenerateSampleList() method that generates a sample data
value that appears in the requirements; this piece of data is returned byLists.viewAppoint-
mentList() to theAppointmentsListDisplay view class.

V. View data collection and validation.

A. Whenthe user enters data in a GUI, a View class collects it in raw form.

B. For example, thegetText method extracts the string data from aJTextField.

C. Onceraw data are collected they are:

1. Converted by the model, from their raw view form into whatever form the model needs, e.g., a string-to-
numeric conversion.

2. Validated by the model, based on preconditions to a model processing method.

3. Processedby the model as appropriate.

VI. Using exception handling in a model/design, to perform data validation.

A. Thereare a number of ways to perform input data validation in a model/view design.

B. In general, most if not all of the validation should be done by the model.

1. In jargon terms, we have a "smart model and stupid view".

2. Whatthis means is that the view does not know anything "smart" about the data, in terms of its structure,
or whether it’s semantically valid.

3. Theview is in charge of displaying data in the UI, and managing the event-based interactions with the
user.

4. Themodel is in charge of storing the data, and managing all of the content-based access and manipulation
of the data, including validation.

C. In a design that includes formally-specified of methods, a useful way to handle data validation is with excep-
tion handling

D. Thisstyle of design is discussed in the next several points of the notes.

VII. Quick review of exception handling concepts.

A. Normally, when a method is entered via a call, it exits by returning to the caller.

B. In a language with an exception handling mechanism, there is an "abnormal" way for a method to exit -- by
throwing (a.k.a., raising) an exception.

1. Raisingan exception allows a method to exit in a manner separate from its normal return-to-caller mode.

2. Whenan exception is thrown in a method, control does not return directly to the caller, but rather some
other active method that catches (a.k.a., handles) the exception.

3. Thecatch can be in the immediate caller, but it is not limited to be.

4. Thecatch does have to be performed by a currently active method; i.e., a method that directly or indi-
rectly called the method in which the exception occurred.

C. Different programming languages provide different styles of exception handling, and details differ widely
between languages.

1. At the design level, we use an abstract graphical notation to depict exception handling.

2. At the implementation, we will use standard Java notation for exception handling.

CSC307-f15-L7 Page 7

VIII. Design diagram notation for exception handling.

A. In our high-level function diagram notation, exception handling is shown with labeled arrows leading into
and out from a method.

B. Figure1 is an excerpt from the 309 handout on the graphical modeling notation which illustrates the excep-
tion diagramming format.

1. In the Figure,MethodX calls three submethodsX1, X2, andX3.

2. MethodX2 andMethodX2 return in the normal way.

3. MethodX1 can return in the normal way, but also throw an exception that is caught byMethodX.

C. Thisnotation is used in the example diagrams that follow.

IX. An example of data collection, exception handling, and related Model-View communication.

A. Figure2 illustrates the use of exception handling to validate user input data, in a Calendar Tool Sched-
uleEvent dialog.

B. Thefigure shows the model methodSchedule.scheduleEvent throwing anScheduleEventPre-
condViolation exception to the companion view method OKScheduleEventButtonLis-
tener.actionPerformed.

C. Theexception is thrown when one or more input errors is detected, based on the processing done the the
scheduleEvent method.

D. What follows is the code forOKScheduleEventButtonListener.actionPerformed() and
friends, corresponding to the design shown in Figure 2.

public class OKScheduleEventButtonListener implements ActionListener {

/**
* Construct this with the given Schedule model and parent dialog view.
* Access to the model is for calling its scheduleEvent method. Access to
* the parent view is for gathering data to be sent to scheduleEvent.
*/

public OKScheduleEventButtonListener(Schedule schedule,
ScheduleEventDialog dialog) {

this.schedule = schedule;
this.dialog = dialog;

}

/**
* Respond to a press of the OK button by calling ScheduleEvent with a new
* Event. The Event data are gathered from the JTextFields and JComboBox

MethodX

MethodX1 MethodX2 MethodX3
Excep

Excep

Figure 1: Event diagramming notation.

CSC307-f15-L7 Page 8

ScheduleEventDialog.
 displayErrors

Schedule.
 scheduleEvent

MouseButton
 Event . . .

OKScheduleEvent
 ButtonListener.
 actionPerformed

ScheduleEvent
 PrecondViolation.
 anyErrors

validateInputs

ScheduleEvent
 PrecondViolation.
 ssetAlreadyScheduledError

ScheduleEvent
 PrecondViolation.
 clear

CalendarDB.
 getCurrentCalendar

Event.Event

ScheduleEventDialog.
 getTitle

. . .

