CSC307-f15-L8 Bge 1

CSC 307 Lectue Notes Week 8
Use of Formal Method Specification in Testing
Introduction to System Testing Techniques
Testing Implementation, in TestNG and JUnit

I. Detailed summary of milestones 7-8 delerables

A. Design and | mplementation

Package design refinement.

Jaadoc.

Jaa implementation of model classes.
Necessargata structures.

View classes refined to use real model data.
Bottomline -- some stdfruns for real.

o0k wbdE

B. Testing
1. Oneintegration test plan per team.
2. Oneclass test plans per team member.
3. Threemethods Spest spec’d, per member (should already be done from Milestones 5-6).
4. Threeunit tests per member (for the methods thaelpest).
5. Codereviews.

C. Administration
1. RevisedHOW-TO-RUN.html
2. Separaten8-duties.html
3. Updatedvork-breakdown.html
4. Desigrreviews, wed & fri week 9.

Il. The Testing "Big Picture"
A. Thiswas on he chalkboard or whiteboard during lecture on Friday.
B. Thepicture will be here in these notes in a couple days.

lll. Deriving and refining method specifications.

A. Thevalidation of user inputs requires that we nexactly what constitutes valid versusaid input values.
1. Thepurpose of operation pre- and postconditions is to answer just this question.

2. In addition to input alidation, pre- and postconditions are used for formal system testing to inform the
development of of unit tests.

B. Hereis a recap from 307 of what pre- and postconditions mean:

1. Aprecondition is a boolean expression that must be true before the metboie
2. Apostcondition is a boolean expression that must be true after the method has comxgiatehe

IV. How formal specification is used in testing.
A. Aswe’ll discuss bela, a formal function test consists of the following elements:
1. Test inputs within lgd ranges, and expected output results.
2. Test inputs outside ofdel ranges, and expected output results.
3. Test inputs on the boundaries afderanges, and expected output results.
4. Test different combinations of multiple inputs.

B. Theformal preconditions are used to determine what the inputs should be.

C. Theformal postconditions are used to determine the expected results foreméngiits.

CSC307-f15-L8 Bge 2

V. How formal specification is used in formal verification.

A. In order to verify a program formallywo forms of specification must be provided:
1. Aformal specification of the gén program
2. Aformal specification of the language in which the program is written in

B. Hencea formal program specification is an igtal part of formal verification; that is, a formal specification
is the "entry ticket" to program verification, that that one cannot verify a program without its formal spec.

C. We will discuss formal verification details in an upcoming lecture.

VI. Precondition enforcement -- "by contract" style versus "defensre programming" style.

A. At the specification ke, failure of an operation precondition renders the operation simply "undefined".
1. For an abstract specification, this is a reasonable definition of precondition failure.
2. However, a the design and implementatiovék precondition failure must be dealt with more concretely.
3. Thereare two basic approaches to such concretization.

B. Approad 1: A precondition is a guaranteed assumption that witbgé be true before a method to which it
is attached is»ecuted.

1. Thisapproach is can be called the "programming by contract” approach.

2. Inthis approach, the code of the method does not enforogntpr@condition, but rather the precondition
must be enforced by all callers of the method.

3. Suchenforcement can be formally verified or implemented with runtime checks ciltimg site.

4. Bottomline is that the method being called assumes tisgrigcondition is true at all times, and does no
checking of the precondition itself.

C. Approad 2: A precondition must be checked by the method to which it is attached.
1. Thisapproach can be called the "defsrgrogramming” approach.
2. Inthis approach, the code of the method includes logic to enforce its precondition.

3. Theenforcement can:
a. Asserunconditional failure on anprecondition violation.
b. Return an appropriate "null" value as the method return value or in an output parameter.
c. Outputan appropriate error report to stderr or the usav sogeen.
d. Throv an gpropriate exception (see beldor further discussion).

D. In Model/View communication, it is useful to use th&ception handling approach, as illustrated in the
example in the Week 4 notes.

E. We will discuss further the issue of when anavtto use exception handling in design in upcoming lectures.

VII. Details of deriving and refining formal method specifications.
A. Startwith the Spest specs youvdped for the abstract model.
B. Updateand expand these specs based on design refinements y@tontake implementation.
C. Asdiscussed in Lecture Notese@k 5, formal preconditions and postconditions appear in the Spest specifi-
cation in a reasonably standard form of predicate logic.

