
CSC307-f15-L8 Page 1

CSC 307 Lecture Notes Week 8
Use of Formal Method Specification in Testing

Introduction to System Testing Techniques
Testing Implementation, in TestNG and JUnit

I. Detailed summary of milestones 7-8 deliverables

A. Design and Implementation

1. Package design refinement.

2. Javadoc.

3. Java implementation of model classes.

4. Necessarydata structures.

5. View classes refined to use real model data.

6. Bottomline -- some stuff runs for real.

B. Testing

1. Oneintegration test plan per team.

2. Oneclass test plans per team member.

3. Threemethods Spest spec’d, per member (should already be done from Milestones 5-6).

4. Threeunit tests per member (for the methods that have Spest).

5. Codereviews.

C. Administration

1. RevisedHOW-TO-RUN.html

2. Separatem8-duties.html

3. Updatedwork-breakdown.html

4. Designreviews, wed & fri week 9.

II. The Testing "Big Picture"

A. Thiswas on the chalkboard or whiteboard during lecture on Friday.

B. Thepicture will be here in these notes in a couple days.

III. Deriving and refining method specifications.

A. Thevalidation of user inputs requires that we know exactly what constitutes valid versus invalid input values.

1. Thepurpose of operation pre- and postconditions is to answer just this question.

2. In addition to input validation, pre- and postconditions are used for formal system testing to inform the
development of of unit tests.

B. Hereis a recap from 307 of what pre- and postconditions mean:

1. A precondition is a boolean expression that must be true before the method executes.

2. A postcondition is a boolean expression that must be true after the method has completed execution.

IV. How formal specification is used in testing.

A. As we’ll discuss below, a formal function test consists of the following elements:

1. Test inputs within legal ranges, and expected output results.

2. Test inputs outside of legal ranges, and expected output results.

3. Test inputs on the boundaries of legal ranges, and expected output results.

4. Test different combinations of multiple inputs.

B. Theformal preconditions are used to determine what the inputs should be.

C. Theformal postconditions are used to determine the expected results for the given inputs.

CSC307-f15-L8 Page 2

V. How formal specification is used in formal verification.

A. In order to verify a program formally, two forms of specification must be provided:

1. A formal specification of the given program

2. A formal specification of the language in which the program is written in

B. Hence,a formal program specification is an integral part of formal verification; that is, a formal specification
is the "entry ticket" to program verification, that that one cannot verify a program without its formal spec.

C. We will discuss formal verification details in an upcoming lecture.

VI. Precondition enforcement -- "by contract" style versus "defensive programming" style.

A. At the specification level, failure of an operation precondition renders the operation simply "undefined".

1. For an abstract specification, this is a reasonable definition of precondition failure.

2. However, at the design and implementation level, precondition failure must be dealt with more concretely.

3. Thereare two basic approaches to such concretization.

B. Approach 1: A precondition is a guaranteed assumption that will always be true before a method to which it
is attached is executed.

1. Thisapproach is can be called the "programming by contract" approach.

2. In this approach, the code of the method does not enforce its own precondition, but rather the precondition
must be enforced by all callers of the method.

3. Suchenforcement can be formally verified or implemented with runtime checks at thecalling site.

4. Bottomline is that the method being called assumes that it’s precondition is true at all times, and does no
checking of the precondition itself.

C. Approach 2: A precondition must be checked by the method to which it is attached.

1. Thisapproach can be called the "defensive programming" approach.

2. In this approach, the code of the method includes logic to enforce its precondition.

3. Theenforcement can:
a. Assertunconditional failure on any precondition violation.
b. Return an appropriate "null" value as the method return value or in an output parameter.
c. Outputan appropriate error report to stderr or the user view screen.
d. Throw an appropriate exception (see below for further discussion).

D. In Model/View communication, it is useful to use the exception handling approach, as illustrated in the
example in the Week 4 notes.

E. We will discuss further the issue of when and how to use exception handling in design in upcoming lectures.

VII. Details of deriving and refining formal method specifications.

A. Startwith the Spest specs you developed for the abstract model.

B. Updateand expand these specs based on design refinements you make for the implementation.

C. Asdiscussed in Lecture Notes Week 5, formal preconditions and postconditions appear in the Spest specifi-
cation in a reasonably standard form of predicate logic.