ScheduleEvent
 PreconViolation.
 setNoActiveCalendarError

UserCalendar.add

ScheduleEventDialog.
 getStartDate

ScheduleEventDialog.
 getEndDate

ScheduleEventDialog.
 getCategory

ScheduleEventDialog.
 getLocation

 ScheduleEvent
PrecondViolation

 ScheduleEvent
PrecondViolation

try

catch

Figure 2: User input data collection and validation for scheduling an event.

* in the parent dialog.
*/

public void actionPerformed(ActionEvent e) {

try {

schedule.scheduleEvent(
new caltool.schedule.Event(

dialog.getTitle(), // Title as a string
dialog.getStartDate(), // Start date as a Date
dialog.getEndDate(), // Start date as a Date
dialog.getCategory(), // Category as a Category
dialog.getLocation() // Location as a string

)
);

}
catch (ScheduleEventPrecondViolation errors) {

dialog.displayErrors(errors);
}

}

/** The companion model */
protected Schedule schedule;

CSC307-f15-L7 Page 9

/** The parent view */
protected ScheduleEventDialog dialog;

}

E. Hereis the code for companion model method that potentially throws the exception.

public class Schedule extends Model {

...

/**
* ScheduleEvent adds the given Event to the given CalendarDB, if an event
* of the same start date and title is not already scheduled.
*
* pre: Details in next week’s notes
*
* post: Details in next week’s notes
*/

public void scheduleEvent(Event event)
throws ScheduleEventPrecondViolation {

/*
* Clear out the error fields in precond violation exception object.
*/
scheduleEventPrecondViolation.clear();

/*
* Throw a precond violation if the validly check fails on the start or
* end date.
*/
if (validateInputs(event).anyErrors()) {

throw scheduleEventPrecondViolation;
}

/*
* Throw a precond violation if an event of the same start date and
* title is already scheduled.
*/
if (alreadyScheduled(event)) {

scheduleEventPrecondViolation.setAlreadyScheduledError();
throw scheduleEventPrecondViolation;

}

/*
* Throw a precond violation if there is no currently active calendar.
* Note that this condition will not be violated when interacting
* through the view, since the ’Schedule Event’ menu item is disabled
* whenever the there is no active calendar.
*/
if (calDB.getCurrentCalendar() == null) {

scheduleEventPrecondViolation.setNoActiveCalendarError();
throw scheduleEventPrecondViolation;

}

/*
* If preconditions are met, add the given event to the currently
* active calendar.
*/
calDB.getCurrentCalendar().add(event);

CSC307-f15-L7 Page 10

}
}

F. Here is the code for the ScheduleEventPrecondViolation

package caltool.schedule;

import caltool.PrecondViolation;
import java.util.*;

/****
*
* Class ScheduleEventPrecondViolation defines and exception containing error
* conditions for the Schedule.scheduleEvent method. It contains a list of
* the specific error messages that may be output in response to a precondition
* having been violated by a call th scheduleEvent.
*
*/

public class ScheduleEventPrecondViolation extends Exception
implements PrecondViolation {

/**
* Construct this by initializing the error message list to an empty list,
* initializing the numErrors count to 0, and initializing local copies of
* the error message text for each of the possible errors from
* Schedule.scheduleEvent.
*/

public ScheduleEventPrecondViolation() {

errors = new ArrayList();

alreadyScheduledMessage = new String(
"An event of the given start date and title is already scheduled.");

invalidStartDateMessage = new String(
"Invalid start date.");

invalidEndDateMessage = new String(
"Invalid end date.");

noActiveCalendarMessage = new String(
"There is no active calendar in the Calendar Tool workspace.");

numErrors = 0;
}

/*-*
* Implemented interface methods.
*/

/**
* Return the error list.
*/

public String[] getErrors() {
return (String[]) errors.toArray(new String[1]);

}

/**
* Clear all error messages.
*/

public void clear() {
errors = new ArrayList();
numErrors = 0;

}

CSC307-f15-L7 Page 11

/**
* Return true if any errors have been set.
*/

public boolean anyErrors() {
return (numErrors > 0);

}

/**
* Return the number of errors.
*/

public int numberOfErrors() {
return numErrors;

}

/*-*
* Error-setting methods
*/

/**
* Set the already scheduled error message.
*/

public void setAlreadyScheduledError() {
errors.add(alreadyScheduledMessage);
numErrors++;

}

/**
* Set the invalid start date error message.
*/

public void setInvalidStartDateError() {
errors.add(invalidStartDateMessage);
numErrors++;

}

/**
* Set the invalid end date error message.
*/

public void setInvalidEndDateError() {
errors.add(invalidEndDateMessage);
numErrors++;

}

/**
* Set the no active calendar error message.
*/

public void setNoActiveCalendarError() {
errors.add(noActiveCalendarMessage);
numErrors++;