1. Inthe abstract specification, the point of the preconditions and postconditions was to help us fully under
stand the operations from the end useoint of view, 0 we @uld be sure that what the user sees in the
HCIl is backed by a complete and consistent specification of what the program does.

2. Whenthe abstract specification is refined into the design, the formal logic will be refined to include
implementation-leel considerations, in addition to the usevdeconsiderations of the abstract spec.

3. Inaddition, as n& methods are designed, tho are formally specified.
4. Theformal specifications are then used todlgp the functional test plans for the implementation.

D. Heres a ecap of the &y aspects of the Spest notatiorvered in the Week 5 notes.

1. Thereturn keyword is used as a value not as a control construct. E.g., if a method returns the sum of
its two inputsx andy, the postcondition looks léthis:

CSC307-f15-L8 Bge 3

post: return ==X +;
2. Theif ,then andelse keywords are used as expression operators not as control constructs.
a. To be pecise, the following Ja if-then-else expression
if X then Y else Z
is semantically equélent to the following standard i expression
X?2Y:Z
b. The following if expression
if X then' Y

is semantically equélent tono standard Ja expression, since ¥a dways requires the "else" part of
and if-then-else expression.

c. Theelse-less if-then expression abds equivalent to the following Jea
X ?2Y :null

for all types for which null is a legitimate value.

3. InSpest, the "prime" notation is used to denote the output value of an identifier; e.g.,

a. If xis a parameter or instancariable, therx without the prime denotes its value before the method
run.

b. The value ok with the prime, i.e.xX’, denotes its value after the methods runs.

c. Theprime sufix can only be appended to method parameters or to accessible data members within a
method.

4. Unwersal and existential quantifiers are supplied, with the following syntax:

forall (T x;constraint ; predicate)
exists(T x;constraint ; predicate)

a. Theuniversal quantification form is read "for alalesx of typet, such thatconstraintholds, predi-
cateis true."

b. The existential form is read similarly as "thexésts at least oneauex of typet, such thatconstraint
holds, ancpredicateis true."

5. LectureNotes Week 5 has further discussion and examples.

-- Now onto System Testing Techniques --

VIIl. General concepts of system testing.
A. Software components are independently testable.
B. Testing is thorough and systematic.

C. Testing is be repeatable, with the same results each time.

IX. Overall system testing styles

A. Top-down
1. Top-level functions in the function calling hierarchre tested first.
2. Function'stubs" are written for lower&l functions that are called by functions a@o

B. Bottom-up
1. Lower-level functions in a function calling hierarghre tested first.
2. Function'drivers" are written for upper-l& functions that call functions belo

C. Object-oriented
1. All functions for a particular class are tested, independentwofiey may be used inverall system.
2. Stubsand drvers are written as necessary.

D. Hybrid

CSC307-f15-L8 Bge 4

1. Acombination of top-down, bottom-up, and object-oriented testing is employed.
2. Thisis a good practical approach.

E. Big-bang
1. All functions are compiled together in one hugecatable (typically the night beforesttue).
2. We aoss our fingers and run it.
3. Whenthe big-bang fizzles, we enter the debugger and keep hacking until things appear to work.

X. Practical aspects of independently testable designs.
A. For all modules to be separately designed and implemented, modulaadeseshould be designed cleanly
and thoroughly.

1. Dont fudge on function signature details or pre/postcondition logic; i.e., think clearly about these details
beforethe implementation begins.

2. Beclear on what needs to be public and what protected.

B. Be prepared to writestubsand drivers for other peoples nodules so that independent testing can be
achieved.

XI. General approaches to testing and verification

A. Blackbox testing
1. Eachfunction is viewed as a black box that can herginputs to produce its outputs.
2. Thefunction is tested from the outside (specification) pwithout looking at the code inside.

B. White-boxtesting
1. Eachfunction is viewed as a "white" (i.e., transparent) box containing code.
2. Thefunction is tested by supplying inputs that fulkeesise the logic of its code.
3. Specificallyeach logical control path through the functionxsreised at least once by some test.
4. Thisis the kind of testing that is done informally during the course of system debugging.