1. In the abstract specification, the point of the preconditions and postconditions was to help us fully under-
stand the operations from the end user’s point of view, so we could be sure that what the user sees in the
HCI is backed by a complete and consistent specification of what the program does.

2. Whenthe abstract specification is refined into the design, the formal logic will be refined to include
implementation-level considerations, in addition to the user-level considerations of the abstract spec.

3. Inaddition, as new methods are designed, they too are formally specified.

4. Theformal specifications are then used to develop the functional test plans for the implementation.

D. Here’s a recap of the key aspects of the Spest notation covered in the Week 5 notes.

1. Thereturn keyword is used as a value not as a control construct. E.g., if a method returns the sum of
its two inputsx andy , the postcondition looks like this:

CSC307-f15-L8 Page 3

post: return == x + y;

2. Theif , then andelse keywords are used as expression operators not as control constructs.
a. To be precise, the following Java if-then-else expression

if X then Y else Z

is semantically equivalent to the following standard Java expression

X ? Y : Z

b. The following if expression

if X then Y

is semantically equivalent tono standard Java expression, since Java always requires the "else" part of
and if-then-else expression.

c. Theelse-less if-then expression above is equivalent to the following Java

X ? Y : n ull

for all types for which null is a legitimate value.

3. InSpest, the "prime" notation is used to denote the output value of an identifier; e.g.,
a. If x is a parameter or instance variable, thenx without the prime denotes its value before the method

run.
b. The value ofx with the prime, i.e.,x’, denotes its value after the methods runs.
c. Theprime suffix can only be appended to method parameters or to accessible data members within a

method.

4. Universal and existential quantifiers are supplied, with the following syntax:

forall (T x ; constraint ; predicate)
exists (T x ; constraint ; predicate)

a. Theuniversal quantification form is read "for all valuesx of type t, such thatconstraintholds,predi-
cateis true."

b. The existential form is read similarly as "there exists at least one valuex of typet, such thatconstraint
holds, andpredicateis true."

5. LectureNotes Week 5 has further discussion and examples.

-- Now onto System Testing Techniques --

VIII. General concepts of system testing.

A. Software components are independently testable.

B. Testing is thorough and systematic.

C. Testing is be repeatable, with the same results each time.

IX. Overall system testing styles

A. Top-down

1. Top-level functions in the function calling hierarchy are tested first.

2. Function"stubs" are written for lower-level functions that are called by functions above.

B. Bottom-up

1. Lower-level functions in a function calling hierarchy are tested first.

2. Function"drivers" are written for upper-level functions that call functions below.

C. Object-oriented

1. All functions for a particular class are tested, independent of how they may be used in overall system.

2. Stubsand drivers are written as necessary.

D. Hybrid

CSC307-f15-L8 Page 4

1. A combination of top-down, bottom-up, and object-oriented testing is employed.

2. Thisis a good practical approach.

E. Big-bang

1. All functions are compiled together in one huge executable (typically the night before it’s due).

2. We cross our fingers and run it.

3. Whenthe big-bang fizzles, we enter the debugger and keep hacking until things appear to work.

X. Practical aspects of independently testable designs.

A. For all modules to be separately designed and implemented, modular interfaces should be designed cleanly
and thoroughly.

1. Don’t fudge on function signature details or pre/postcondition logic; i.e., think clearly about these details
beforethe implementation begins.

2. Beclear on what needs to be public and what protected.

B. Be prepared to writestubs and drivers for other people’s modules so that independent testing can be
achieved.

XI. General approaches to testing and verification

A. Blackbox testing

1. Eachfunction is viewed as a black box that can be given inputs to produce its outputs.

2. Thefunction is tested from the outside (specification) only, without looking at the code inside.

B. White-boxtesting

1. Eachfunction is viewed as a "white" (i.e., transparent) box containing code.

2. Thefunction is tested by supplying inputs that fully exercise the logic of its code.

3. Specifically, each logical control path through the function is exercised at least once by some test.

4. Thisis the kind of testing that is done informally during the course of system debugging.

C. Runtimepre-condition enforcement

1. Codecan be added to functions to enforce preconditions at runtime.

2. For example, if a precondition states that a certain input must be within a certain range, then code is added
to the beginning of the function to check this condition

3. Thefunction returns (or throws) an appropriate error if the condition is not met.

D. Formal verification

1. Thepre- and postconditions of each function are treated as formal mathematical theorems.

2. Thebody of the function is treated as a form of mathematical formula, given certain formal rules of pro-
gram interpretation for the language in which the function is written.