}

/*-*
* Data fields
*/

/** List of current error messages */
protected ArrayList errors;

/** Error message count */
protected int numErrors;

CSC307-f15-L7 Page 12

/** Error message for event of same date,title already scheduled */
protected String alreadyScheduledMessage;

/** Error message for invalid start date */
protected String invalidStartDateMessage;

/** Error message for invalid end date */
protected String invalidEndDateMessage;

/** Error message for no currently active calendar in the workspace */
protected String noActiveCalendarMessage;

}

G. Finally, here is the code for the general interface that all precondition violation exceptions must implement:

package caltool;

/****
*
* Interface PrecondViolation defines the methods that all precondition
* violation exceptions must implement.
*
*/

public interface PrecondViolation {

/**
* Return the concrete error list for precondition violation. Each
* position in the list corresponds to violation of a particular
* precondition clause.
*/

public String[] getErrors();

/**
* Clear out all of the error messages in this.
*/

public void clear();

/**
* Return true if one or more error messages has been set.
*/

public boolean anyErrors();

/**
* Return the number of error messages.
*/

public int numberOfErrors();

}

X. A note on model-view communication via direct data reference versus dynamic method computation.

A. Considerthe Calendar Tool view for an individual scheduled item versus a monthly view of items.

1. In the case of a single item view, the display shows data that are persistently stored within the model data.

2. In the case of a monthly view, some of the data are persistently stored, but the other parts of the data, in
particular the month/day layout, are dynamically computed.

B. Theseare examples of a data persistence design pattern we’ll discuss further in upcoming lectures.

CSC307-f15-L7 Page 13

XI. A key design pattern for use in 307 projects -- Observer/Observable

A. Usefulwhen multiple views change, based on changing model, e.g.,

1. CalTool: daily, weekly, monthly views

2. Testtool: question dialogs, question DB, tests

B. In Java, this pattern is defined with theObservable class and theObserver interface, which are summarized
as follows:

interface Observer {
public void update(

Observable o,
Object arg)

}

class Observable {
void addObserver(Observer o)
void setChanged()
boolean hasChanged()
void notifyObservers()
void notifyObservers(Object arg)

}

C. At the top level of the design, the MVPView class implementsObserver and the MVPModel class
extendsObservable:

public class View implements Observer {

. . .
}

public class Model extends Observable implements Serializable {

. . .
}

D. Here’s an example of typical use in the Calendar Tool, where aMonthlyAgenda view observes aUser-
Calendar, so that the agenda display will be automatically updates whenever the calendar changes.

public class UserCalendar extends Model {

. . .

public void add(ScheduledItem item) {

. . .

items.add(item);
setChanged();

}
}

. . .

public class OKScheduleEVentButtonListener implements ActionListener {

public void actionPerformed() {

try {
schedule.scheduleEvent(

new caltool.schedule.Event(
...

)
);

CSC307-f15-L7 Page 14

}

. . .

schedule.notifyObservers();

. . .
}

}

. . .

public class MonthlyAgenda extends View {

public MonthlyAgenda(caltool.view.View view, UserCalendar userCalendar) {

. . .

userCalendar.addObserver(this)
}

public void update(Observable o, Object arg) {

/* Get items for this month from MonthylyAgenda model and update display */

}
}

E. Thekey aspects of this example are the following:

1. Observable classes extendjava.util.Observable. This extension can be direct, or in the example
above, indirect viamvp.Model.

2. Observer classes implementjava.util.Observer. This implementation can be direct, or in the
example above, indirect viamvp.View.

3. Theconstructor of an observer class callsaddObserver on all the model classes it wants to observe.

4. In observable model classes, all mutating methods callObservable.setChanged when they perform
a mutation.
a. A mutating method is any that changes the state of the data in its class.
b. In the above example, it’s theUserCalendar.add method, which adds an item to a calendar.
c. Examplesof other mutating methods are those that delete or modify items from the calendar, i.e.,

UserCalender.delete andUserCalender.change.

5. In companion view classes, theactionPerformed method that calls a mutating model method subse-
quently callsObservable.notifyObservers, when the mutating methods succeeds.
a. Thisseparation of calls tosetChanged andnotifyObservers enforces a clean separation of

model/view duties.
b. The model callssetChanged in all of its mutating methods, but notnotifyObservers.
c. Theview callsnotifyObservers after a successful call to a mutating model method.
d. By not callingnotifyObservers, the model maintains its independence from its views, and other

classes that are observing it.
e. Bynot callingsetChanged, the view maintains its independence from the model classes that know

when and when not to signify changes in the state of model data.

6. In observing view classes, theObservable.update method is invoked via notifyObservers;
when invoked,update calls appropriate model methods to query the model state and access model data.

CSC307-f15-L7 Page 15

