
CSC307-f15-L4 Slide1

CSC 307 Lecture Notes Week 4

Introduction to Requirements Modeling

Requirements Inspection Testing

CSC307-f15-L4 Slide2

I. Materials:

CSC307-f15-L4 Slide3

I. Materials:

A. Milestones 3-4 writeup

CSC307-f15-L4 Slide4

I. Materials:

A. Milestones 3-4 writeup

B. Milestone 4 example

CSC307-f15-L4 Slide5

I. Materials:

A. Milestones 3-4 writeup

B. Milestone 4 example

C. Java as an Abstract Modeling Language

CSC307-f15-L4 Slide6

I. Materials:

A. Milestones 3-4 writeup

B. Milestone 4 example

C. Java as an Abstract Modeling Language

D. SOP Volume 2: Requirements Testing

CSC307-f15-L4 Slide7

II. Lab quiz Friday, 16 October

CSC307-f15-L4 Slide8

II. Lab quiz Friday, 16 October

A. Covers SVN Basics.

CSC307-f15-L4 Slide9

II. Lab quiz Friday, 16 October

A. Covers SVN Basics.

B. Command-line interface.

CSC307-f15-L4 Slide10

II. Lab quiz Friday, 16 October

A. Covers SVN Basics.

B. Command-line interface.

C. No questions on SVN clients.

CSC307-f15-L4 Slide11

III. After "Analyze" comes "Specify".

CSC307-f15-L4 Slide12

III. After "Analyze" comes "Specify".

A. Formalize functional requirements, so that:

CSC307-f15-L4 Slide13

III. After "Analyze" comes "Specify".

A. Formalize functional requirements, so that:

1. Requirements are complete and consistent

CSC307-f15-L4 Slide14

III. After "Analyze" comes "Specify".

A. Formalize functional requirements, so that:

1. Requirements are complete and consistent

2. Requirements are clear and unambiguous

CSC307-f15-L4 Slide15

III. After "Analyze" comes "Specify".

A. Formalize functional requirements, so that:

1. Requirements are complete and consistent

2. Requirements are clear and unambiguous

B. This is themodelingstep.

CSC307-f15-L4 Slide16

IV. When to model?

CSC307-f15-L4 Slide17

IV. When to model?

A. In more traditional process, done between

AnalyzeandImplementsteps.

CSC307-f15-L4 Slide18

IV. When to model?

A. In more traditional process, done between

AnalyzeandImplementsteps.

B. In agile process, done as needed in a

Refactorstep.

CSC307-f15-L4 Slide19

IV. When to model?

A. In more traditional process, done between

AnalyzeandImplementsteps.

B. In agile process, done as needed in a

Refactorstep.

C. See Figure 1.

CSC307-f15-L4 Slide20

Design ImplementAnalyze Specify

Traditional Approach:

CSC307-f15-L4 Slide21

Design ImplementAnalyze Specify

 Refactor when necessary,
which entails what’s done in
 Specciry and Design

Analyze Implement

Refactor

Traditional Approach:

Agile Approach:

CSC307-f15-L4 Slide22

V. Modeling Languages.

CSC307-f15-L4 Slide23

V. Modeling Languages.

A. There are a number of alternatives.

CSC307-f15-L4 Slide24

V. Modeling Languages.

A. There are a number of alternatives.

B. We’l l use a subset of Java.

CSC307-f15-L4 Slide25

V. Modeling Languages.

A. There are a number of alternatives.

B. We’l l use a subset of Java.

C. See the handout
"Java as an Abstract Modeling Language".

CSC307-f15-L4 Slide26

V. Modeling Languages.

A. There are a number of alternatives.

B. We’l l use a subset of Java.

C. See the handout
"Java as an Abstract Modeling Language".

D. See online notes for further details.

CSC307-f15-L4 Slide27

VI. How formal do we get?

CSC307-f15-L4 Slide28

VI. How formal do we get?

A. We’l l go all the way to formal math logic.

CSC307-f15-L4 Slide29

VI. How formal do we get?

A. We’l l go all the way to formal math logic.

B. We’l l do it step-by-step.

CSC307-f15-L4 Slide30

VI. How formal do we get?

A. We’l l go all the way to formal math logic.

B. We’l l do it step-by-step.

C. See online notes for details.

CSC307-f15-L4 Slide31

VII. Elements of the model.

CSC307-f15-L4 Slide32

VII. Elements of the model.

A. Objects

CSC307-f15-L4 Slide33

VII. Elements of the model.

A. Objects -- classes in Java

CSC307-f15-L4 Slide34

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations

CSC307-f15-L4 Slide35

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java

CSC307-f15-L4 Slide36

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java

C. Modules

CSC307-f15-L4 Slide37

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java

C. Modules -- packages in Java

CSC307-f15-L4 Slide38

VIII. Heuristics for deriving model

CSC307-f15-L4 Slide39

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

CSC307-f15-L4 Slide40

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:

CSC307-f15-L4 Slide41

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:

1. Buttons, menu items =operations.

CSC307-f15-L4 Slide42

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:

1. Buttons, menu items =operations.

2. Data-entry and output screens =objects.

CSC307-f15-L4 Slide43

Heuristics, cont’d

3. Data-entry dialogs =input objects.

CSC307-f15-L4 Slide44

Heuristics, cont’d

3. Data-entry dialogs =input objects.

4. Output screens =output objects.

CSC307-f15-L4 Slide45

Heuristics, cont’d

3. Data-entry dialogs =input objects.

4. Output screens =output objects.

5. Number, string, boolean, enum literals
= primitive objects.

CSC307-f15-L4 Slide46

Heuristics, cont’d

3. Data-entry dialogs =input objects.

4. Output screens =output objects.

5. Number, string, boolean, enum literals
= primitive objects.

6. Hierarchical structure in nested windows.

CSC307-f15-L4 Slide47

Heuristics, cont’d

C. Details of object and operation attributes
derived from scenario narrative.

CSC307-f15-L4 Slide48

IX. Examples from Calendar Tool

CSC307-f15-L4 Slide49

IX. Examples from Calendar Tool

A. Apply the preceding heuristics.

CSC307-f15-L4 Slide50

IX. Examples from Calendar Tool

A. Apply the preceding heuristics.

B. Complete details inspecification
directory of Milestone 4 example.

CSC307-f15-L4 Slide51

X. Deriving scheduling operations

CSC307-f15-L4 Slide52

X. Deriving scheduling operations

A. Schedule command menu:

CSC307-f15-L4 Slide53

X. Deriving scheduling operations

A. Schedule command menu:

Appointment ...
Meeting ...
Task ...
Event ...

CSC307-f15-L4 Slide54

Deriving ops, cont’d

B. Applying first heuristic
(buttons, menus = operations):

CSC307-f15-L4 Slide55

Deriving ops, cont’d

B. Applying first heuristic
(buttons, menus = operations):

void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

CSC307-f15-L4 Slide56

Deriving ops, cont’d

C. Yet to identify these aspects:

CSC307-f15-L4 Slide57

Deriving ops, cont’d

C. Yet to identify these aspects:

1. What class they go in.

CSC307-f15-L4 Slide58

Deriving ops, cont’d

C. Yet to identify these aspects:

1. What class they go in.

2. What parameter(s) they take.

CSC307-f15-L4 Slide59

Deriving ops, cont’d

C. Yet to identify these aspects:

1. What class they go in.

2. What parameter(s) they take.

3. What return value they produce.

CSC307-f15-L4 Slide60

Deriving ops, cont’d

D. Operation names are verbs or verb phrases.

CSC307-f15-L4 Slide61

Deriving ops, cont’d

D. Operation names are verbs or verb phrases.

1. Use suitably modified UI elements.

CSC307-f15-L4 Slide62

Deriving ops, cont’d

D. Operation names are verbs or verb phrases.

1. Use suitably modified UI elements.

2. E.g., method name =

menu name+ menu item name

with Java syntax and case conventions.

CSC307-f15-L4 Slide63

XI. Deriving scheduling objects.

CSC307-f15-L4 Slide64

XI. Deriving scheduling objects.

A. Use second heuristic--

data-entry screens = objects

CSC307-f15-L4 Slide65

XI. Deriving scheduling objects.

A. Use second heuristic--

data-entry screens = objects

B. Applying to anEvent object:

CSC307-f15-L4 Slide66

This picture

Start Date: End Date:

Title:

OK Cancel

Schedule an Event

Location:Category:

 Confirms
scheduleEvent
 operation

 Cancels
scheduleEvent
 operation

Components of
 object Event

CSC307-f15-L4 Slide67

derives to this object

class Event {
String title;
Date startDate
Date endDate
Category category
String location;

}

CSC307-f15-L4 Slide68

Deriving objs, cont’d

Start Date: End Date:

Schedule an

Location:Category:

OK CancelClear

Title:

title startDate endDate categoryEventclass { ; ; ; ; ;

Event

location ; }

CSC307-f15-L4 Slide69

Deriving objs, cont’d

Remember, the heuristic

data-entry screens = objects

is arule of thumb, not an exact rule.