C. Runtimepre-condition enforcement
1. Codecan be added to functions to enforce preconditions at runtime.

2. For example, if a precondition states that a certain input must be within a certain range, then code is added
to the beginning of the function to check this condition

3. Thefunction returns (or throws) an appropriate error if the condition is not met.

D. Formal verification
1. Thepre- and postconditions of each function are treated as formal mathematical theorems.

2. Thebody of the function is treated as a form of mathematical formwen gertain formal rules of pro-
gram interpretation for the language in which the function is written.

3. \erification entails pnang that the precondition theorem implies the postcondition theorem, with respect
to the mathematical interpretation of the function body.

XIl. Functional unit test details
A. For each method, a list tdst casess be produced.
B. Thislist of cases constitutes thait test plarfor each method.
C. Aunit test plan is defined in the following general tabular form, as shdable 1.

D. Notethat

1. Theinputs for each case specify values for all input parameters as well as all referenced data fields for
that case.

2. Theoutputs for each case specifglves for all reference parameters, return value, and modified data
fields for that case.

3. Inary case, data fields that are napkcitly mentioned in the inputs or outputs are assumed to bet"don’

CSC307-f15-L8 Bge 5

Case No. Inputs ExpectedOutput Remarks
1 parm 1= .. ref parm 1 = ...
parmm = ... ref parmn = ...
return = ...
datafielda=..| datafielda=...
datafieldz=...| datafieldz=...
n parm 1= ... refparm 1 = ...
parmm = ... ref parmn = ...
return = ...
datafielda=..| datafielda=...
datafieldz=...| datafieldz=...

Table 1: Unit test plan.

care" -- i.e, not used as an input or not modified on output.

E. Onesuch test plan is written for each method in each class.

F. In an dject-oriented testing strategyit test plans are referenced in then class test plans.

XIIl. Module, i.e., class testing

A. Write unit test plans for each class method.

B. Writeaclass test plathat invokes the unit test plans in a well-planned order.

C. Generaguidelines for class testing are the following:

1.

Startthe class test plan byvoking the unit tests for the constructors, so that subsequent testfidhc
data values to work with.

. Next, unit test other construeg methods (i.e., methods that add and/or change field data) so that subse-

quent tests he data to work with.

Unit test selector methods (i.e., methods that access but do not change data) on the results produced by
constructve methods.

Test certain method interleavings that might kpeeted to cause problems, such as integkeaf alds
and deletes.

. Stresgest the class by constructing an object an order of magnitugler thian eer expected to be used

in production.

D. Oncethe plan is established, write a tesvdrifor all methods of the class, where thevetti

1.
2.
3.
4,

executes each method test plan,

recordshe results,

compareshe results to the previous test run,
reportghe differences, if any

E. Acouple concrete examples of class test plans are in the Calendar Tool testing directory:
« unix3:"gfisher/work/calendar/testing/implementation/sourgelja

caltool/model/caldb/UserCalendarTestga

« unix3:"gfisher/work/calendar/testing/implementation/sourgelja

caltool/model/caldb/UserCalendarTestvaja

CSC307-f15-L8 Bge 6

F. Interms of Jaa cetails:
1. EachclassX in the system design has a companion testing class nénestl
Atest class is a subclass of the class it tests.
EachmethodX.fhas a companion unit test method nark@dst.testF
Thecomment at the top of each test class describes the test plan for that class.
Thecomment for each unit test method describes the unit test plans for the testing method.

Eachtested class provides a specializatiorja@é.lang.Object.toString , which is used to dump
the values of tested class objects.

ook wD

XIV. Integration testing
A. Onceclass test plans areeeuted, classes are integrated.
B. Specifically sub methods used in a unit or class test are replaced with the actual methods.

C. Subsequentlythe test plan for the top-most method(s) in a collection is rerun with the integrated collection
classes.

D. Theintegration continues in this manner until the entire system is integrated.

E. Aconcrete example of an integration test plan is in the Calendar example testing directory:
unix3:"gfisher/work/calendar/testing/implementation/source/java/caltool/integration-test-plan.htmi

XV. Black box testing heuristics
A. Provide inputs where the precondition is true.

B. Provide inputs where the precondition is false.
1. Thesdorm of inputs do xampleshot apply to by-contract methods that do not check their on precondi-
tion.
2. Thesdorm of test inputslo apply to methods with a defemsiimplementation, where the methodkc-
itly checks the precondition and throws an exception or otherwise returns an indication that the precondi-
tion is violated.
C. For preconditions or postconditions that define data ranges:
1. Provide inputs bela, within, and abwe each precondition range.