3. Verification entails proving that the precondition theorem implies the postcondition theorem, with respect
to the mathematical interpretation of the function body.

XII. Functional unit test details

A. For each method, a list oftest casesis be produced.

B. Thislist of cases constitutes theunit test planfor each method.

C. A unit test plan is defined in the following general tabular form, as show in Table 1.

D. Notethat

1. Theinputs for each case specify values for all input parameters as well as all referenced data fields for
that case.

2. Theoutputs for each case specify values for all reference parameters, return value, and modified data
fields for that case.

3. In any case, data fields that are not explicitly mentioned in the inputs or outputs are assumed to be "don’t

CSC307-f15-L8 Page 5

Case No. Inputs ExpectedOutput Remarks

1 parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
return = ...

data field a = ... data field a = ...
... ...

data field z = ... data field z = ...

n parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
return = ...

data field a = ... data field a = ...
... ...

data field z = ... data field z = ...

Table 1: Unit test plan.

care" -- i.e, not used as an input or not modified on output.

E. Onesuch test plan is written for each method in each class.

F. In an object-oriented testing strategy, unit test plans are referenced in then class test plans.

XIII. Module, i.e., class testing

A. Write unit test plans for each class method.

B. Writeaclass test planthat invokes the unit test plans in a well-planned order.

C. Generalguidelines for class testing are the following:

1. Startthe class test plan by invoking the unit tests for the constructors, so that subsequent tests have field
data values to work with.

2. Next, unit test other constructive methods (i.e., methods that add and/or change field data) so that subse-
quent tests have data to work with.

3. Unit test selector methods (i.e., methods that access but do not change data) on the results produced by
constructive methods.

4. Test certain method interleavings that might be expected to cause problems, such as interleaves of adds
and deletes.

5. Stresstest the class by constructing an object an order of magnitude larger than ever expected to be used
in production.

D. Oncethe plan is established, write a test driver for all methods of the class, where the driver:

1. executes each method test plan,

2. recordsthe results,

3. comparesthe results to the previous test run,

4. reportsthe differences, if any

E. A couple concrete examples of class test plans are in the Calendar Tool testing directory:

• unix3:˜gfisher/work/calendar/testing/implementation/source/java/
caltool/model/caldb/UserCalendarTest.java

• unix3:˜gfisher/work/calendar/testing/implementation/source/java/
caltool/model/caldb/UserCalendarTest.bjava

CSC307-f15-L8 Page 6

F. In terms of Java details:

1. EachclassX in the system design has a companion testing class namedXTest.

2. A test class is a subclass of the class it tests.

3. EachmethodX.f has a companion unit test method namedXTest.testF.

4. Thecomment at the top of each test class describes the test plan for that class.

5. Thecomment for each unit test method describes the unit test plans for the testing method.

6. Eachtested class provides a specialization ofjava.lang.Object.toString , which is used to dump
the values of tested class objects.

XIV. Integration testing

A. Onceclass test plans are executed, classes are integrated.

B. Specifically, stub methods used in a unit or class test are replaced with the actual methods.

C. Subsequently, the test plan for the top-most method(s) in a collection is rerun with the integrated collection
classes.

D. Theintegration continues in this manner until the entire system is integrated.

E. A concrete example of an integration test plan is in the Calendar example testing directory:

unix3:˜gfisher/work/calendar/testing/implementation/source/java/caltool/integration-test-plan.html

XV. Black box testing heuristics

A. Provide inputs where the precondition is true.

B. Provide inputs where the precondition is false.
1. Theseform of inputs do examples/not apply to by-contract methods that do not check their on precondi-

tion.
2. Theseform of test inputsdo apply to methods with a defensive implementation, where the method explic-

itly checks the precondition and throws an exception or otherwise returns an indication that the precondi-
tion is violated.

C. For preconditions or postconditions that define data ranges:

1. Provide inputs below, within, and above each precondition range.

2. Provide inputs that produce outputs at the bottom, within, and at the top of each postcondition range.

D. For preconditions and postconditions with logically and’d and or’d clauses, provide test cases that fully exer-
cise each clause of the logic.