CSC307-f15-L4 Slide70

Deriving objs, cont’d

C. So far we’ve done some initial analysis:

CSC307-f15-L4 Slide71

Deriving objs, cont’d

C. So far we’ve done some initial analysis:

1. The title and location are primitive strings

CSC307-f15-L4 Slide72

Deriving objs, cont’d

C. So far we’ve done some initial analysis:

1. The title and location are primitive strings

2. Other types not yet fully defined

CSC307-f15-L4 Slide73

Deriving objs, cont’d

C. So far we’ve done some initial analysis:

1. The title and location are primitive strings

2. Other types not yet fully defined

class Date { /* ... */ }
class Category { /* ... */ }

CSC307-f15-L4 Slide74

XII. Object derivation details.

CSC307-f15-L4 Slide75

XII. Object derivation details.

A. Java type derived from UI elements.

CSC307-f15-L4 Slide76

XII. Object derivation details.

A. Java type derived from UI elements.

B. Table 1 summarizes.

CSC307-f15-L4 Slide77

Java Type CommonInterface Form

CSC307-f15-L4 Slide78

Java Type CommonInterface Form

int stringeditor, slider, dial

CSC307-f15-L4 Slide79

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

CSC307-f15-L4 Slide80

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

CSC307-f15-L4 Slide81

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

CSC307-f15-L4 Slide82

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

data field box containing other types

CSC307-f15-L4 Slide83

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

data field box containing other types

enum radiobuttons; fixed-length list

CSC307-f15-L4 Slide84

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

data field box containing other types

enum radiobuttons; fixed-length list

Collection variable-length list

CSC307-f15-L4 Slide85

Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

data field box containing other types

enum radiobuttons; fixed-length list

Collection variable-length list

Method pushbutton or menu item

CSC307-f15-L4 Slide86

XIII. Refining object definitions.

CSC307-f15-L4 Slide87

XIII. Refining object definitions.

A. From narrative for event dialog,Title and
Location are free-form strings.

CSC307-f15-L4 Slide88

XIII. Refining object definitions.

A. From narrative for event dialog,Title and
Location are free-form strings.

B. String type models free-form strings

CSC307-f15-L4 Slide89

Refining objs, cont’d

C. Details of date formats not yet worked out.

CSC307-f15-L4 Slide90

Refining objs, cont’d

C. Details of date formats not yet worked out.

1. Given this, leave def ofDate to later.

CSC307-f15-L4 Slide91

Refining objs, cont’d

C. Details of date formats not yet worked out.

1. Given this, leave def ofDate to later.

2. I.e.,

class Date { /* ... */ }

CSC307-f15-L4 Slide92

Refining objs, cont’d

D. UI displaysCategory as list of selections.

CSC307-f15-L4 Slide93

Refining objs, cont’d

D. UI displaysCategory as list of selections.

1. This might lead to modelCategory as just a
string, represented the selected category name.

CSC307-f15-L4 Slide94

Refining objs, cont’d

D. UI displaysCategory as list of selections.

1. This might lead to modelCategory as just a
string, represented the selected category name.

2. More careful analysis from this picture:

CSC307-f15-L4 Slide95

Refining objs, cont’d

OK Cancel

Category Name:

Color: Black

Add Category

CSC307-f15-L4 Slide96

Refining objs, cont’d

3. Hence, more accurate def is:

class Category {
String name;
Color color;

}

CSC307-f15-L4 Slide97

Refining objs, cont’d

4. Subsequent screen showsColor as

OK Cancel

Category Name:

Color:

Add Category

personal

Black

Red
Orange
Yellow
Green

Purple

Black

Blue
Purple

Black

Brown

CSC307-f15-L4 Slide98

Refining objs, cont’d

5. Hence, model as follows:

enum Color {
Black, Brown, Red, Orange,
Yellow or Green, Blue, Purple;

}

CSC307-f15-L4 Slide99

Refining objs, cont’d

E. Preceding analysis is typical.

CSC307-f15-L4 Slide100

Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.

CSC307-f15-L4 Slide101

Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.

2. Refine based on narrative.

CSC307-f15-L4 Slide102

Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.