2. Pravide inputs that produce outputs at the bottom, within, and at the top of each postcondition range.

D. For preconditions and postconditions with logically ahaid ord dauses, provide test cases that fubgre
cise each clause of the logic.

1. Pravide an input value that makes each clause of the and/or logic both true and false.
2. Thismeans 2test cases, whereis the number of logical terms.

E. For methods that takmultiple inputs, test different combinations of inputs.

1. For example, suppose we use the preceding rules to establish that
a. testvalues for inputx area, b, andc
b. test values for input ared, e, andf

2. Thepairwise combination of test casesdlve providing input \alue partda,d], [a,€], [a,], [b,d], [b,e],
[b,f], [c,d], [c.e], and[c,f].

3. For methods of three or more inputs, combinations are done on all input pairs, rather than across all three
or more variables.

4. Researclhas shwn that pairwise combination can be a verfgaive way of choose inputs and it iarf
less combinatorially exploge than all possible combinations of three or more inputs.

5. Sedor example www.pairwise.org/

F. For classes that define some form of collection:
1. Test all operations with an empty collection.
2. Test all operations with a collection containing exactly one element and exaztigments.
3. Adda aubstantial number of elements, confirming the state of collection after each addition.

CSC307-f15-L8 Bge 7

4. Deleteeach element, confirming state of collection after each delete.
Repeaaddition/deletion sequencedwnore times.

6. Stresdest by adding and deleting from a collection of a size that is an order of magnitude greater than
that ever expected to be used in production.

o

XVI. Function paths
A path is defined in terms of controlldhrough the logic of a method body.
Eachbranching control construct defines a path separation point.

By drawing the control-flv graph (i.e., flav chart) of a method, its paths are clearly exposed.

O o w2

To ensure full path ceerage, each path is labeled with a numberit an be referenced in white box tests.

XVII. White box testing heuristics

A. Provide inputs thatxercise each method path at least once.

B. For loops
1. provide inputs thatxercise the loop zero times (if appropriate),
2. onetime
3. two times
4. asubstantial number of times
5. themaximum number of times (if appropriate).

C. Pruride inputs that can veal flaws in the implementation of a particular algorithm, such as:
. particularoperation sequences

2. inputsof a particular size or range

3. inputsthat may causeverflow, underflon, or other abnormal behavior

4. inputsthat test well-known problem areas in particular algorithm

=Y

XVIII. Testing Implementation -- the anatomy of a unit test method.
A. Class and method under test:
class X {

/I Method under test
publicY m(Aa,Bb,Cc){...}

/[l Data field inputs
li;
s
/[l Data field output
Z z;

}

B. Testing class and method:

class XTest {
public void testM() {

/I Set up
X x = new X(...);

/I Invoke
Y y = m@aVAlue, bValue, cValue);

CSC307-f15-L8 Bge 8

/I Validate
assertEqual(y, expectedY);
}
}

C. Thecommon core for a unit testing method is the same for all test implementatiowéndesie

1. Setup -- set up the inputs necessary to run a test
2. Invoke -- invoke the method under test and acquire its actual output
3. Validate -- validate that the actual output equals the expected output

Summaryof where test specification and planning fits in:

1. Thejavadoc comment for the method under test contains the Spest spec that specifies what must be
true for inputs and outputs used in the tests.

2. Thejavadoc comment for the testing class specifies the major phases of the testing, including the order
in which the unit tests arexecuted.

3. Thejavadoc comment for the testing method defines the unit test plan ihataform; the plan has
inputs, expected outputs, and remarks for each test case.

XIX. Atesting example using TestNG.

A.

TestNG is the recommended functional testing fraonk for 307.

1. The"NG" in the name stands for "Next Generation", indicating it isaludon of earlier testing frame-
works, such as JUnit.

2. Owrall, it is very similar to JUnit, but has some features that inepno what is offered in JUnit.

3. If your team has members who aaenfliar with JUnit, or some comparable testing fram, your team
may use that instead of TestNG.

4. To be sed in 307, the requirements for a testing fraomnk are these:
a. Itmust support method/functionvig unit testing.
b. It must support classel inter-method testing.
c. It must support regression testing.

Thereis a very good how-to document for TestNG at http://testng.org/doc/documentation-main.html

Examplesof using BstNG to implement class and unit tests are in the 307 Milestone 8 example for the
Schedule Test

We'll go over these examples in class, in particular the example for Calendar Tool scheduling:

* the Schedule.ja nodel class

* and its companion ScheduleTestgaesting class.