1. Provide an input value that makes each clause of the and/or logic both true and false.

2. Thismeans 2n test cases, wheren is the number of logical terms.

E. For methods that take multiple inputs, test different combinations of inputs.

1. For example, suppose we use the preceding rules to establish that
a. testvalues for inputx area, b, andc
b. test values for inputy ared, e, and f

2. Thepairwise combination of test cases involve providing input value parts[a,d], [a,e], [a,f] , [b,d], [b,e],
[b,f] , [c,d], [c,e], and [c,f] .

3. For methods of three or more inputs, combinations are done on all input pairs, rather than across all three
or more variables.

4. Researchhas shown that pairwise combination can be a very effective way of choose inputs and it is far
less combinatorially explosive than all possible combinations of three or more inputs.

5. Seefor example www.pairwise.org/

F. For classes that define some form of collection:

1. Test all operations with an empty collection.

2. Test all operations with a collection containing exactly one element and exactly two elements.

3. Adda substantial number of elements, confirming the state of collection after each addition.

CSC307-f15-L8 Page 7

4. Deleteeach element, confirming state of collection after each delete.

5. Repeataddition/deletion sequence two more times.

6. Stresstest by adding and deleting from a collection of a size that is an order of magnitude greater than
that ever expected to be used in production.

XVI. Function paths

A. A path is defined in terms of control flow through the logic of a method body.

B. Eachbranching control construct defines a path separation point.

C. By drawing the control-flow graph (i.e., flow chart) of a method, its paths are clearly exposed.

D. To ensure full path coverage, each path is labeled with a number, so it can be referenced in white box tests.

XVII. White box testing heuristics

A. Provide inputs that exercise each method path at least once.

B. For loops

1. provide inputs that exercise the loop zero times (if appropriate),

2. onetime

3. two times

4. asubstantial number of times

5. themaximum number of times (if appropriate).

C. Provide inputs that can reveal flaws in the implementation of a particular algorithm, such as:

1. particularoperation sequences

2. inputsof a particular size or range

3. inputsthat may cause overflow, underflow, or other abnormal behavior

4. inputsthat test well-known problem areas in particular algorithm

XVIII. Testing Implementation -- the anatomy of a unit test method.

A. Class and method under test:

class X {

// Method under test
public Y m(A a, B b, C c) { ... }

// Data field inputs
I i ;
J j ;

// Data field output
Z z;

}

B. Testing class and method:

class XTest {
public void testM() {

// Set up
X x = new X(...);
...

// Invoke
Y y = m(aVAlue, bValue, cValue);

CSC307-f15-L8 Page 8

// Validate
assertEqual(y, expectedY);

}
}

C. Thecommon core for a unit testing method is the same for all test implementation frameworks:

1. Setup -- set up the inputs necessary to run a test

2. Invoke -- invoke the method under test and acquire its actual output

3. Validate -- validate that the actual output equals the expected output

D. Summaryof where test specification and planning fits in:

1. The javadoc comment for the method under test contains the Spest spec that specifies what must be
true for inputs and outputs used in the tests.

2. Thejavadoc comment for the testing class specifies the major phases of the testing, including the order
in which the unit tests are executed.

3. The javadoc comment for the testing method defines the unit test plan in tabular form; the plan has
inputs, expected outputs, and remarks for each test case.

XIX. A testing example using TestNG.

A. TestNG is the recommended functional testing framework for 307.

1. The"NG" in the name stands for "Next Generation", indicating it is a evolution of earlier testing frame-
works, such as JUnit.

2. Overall, it is very similar to JUnit, but has some features that improve on what is offered in JUnit.

3. If your team has members who are familiar with JUnit, or some comparable testing framework, your team
may use that instead of TestNG.

4. To be used in 307, the requirements for a testing framework are these:
a. Itmust support method/function-level unit testing.
b. It must support class-level inter-method testing.
c. It must support regression testing.

B. Thereis a very good how-to document for TestNG at http://testng.org/doc/documentation-main.html

C. Examplesof using TestNG to implement class and unit tests are in the 307 Milestone 8 example for the
Schedule Test

D. We’ll go over these examples in class, in particular the example for Calendar Tool scheduling:

• the Schedule.java model class

• and its companion ScheduleTest.java testing class.

• a Makefile that builds the tests

• the simple TestNG configuration file that defines the testing components

• the command-line execution script that runs the compiled tests

E. Important Note:: For 307 Milestone 8, you need to implement three unit tests per team member, but the do
not need to execute; test execution will be required for the final project deliverable.