2. Refine based on narrative.

3. Continue until all objects defined in terms of
primitives.

CSC307-f15-L4 Slide103

XIV. Refining operation definitions.

CSC307-f15-L4 Slide104

XIV. Refining operation definitions.

A. The key step is determining class.

CSC307-f15-L4 Slide105

XIV. Refining operation definitions.

A. The key step is determining class.

B. Clarifies what object is operated on.

CSC307-f15-L4 Slide106

XIV. Refining operation definitions.

A. The key step is determining class.

B. Clarifies what object is operated on.

C. Analysis determines there’s aCalendarobject.

CSC307-f15-L4 Slide107

Refining ops, cont’d

D. Hence,

class Calendar {
void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

}

CSC307-f15-L4 Slide108

Refining ops, cont’d

E. Using heuristic 3 (data-entries are inputs):

class Calendar {
void scheduleAppointment(Appointment);
void scheduleMeeting(Meeting);
void scheduleTask(Task);
void scheduleEvent(Event);

}

CSC307-f15-L4 Slide109

Refining ops, cont’d

F. We want all of abstract models to compile.

CSC307-f15-L4 Slide110

Refining ops, cont’d

F. We want all of abstract models to compile.

1. Abstract means leaving out all code.

CSC307-f15-L4 Slide111

Refining ops, cont’d

F. We want all of abstract models to compile.

1. Abstract means leaving out all code.

2. Declare all of the methodsabstract

CSC307-f15-L4 Slide112

Refining ops, cont’d

G. Here’s a compilable def:
abstract class Calendar {

abstract void
scheduleAppointment(Appointment);

abstract void
scheduleMeeting(Meeting);

abstract void
scheduleTask(Task);

abstract void
scheduleEvent(Event);

}

CSC307-f15-L4 Slide113

XV. Identifying collection objects.

CSC307-f15-L4 Slide114

XV. Identifying collection objects.

A. Ke y aspect of data modeling.

CSC307-f15-L4 Slide115

XV. Identifying collection objects.

A. Ke y aspect of data modeling.

B. Collections contain zero or more objects.

CSC307-f15-L4 Slide116

XV. Identifying collection objects.

A. Ke y aspect of data modeling.

B. Collections contain zero or more objects.

C. Identified by descriptive language, known pat-
tern of operations.

CSC307-f15-L4 Slide117

Identifying collections, cont’d

D. E.g., end of Section 2.2:

"After scheduling and confirming an appoint-
ment, the appointment data are entered in an
online working copy of the user’s calendar."

CSC307-f15-L4 Slide118

Identifying collections, cont’d

E. Use JavaCollection to model:

abstract class Calendar {

abstract void scheduleAppointment(Appointment);

abstract void scheduleMeeting(Meeting);

abstract void scheduleTask(Task);

abstract void scheduleEvent(Event);

Collection<Appointment> data;

}

CSC307-f15-L4 Slide119

Identifying collections, cont’d

F. Over-simplification, since calendars can con-
tain meetings, tasks and events, as well.

CSC307-f15-L4 Slide120

Identifying collections, cont’d

F. Over-simplification, since calendars can con-
tain meetings, tasks and events, as well.

G. We’l l refine soon, like this

Collection<ScheduledItem> data;

CSC307-f15-L4 Slide121

Identifying collections, cont’d

H. Also identify collections by four ops:

CSC307-f15-L4 Slide122

Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.

CSC307-f15-L4 Slide123

Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.

2. I.e., ops to add, delete, edit, and find.

CSC307-f15-L4 Slide124

Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.

2. I.e., ops to add, delete, edit, and find.

3. Coming up, we’ll consider this to be a
formal specification pattern.

CSC307-f15-L4 Slide125

XVI. Deriving a monthly view object.

CSC307-f15-L4 Slide126

XVI. Deriving a monthly view object.

A. Many objects will be derived from calendar
View commands.

CSC307-f15-L4 Slide127

XVI. Deriving a monthly view object.

A. Many objects will be derived from calendar
View commands.

B. As initial example, consider in a month view:

CSC307-f15-L4 Slide128

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 1110 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

2728 29 30

10-11 AM

1. Colloq
9-10 AM O

10-11 AM
11 AM-12

9-10 AM O

8-9 AM Ra

8-9 AM Ra

8-9 AM Ra
9 AM-5 PM

8-9 AM Ra
9 AM-5 PM

8-9 AM Ra

10-11 AM
11 AM-12
2:30-4:30

9-10 AM O

8-9 AM Ra

8-9 AM Ra

8-9:30 AM

10-11 AM
11 AM-12

9-10 AM O

8-9 AM Ra

Monthly Agenda

1. Send c

1. Prepar

8-9 AM Ra
2. Buy so

Jim’s Bir

Labor Day

Autumnal 8-9 AM St

10-11 AM
9-10 AM O
8-9:30 AM

11 AM-2 P

11 AM-2 P

11 AM-2 P

1. Colloq

11 AM-12

Today September 2014

CSC307-f15-L4 Slide129

C. From this we can derive:

CSC307-f15-L4 Slide130

import java.util.Collection;

CSC307-f15-L4 Slide131

import java.util.Collection;

/**
* A MonthlyAgenda contains a small daily view for each
* day of the month, organized in the fashion typical
* in paper calendars.
*/
class MonthlyAgenda {