* a Makefile that builds the tests

« the simple TestNG configuration file that defines the testing components

 the command-linexecution script that runs the compiled tests

Important Note:: For 307 Milestone 8, you need to implement three unit tests per team méuatlibe do
not need to>eecute; test xecution will be required for the final project dediable.

XX. Reconciling path caverage with purely black box tests.

A.
B.

In CSC 307, we will use a purely black box testing style.

To ensure that all paths arewvaed, black box tests can breeuted under the control of @ath coverage
analyzer(though we will not use such an analyzer in 307).

If the analyzer reports one or more paths not beingred, the ceerage results are analyzed to see ifine
black box tests cases need to be added.

1. Whenuncovered paths contain useless or dead code, the code can bedeamad no further test cases
are required.

2. Whenuncovered paths are legitimate codewntest cases are added to the black box tests to ensure full
path coerage.

CSC307-f15-L8 Bge 9

D.

XXI.
A.
B.

C.

XXILI.
A.
B.

XXIII.

A complete "grg box" test plan can v an additional column that indicates the path each black box test
case cuers, as in:

Test No. Inputs ExpectedOutput Remarks Path
i parm 1= ref parm 1 = p
parmm=| refparmn=

wherep is the number of the method pattveed by the test case

Specifying large inputs and outputs in functional tests

For collection classes, inputs and outputs cawdange.

For corvenience, such inputs and outputs can be specified as file data, instead of the result of calling a series
of constructor methods in the context of a class test.

Whenexternal test data files are usedytkan be referred to in test plans and used duringtestigon.

Test drivers for test execution
Oncea test suite is defined, it must beeeuted.

To automate the testing process, and ensure that it is repeatsdsé deiveris written as a stand-alone pro-
gram.

1. Thetest drver executes all tests defined in the system test plan.
2. Itrecords all results in an orderly manrseitable for human inspection.

3. Thetest drver aso provides dest esult diferencerthat compares the results of sucossdst runs and
summarizes differences.

For 307, this process is automated in a Makefilexaspglified in
unix3:"gfisher/work/calendar/testing/implementation/source/java/Makefile

To perform tests initiallybefore all tests arexecuted via the Makefile, a symbolic debugger such as jdb can
be used toxecute individual methods.

Testing concrete Uls

With a Ul toolkit such as Swing, concrete Ul tests are performed in the same basic manner as other func-
tional tests.

Userinput, such asuiton pressing, is simulated by calling the interface method that is associated with the
particular form of input, e.g., SomeButtonListener.actionPerformed.

Outputghat represent screen contents are validated initially by human inspection of the screen.

Ultimately, some machine-readable form of the screen output must be used to compare test results mechani-
cally.

Notethat we will NOT do this level of testing in 307, but rather test the GUIs via human interaction.

Unit testing is a "dress rehearsal" for integration testing.

Onemight think if we do a really thorough job of method and class testgyratien should not kesal ary
further errors.

We know from experience that integration often doasakadditional flaws.

1. Inthis sense, failures of integration testing can be viewed as unit test failures.

2. Thatis, a flav revealed by an integration test indicates an incompleteness of the test cases for some indi-
vidual method.

3. Theflaw is remedied by updating of the appropriate method test plan.

Inso doing, individual tests become stronger.

CSC307-f15-L8 Bge 10

XXV. Testing models with large process data requirements.

A. Supposeve have the following

class SomeModestModel {
public void doSomeModelThing(String name) {
Hdb.doSomeProcessThing(...);
}
protected HumongousDatabase hdb;
}
class HumongousDatabase {
public void doSomeProcessThing(...) {
}
}

B. In such cases, it may be quite time consuming to implement a stub for the method Humongous-
Database.doSomeProcessThing.

C. Thisis a place where bottom-up testing is appropriate.

XXVI. On really bright coders who don’t need to do systematic testing.

A. Thereare a fav of these floating around at various institutions.

B. They do informally what mere mortals need to do in a more systematic way.
C. Ultimately even the brightest hack will not be able to do all testing informally.
D

. As programs are built in larger teams, no single person can knough about the entire system to test it
alone.

E. Thereforeteam-constructed software must be team tested, in a systematic manner.

XXVII. Other testing terminology

A. Thetesting oracle

1.