XX. Reconciling path coverage with purely black box tests.

A. In CSC 307, we will use a purely black box testing style.

B. To ensure that all paths are covered, black box tests can be executed under the control of apath coverage
analyzer(though we will not use such an analyzer in 307).

C. If the analyzer reports one or more paths not being covered, the coverage results are analyzed to see if new
black box tests cases need to be added.

1. Whenuncovered paths contain useless or dead code, the code can be removed and no further test cases
are required.

2. Whenuncovered paths are legitimate code, new test cases are added to the black box tests to ensure full
path coverage.

CSC307-f15-L8 Page 9

D. A complete "grey box" test plan can have an additional column that indicates the path each black box test
case covers, as in:

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= ref parm 1 = p
... ...

parm m = ref parm n =

wherep is the number of the method path covered by the test casei.

XXI. Specifying large inputs and outputs in functional tests

A. For collection classes, inputs and outputs can grow large.

B. For convenience, such inputs and outputs can be specified as file data, instead of the result of calling a series
of constructor methods in the context of a class test.

C. Whenexternal test data files are used, they can be referred to in test plans and used during test execution.

XXII. Test drivers for test execution

A. Oncea test suite is defined, it must be executed.

B. To automate the testing process, and ensure that it is repeatable, atest driveris written as a stand-alone pro-
gram.

1. Thetest driver executes all tests defined in the system test plan.

2. It records all results in an orderly manner, suitable for human inspection.

3. Thetest driver also provides atest result differencerthat compares the results of successive test runs and
summarizes differences.

C. For 307, this process is automated in a Makefile, as exemplified in

unix3:˜gfisher/work/calendar/testing/implementation/source/java/Makefile

D. To perform tests initially, before all tests are executed via the Makefile, a symbolic debugger such as jdb can
be used to execute individual methods.

XXIII. Testing concrete UIs

A. With a UI toolkit such as Swing, concrete UI tests are performed in the same basic manner as other func-
tional tests.

B. Userinput, such as button pressing, is simulated by calling the interface method that is associated with the
particular form of input, e.g., SomeButtonListener.actionPerformed.

C. Outputsthat represent screen contents are validated initially by human inspection of the screen.

D. Ultimately, some machine-readable form of the screen output must be used to compare test results mechani-
cally.

E. Notethat we will NOT do this level of testing in 307, but rather test the GUIs via human interaction.

XXIV. Unit testing is a "dress rehearsal" for integration testing.

A. Onemight think if we do a really thorough job of method and class tests, integration should not reveal any
further errors.

B. We know from experience that integration often does reveal additional flaws.

1. In this sense, failures of integration testing can be viewed as unit test failures.

2. Thatis, a flaw rev ealed by an integration test indicates an incompleteness of the test cases for some indi-
vidual method.

3. Theflaw is remedied by updating of the appropriate method test plan.

C. Inso doing, individual tests become stronger.

CSC307-f15-L8 Page 10

XXV. Testing models with large process data requirements.

A. Supposewe have the following

class SomeModestModel {

public void doSomeModelThing(String name) {
...
hdb.doSomeProcessThing(...);
...

}

protected HumongousDatabase hdb;

}

class HumongousDatabase {

public void doSomeProcessThing(...) {
...

}

}

B. In such cases, it may be quite time consuming to implement a stub for the method Humongous-
Database.doSomeProcessThing.

C. Thisis a place where bottom-up testing is appropriate.

XXVI. On really bright coders who don’t need to do systematic testing.

A. Thereare a few of these floating around at various institutions.

B. They do informally what mere mortals need to do in a more systematic way.

C. Ultimately, even the brightest hack will not be able to do all testing informally.

D. As programs are built in larger teams, no single person can know enough about the entire system to test it
alone.

E. Therefore,team-constructed software must be team tested, in a systematic manner.

XXVII. Other testing terminology

A. Thetesting oracle

1. A test oracle is someone(thing) who(that) knows the correct answer to a test case.

2. Theoracle is used in test plan generation to define expected results.

3. Theoracle is also used to analyze incorrect test results.

4. For the style of development we have used in CSC 307, the oracle is defined by human interpretation of
the requirements specification.
a. Whenusing a formal specification such as Spest, the oracle for a method is defined precisely as the

method’s postcondition.
b.