FullMonthName name;
DayOfTheWeek firstDay;
int numberOfDays;
Collection<SmallDayView> items;

}

CSC307-f15-L4 Slide132

class FullMonthName {
String month;
int year;

}

CSC307-f15-L4 Slide133

class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }

CSC307-f15-L4 Slide134

class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }
/**
* A SmallDayView has the number of the date and a list
* of zero or more short item descriptions.
*/

class SmallDayView {
int DateNumber;
Collection<BriefItemDescription> items;

}

CSC307-f15-L4 Slide135

class BriefItemDescription {
String title;
Time startTime;
Duration duration;
Category category;

}

CSC307-f15-L4 Slide136

class BriefItemDescription {
String title;
Time startTime;
Duration duration;
Category category;

}

class Time { /* ... */ }
class Duration { /* ... */ }
class Category { /* ... */ }

CSC307-f15-L4 Slide137

XVII. Observations on requirements modeling.

CSC307-f15-L4 Slide138

XVII. Observations on requirements modeling.

A. Can derive in different ways.

CSC307-f15-L4 Slide139

XVII. Observations on requirements modeling.

A. Can derive in different ways.

1. E.g., should the Calendar of scheduled items
or collection of years?

CSC307-f15-L4 Slide140

XVII. Observations on requirements modeling.

A. Can derive in different ways.

1. E.g., should the Calendar of scheduled items
or collection of years?

2. Should dates be modeled as simple strings or
a composite class?

CSC307-f15-L4 Slide141

XVII. Observations on requirements modeling.

A. Can derive in different ways.

1. E.g., should the Calendar of scheduled items
or collection of years?

2. Should dates be modeled as simple strings or
a composite class?

3. Which of these is "correct", "most accurate"?

CSC307-f15-L4 Slide142

Observations, cont’d

B. Answer -- modelas perceived by the end user.

CSC307-f15-L4 Slide143

Observations, cont’d

B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.

CSC307-f15-L4 Slide144

Observations, cont’d

B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.

2. Don’t model for computational efficiency.

CSC307-f15-L4 Slide145

Observations, cont’d

B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.

2. Don’t model for computational efficiency.

3. We’l l discuss further in upcoming lectures.

CSC307-f15-L4 Slide146

XVIII. Some Milestone 4 Details

CSC307-f15-L4 Slide147

XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

CSC307-f15-L4 Slide148

XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

CSC307-f15-L4 Slide149

XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.

CSC307-f15-L4 Slide150

XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.

b. Classes can be in one or more.java files.

CSC307-f15-L4 Slide151

XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.

b. Classes can be in one or more.java files.

c. Team coordination needed for shared
objects and package structure.

CSC307-f15-L4 Slide152

Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

CSC307-f15-L4 Slide153

Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.

CSC307-f15-L4 Slide154

Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.

4. The files must compile withjavac.

CSC307-f15-L4 Slide155

Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.

4. The files must compile withjavac.

5. Documentation must be generated with
javadoc.

CSC307-f15-L4 Slide156

Milestone 4, cont’d

B. Requirements inspection testing.

CSC307-f15-L4 Slide157

Milestone 4, cont’d

B. Requirements inspection testing.

1. Review procedure in the SOP Vol. 2.

CSC307-f15-L4 Slide158

Milestone 4, cont’d

B. Requirements inspection testing.

1. Review procedure in the SOP Vol. 2.

2. Decide as team the time of pre-testing check-
in, so librarian can release by 11:59PM.

CSC307-f15-L4 Slide159

XIX. Guidelines for modularizing a model.

CSC307-f15-L4 Slide160

XIX. Guidelines for modularizing a model.

A. To modularizemeans subdivide into
independent units.

CSC307-f15-L4 Slide161

XIX. Guidelines for modularizing a model.

A. To modularizemeans subdivide into
independent units.

B. Dictionary definition of amodule--

"... an independent unit that can be used to
construct a more complex structure".

CSC307-f15-L4 Slide162

Modularization, cont’d

C. In Java, modules defined aspackages.

CSC307-f15-L4 Slide163

Modularization, cont’d

C. In Java, modules defined aspackages.

D. Good heuristic uses large-grain UI structure.

CSC307-f15-L4 Slide164

Modularization, cont’d

C. In Java, modules defined aspackages.

D. Good heuristic uses large-grain UI structure.

1. Each menu in a menu-based UI is a module.

CSC307-f15-L4 Slide165

Modularization, cont’d

C. In Java, modules defined aspackages.

D. Good heuristic uses large-grain UI structure.

1. Each menu in a menu-based UI is a module.

2. Similarly, top-level UI toolbars can be
considered modules.

CSC307-f15-L4 Slide166

Modularization, cont’d

E. Given these heuristics, packaging structure of
Calendar Tool can look like this:

CSC307-f15-L4 Slide167

Modularization, cont’d

E. Given these heuristics, packaging structure of
Calendar Tool can look like this:

package file;
package edit;
package schedule;
package view;
package admin;
package options;