2.
3.
4.

Atest oracle is someone(thing) who(that) knows the correct answer to a test case.

Theoracle is used in test plan generation to define expected results.

Theoracle is also used to analyze incorrect test results.

For the style of deslopment we hee wsed in CSC 307, the oracle is defined by human interpretation of
the requirements specification.

a. Whenusing a formal specification such as Spest, the oracle for a method is defined precisely as the
methods postcondition.
b.

. Whenbuilding a truly experimental piece of code for which the result is not yet known, specification-

based oracle definition may notvals be possible.
a. Theseare cases such as artificial intelligence systems where the code is designed to tell us something
we dont aready knev the answer to.

b. To test such systems requires some initial prototypeldi@ment, inspection of the results, and then
definition of the tests.

B. Reyression testing
1. Thisis the name gin to the style of testing that runs all tests in a suite wherramy change is made to

ary part of the system.

2. Typically full regression tests are run at release points for the system.

CSC307-f15-L8 Bge 11

3. Thereis ongoing research aimed at "smargression testing, where not all tests need to be run if it can
be praved that a gven change cannot possibly affect certain areas of the system.

C. Mutationtesting

1. Thisis a means to test the tests.

2. Thestrategy is tanutatea program and then rerun its tests.

3. For example, suppose an if statement coded as "if (x <y)" is mutated to "if (x >=y)".
4

. Whensuch a mutation is made and a previously successful set of tests are run, the testaikhmotiid f
places where the mutated code produces an incorrect result.
5. If a =t of previously successful tests do not fail on a mutated program, then one pdssibilities
exists:

a. Thetests are too weak to detect a failure that should been tested, in which case the tests need to
be strengthened.

b. The mutated section of code was "dead" in that it did not compute a meaningful result, in which case

the code should be rewa.
6. Generallythe first of these to possibilities is the case.

7. Mutationtesting can be used systematically in suchag that mutations are made in some non-random
fashion.
a. Suclhsystematic mutation provides a measure of testing effeetss.
b. This measure can be used to test the efi@aiss of different testing strategies.

XXVIII. Testing directory structure

A.

Figurel shows the details of the testing directory structure in the gbwofea normal project directory (with-
out package subdirectories).

Thecontents of the testing subdirectories are shown in Table 2.

Inthe table, the ariable$PLATFORMrefers to the one or more subdirectories that contain platform-specific
testing files (e.g., JVM, INTEL).

Bge 12

CSC307-f15-L8

SHIp

indino o,

e

T4LNI

Z

poob-indino

wt_c

indui

Sa|lj ssejo’ yml
sal1010a11p abexoed
oly10ads-10aloid

indino

SlMEN

{o'u¥«

++9

sa|ly el yum
sali010a.1p abexoed
a1j109ds-109loid

7

enel

N\

S9|geINdaxa

uonejuswajdwi

92In0s TN

sabewl

oopene|

|wny’«

Figure I Testing directory structure.

CSC307-f15-L8

Directory or File

Bge 13

Description

*Test.java

input

output-good

output-prev-good

$PLATFORMoutput

$PLATFORMdIiffs
$PLATFORMMakefile

$PLATFORM.make*
$PLATFORM.../*.class

Implementation of class testing plans.

Per the project testing methodologgch testing class is a subclass of the de-
sign/implementation class that it tests.

Test data input files used by test classes.

These files contain large input data values, as necesshiy subdirectory is
empty in cases where testing is performed entirely programaticallythe test-

ing classes construct all test input data dynamically within the test methods,
rather than inputing from test data files.

Output results from the last good run of the tests.

These are results thatugabeen confirmed to be corrediote that these good
results are platform independerite., the correct results should be the same
across all platforms.

Previous good results, in case current results were erroneously confirmed to be
good.

This directory is superfluous ifevsion control of test results is properly em-
ployed. Havever, this directory remains as a backup woid nasty data loss in
case version control has not been kept up to date.

Current platform-specific output results.

These are the results produced by issuing eermakmand in a platform-specif-

ic directory Note that current results are maintained separately in each plat-
form-specific subdirectoryThis allows for the case that current testing results
differ across platforms.

Differences between current and good results.

Makefile to compile testsxecute tests, and difference current results with good
results.

Shell scripts called from the Makefile to perform specific testing tasks.

Test implementation object files.

Table 2: Test file and directory descriptions.