5. Whenbuilding a truly experimental piece of code for which the result is not yet known, specification-
based oracle definition may not always be possible.
a. Theseare cases such as artificial intelligence systems where the code is designed to tell us something

we don’t already know the answer to.
b. To test such systems requires some initial prototype development, inspection of the results, and then

definition of the tests.

B. Regression testing

1. Thisis the name given to the style of testing that runs all tests in a suite whenever any change is made to
any part of the system.

2. Typically full regression tests are run at release points for the system.

CSC307-f15-L8 Page 11

3. Thereis ongoing research aimed at "smart" regression testing, where not all tests need to be run if it can
be proved that a given change cannot possibly affect certain areas of the system.

C. Mutationtesting

1. Thisis a means to test the tests.

2. Thestrategy is tomutatea program and then rerun its tests.

3. For example, suppose an if statement coded as "if (x < y)" is mutated to "if (x >= y)".

4. Whensuch a mutation is made and a previously successful set of tests are run, the tests should fail in the
places where the mutated code produces an incorrect result.

5. If a set of previously successful tests do not fail on a mutated program, then one of two possibilities
exists:
a. Thetests are too weak to detect a failure that should have been tested, in which case the tests need to

be strengthened.
b. The mutated section of code was "dead" in that it did not compute a meaningful result, in which case

the code should be removed.

6. Generally, the first of these to possibilities is the case.

7. Mutationtesting can be used systematically in such a way that mutations are made in some non-random
fashion.
a. Suchsystematic mutation provides a measure of testing effectiveness.
b. This measure can be used to test the effectiveness of different testing strategies.

XXVIII. Testing directory structure

A. Figure1 shows the details of the testing directory structure in the context of a normal project directory (with-
out package subdirectories).

B. Thecontents of the testing subdirectories are shown in Table 2.

C. In the table, the variable$PLATFORMrefers to the one or more subdirectories that contain platform-specific
testing files (e.g., JVM, INTEL).

CSC307-f15-L8 Page 12

*.
{h

,C
}

p

ro
je

ct
-s

p
e

ci
fic

p
a

ck
a

g
e

 d
ir
e

ct
o

ri
e

s

 w

ith
 .
ja

va
 f
ile

s

d
e

si
g

n

im
p

le
m

e
n

ta
tio

n

c+
+

d
iff

s

p

ro
je

ct
-s

p
e

ci
fic

p
a

ck
a

g
e

 d
ir
e

ct
o

ri
e

s

 iw

th
 .
cl

a
ss

 f
ile

sJV
M

IN
T

E
L

ja
va

..
.

T

*.
h

tm
l

ja
va

d
o

c
im

a
g

e
s

M
a

ke
fil

e
so

u
rc

e
e

xe
cu

ta
b

le
s

M
a

ke
fil

e
in

p
u

t
o

u
tp

u
t-

g
o

o
d

o
u

tp
u

t
*.

o
o

u
tp

u
t

d
iff

s

Figure 1: Testing directory structure.

CSC307-f15-L8 Page 13

Directory or File Description

*Test.java Implementation of class testing plans.

Per the project testing methodology, each testing class is a subclass of the de-
sign/implementation class that it tests.

input Test data input files used by test classes.

These files contain large input data values, as necessary. This subdirectory is
empty in cases where testing is performed entirely programatically, i.e., the test-
ing classes construct all test input data dynamically within the test methods,
rather than inputing from test data files.

output-good Output results from the last good run of the tests.

These are results that have been confirmed to be correct.Note that these good
results are platform independent.I.e., the correct results should be the same
across all platforms.

output-prev-good Previous good results, in case current results were erroneously confirmed to be
good.

This directory is superfluous if version control of test results is properly em-
ployed. However, this directory remains as a backup to avoid nasty data loss in
case version control has not been kept up to date.

$PLATFORM/output Current platform-specific output results.

These are the results produced by issuing a make command in a platform-specif-
ic directory. Note that current results are maintained separately in each plat-
form-specific subdirectory. This allows for the case that current testing results
differ across platforms.

$PLATFORM/diffs Differences between current and good results.

$PLATFORM/Makefile Makefile to compile tests, execute tests, and difference current results with good
results.

$PLATFORM/.make* Shell scripts called from the Makefile to perform specific testing tasks.

$PLATFORM/.../*.class Test implementation object files.

Table 2: Test file and directory descriptions.