CSC307-f15-L4 Slide168

Modularization, cont’d

F. Within each package are appropriate classes.

CSC307-f15-L4 Slide169

Modularization, cont’d

F. Within each package are appropriate classes.

1. For Cal Tool focus isschedule andview.

CSC307-f15-L4 Slide170

Modularization, cont’d

F. Within each package are appropriate classes.

1. For Cal Tool focus isschedule andview.

2. Packaging structure is easy to view in
javadoc form.

CSC307-f15-L4 Slide171

Modularization, cont’d

F. Within each package are appropriate classes.

1. For Cal Tool focus isschedule andview.

2. Packaging structure is easy to view in
javadoc form.

3. Each package dir haspackage.html.

CSC307-f15-L4 Slide172

Additional material to read
in this weeks lecture notes:

XX. Summary of core steps of modeling

CSC307-f15-L4 Slide173

Additional material to read
in this weeks lecture notes:

XX. Summary of core steps of modeling

XXI. Specific modeling guidelines.

CSC307-f15-L4 Slide174

Additional material to read
in this weeks lecture notes:

XX. Summary of core steps of modeling

XXI. Specific modeling guidelines.

XXII. Details of object derivation.

CSC307-f15-L4 Slide175

Additional material to read
in this weeks lecture notes:

XX. Summary of core steps of modeling

XXI. Specific modeling guidelines.

XXII. Details of object derivation.

XXIII. Details of operation derivation.

CSC307-f15-L4 Slide176

Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example

CSC307-f15-L4 Slide177

Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example

XXV. A detailed cal tool viewing example

CSC307-f15-L4 Slide178

Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example

XXV. A detailed cal tool viewing example

XXVI. Summary Observations about Modeling

CSC307-f15-L4 Slide179

Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example

XXV. A detailed cal tool viewing example

XXVI. Summary Observations about Modeling

. . . and some additional topics

CSC307-f15-L4 Slide180

Now Some Topics from the Handout

Overview of Using Jav aas an
Abstract Modeling and Specification Language

CSC307-f15-L4 Slide181

1. Tabular and Graphical Modeling Notations

CSC307-f15-L4 Slide182

1. Tabular and Graphical Modeling Notations

• Same model in tabular or graphical form.

CSC307-f15-L4 Slide183

1. Tabular and Graphical Modeling Notations

• Same model in tabular or graphical form.

• Tabular form called a "data dictionary".

CSC307-f15-L4 Slide184

1. Tabular and Graphical Modeling Notations

• Same model in tabular or graphical form.

• Tabular form called a "data dictionary".

• Graphical notation based on UML and others.

CSC307-f15-L4 Slide185

1.1. DataDictionaries

CSC307-f15-L4 Slide186

1.1. DataDictionaries

• A well-used notation.

CSC307-f15-L4 Slide187

1.1. DataDictionaries

• A well-used notation.

• Shows objects, components, and descriptions.

CSC307-f15-L4 Slide188

1.1. DataDictionaries

• A well-used notation.

• Shows objects, components, and descriptions.

• E.g.,

CSC307-f15-L4 Slide189

Object Name Components Description

Appointment

Calendar

ScheduledItem

Meeting

StaffMeeting

UserMeeting

CSC307-f15-L4 Slide190

Data Dictionaries, cont’d

• We’l l use Javadoc for data dictionaries.

CSC307-f15-L4 Slide191

Data Dictionaries, cont’d

• We’l l use Javadoc for data dictionaries.

• It’s programmer-oriented, but OK.

CSC307-f15-L4 Slide192

1.2. ClassDiagrams

CSC307-f15-L4 Slide193

1.2. ClassDiagrams

• Depict object composition and inheritance.

CSC307-f15-L4 Slide194

1.2. ClassDiagrams

• Depict object composition and inheritance.

• Show operations associated with objects.

CSC307-f15-L4 Slide195

1.2. ClassDiagrams

• Depict object composition and inheritance.

• Show operations associated with objects.

• Elements are:

CSC307-f15-L4 Slide196

Class Diagrams, cont’d

1. three-part object boxes

CSC307-f15-L4 Slide197

Class Diagrams, cont’d

1. three-part object boxes

2. one-part object boxes

CSC307-f15-L4 Slide198

Class Diagrams, cont’d

1. three-part object boxes

2. one-part object boxes

3. ovals for operations

CSC307-f15-L4 Slide199

Class Diagrams, cont’d

4. connecting edges:

CSC307-f15-L4 Slide200

Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance

CSC307-f15-L4 Slide201

Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance

b. hollow diamond for composition

CSC307-f15-L4 Slide202

Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance

b. hollow diamond for composition

c. ’*’ or number for repetition

CSC307-f15-L4 Slide203

Class Diagrams, cont’d

Parent

Component1
Component2
Component3

Op1
Op2
Op3

Child1

Child2

Child3

Sample Class Diagram

CSC307-f15-L4 Slide204

Class Diagrams, cont’d

class Parent {
Comp1 c1;
Comp2 c2;
Comp3 c3;
void Op1();
void Op2();
void Op3();

}
class Child1 extends Parent {}
class Child2 extends Parent {}
class Child3 extends Parent {}

CSC307-f15-L4 Slide205

Calendar Tool example:

Calendar

StaffMeeting

UserMeeting

 ScheduledItem

Title
StartDate
EndDate

 Appointment

StartTime
Duration
Location
AppointmentSecurity
Priority
RemindInfo
Details

 Meeting

StartTime
Duration
Location
MeetingSecurity
Priority
RemindInfo
Attendees
Details
Minutes

*

CSC307-f15-L4 Slide206

1.3. Dataflow Diagrams

CSC307-f15-L4 Slide207

1.3. Dataflow Diagrams

• Depict flow of objects between operations.

CSC307-f15-L4 Slide208

1.3. Dataflow Diagrams

• Depict flow of objects between operations.

• Elements:

CSC307-f15-L4 Slide209

1.3. Dataflow Diagrams

• Depict flow of objects between operations.

• Elements:

1. circular/oval nodes for operations

CSC307-f15-L4 Slide210

1.3. Dataflow Diagrams

• Depict flow of objects between operations.

• Elements:

1. circular/oval nodes for operations

2. directed edges, for i/o

CSC307-f15-L4 Slide211

1.3. Dataflow Diagrams

• Depict flow of objects between operations.

• Elements:

1. circular/oval nodes for operations

2. directed edges, for i/o

3. graph levels for operation hierarchy

CSC307-f15-L4 Slide212

 Some
Operation

In1

In2

In3

Out1

Out2

Out3

Top-Level Dataflow:

Corresponding Java:

class X {
 Outputs someOperation(In1, In2, In3);
}
class Outputs {
 Out1 o1; Out2 o2; Out3 o3;
}

CSC307-f15-L4 Slide213

Op1aIn1 Out1

Out3

Op1b Op1c Out2

In3

In2

Data1

Data2

Level 1 Expansion:

Corresponding Java:

Outputs1_2_3 Op1(In1, In2, In3);
Outputs1_3_D Op1a(In1);
Data2 Op1b(In2, In3);
Out2 Op1c(Data1, Data2);

CSC307-f15-L4 Slide214

1.4. Package Diagrams

CSC307-f15-L4 Slide215

1.4. Package Diagrams

• For large-grain modeling.

CSC307-f15-L4 Slide216

1.4. Package Diagrams

• For large-grain modeling.

• Depict relationship between modules.

CSC307-f15-L4 Slide217

1.4. Package Diagrams

• For large-grain modeling.

• Depict relationship between modules.

• Elements:

CSC307-f15-L4 Slide218

Package Diagrams, cont’d

1. folder-shaped rectangles for modules

CSC307-f15-L4 Slide219

Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines

CSC307-f15-L4 Slide220

Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines

a. data communication

CSC307-f15-L4 Slide221

Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines

a. data communication

b. functional communication

CSC307-f15-L4 Slide222

Package Diagrams, cont’d

Module1

Obj1

Obj2

Module2

Module3

Op1

CSC307-f15-L4 Slide223

References

CSC307-f15-L4 Slide224

References --Beginnings of Software Modeling

CSC307-f15-L4 Slide225

References --Beginnings of Software Modeling

[Ross 77] "Structured Analysis (SA)"

featuring the SADT diagram

CSC307-f15-L4 Slide226

References --Beginnings of Software Modeling

[Ross 77] "Structured Analysis (SA)"

featuring the SADT diagram

[Teichroew 77] "PSL/PSA"

the Problem Statement Language

CSC307-f15-L4 Slide227

References --Beginnings of Software Modeling

[Ross 77] "Structured Analysis (SA)"

featuring the SADT diagram

[Teichroew 77] "PSL/PSA"

the Problem Statement Language

[Greenspan 82] "Capturing World Knowledge"

adds inheritance to SADT

CSC307-f15-L4 Slide228

References --Getting Seriously Formal

[Guttag 85] "Larch Family of Spec Languages"

major influence on JML

CSC307-f15-L4 Slide229

References --Getting Seriously Formal

[Guttag 85] "Larch Family of Spec Languages"

major influence on JML

[Goguen 88] "Introducing OBJ3"

a dif ferent, mind-altering approach

CSC307-f15-L4 Slide230

References --The World Takes Notice

[Rumbaugh 91] "Object-Oriented Modeling"

featuring the OMT diagram

CSC307-f15-L4 Slide231

References --The World Takes Notice

[Rumbaugh 91] "Object-Oriented Modeling"

featuring the OMT diagram

[Booch, et al. 99] "UML Ref Manual"

featuring the "Boombaugh" diagram

CSC307-f15-L4 Slide232

References --The World Takes Notice

[Rumbaugh 91] "Object-Oriented Modeling"

featuring the OMT diagram

[Booch, et al. 99] "UML Ref Manual"

featuring the "Boombaugh" diagram

[OMG 05] "UML 2.0 Ref Manual"

the OMG takes over

CSC307-f15-L4 Slide233

XXVII. Testing in the SE process.

CSC307-f15-L4 Slide234

XXVII. Testing in the SE process.

A. In a bad process, testing is the very last step.

CSC307-f15-L4 Slide235

XXVII. Testing in the SE process.

A. In a bad process, testing is the very last step.

1. Program code only is formally tested.

CSC307-f15-L4 Slide236

XXVII. Testing in the SE process.

A. In a bad process, testing is the very last step.

1. Program code only is formally tested.

2. Code testing is important, but should not be the
only testing.

CSC307-f15-L4 Slide237

XXVII. Testing in the SE process.

A. In a bad process, testing is the very last step.

1. Program code only is formally tested.

2. Code testing is important, but should not be the
only testing.

3. All artifacts can be tested formally -- require-
ments, specification, and design.

CSC307-f15-L4 Slide238

Testing in the SE process, cont’d

B. Figure 1 compares the position of testing.

CSC307-f15-L4 Slide239

Design

Prototype

Implement

Analyze

Specify

Test

Configure

Document

Manage

Ordered Process Steps

Pervasive Process Steps

Pervasive steps
are performed
continuously or
at regularly-
scheduled times
throughout the
ordered steps.

Design

Prototype

Implement

Analyze

Specify

Test

b. Process with testing as a pervasive step.

a. Traditional process,
 with testing at the end.

CSC307-f15-L4 Slide240

Testing in the SE process, cont’d

1. Pervasive steps run continuously or at regularly-
scheduled intervals.

CSC307-f15-L4 Slide241

Testing in the SE process, cont’d

1. Pervasive steps run continuously or at regularly-
scheduled intervals.

2. Other pervasive steps are management, configu-
ration, documentation.

CSC307-f15-L4 Slide242

Testing in the SE process, cont’d

C. Three types of testing.

CSC307-f15-L4 Slide243

Testing in the SE process, cont’d

C. Three types of testing.

1. Inspection testingentails systematic human
inspection of all artifacts.

CSC307-f15-L4 Slide244

Testing in the SE process, cont’d

C. Three types of testing.

1. Inspection testingentails systematic human
inspection of all artifacts.

2. Functional testingis performed by programmers
on executable code.

CSC307-f15-L4 Slide245

Testing in the SE process, cont’d

C. Three types of testing.

1. Inspection testingentails systematic human
inspection of all artifacts.

2. Functional testingis performed by programmers
on executable code.

3. Acceptance testingis performed by end users on
released product.

CSC307-f15-L4 Slide246

XXVIII. Testing the requirements.

CSC307-f15-L4 Slide247

XXVIII. Testing the requirements.

A. Customer reviews

CSC307-f15-L4 Slide248

XXVIII. Testing the requirements.

A. Customer reviews

1. Same as for any kind of product.A means to
"debug" requirements spec.

CSC307-f15-L4 Slide249

XXVIII. Testing the requirements.

A. Customer reviews

1. Same as for any kind of product.

2. Namely, assure we’re on track and meeting cus-
tomer needs.

CSC307-f15-L4 Slide250

XXVIII. Testing the requirements.

A. Customer reviews

1. Same as for any kind of product.

2. Namely, assure we’re on track and meeting cus-
tomer needs.

3. A means to "debug" requirements spec.

CSC307-f15-L4 Slide251

Requirements testing, cont’d

B. Formal inspection testing

CSC307-f15-L4 Slide252

Requirements testing, cont’d

B. Formal inspection testing

1. Starting week 4, requirements are inspected by
inspection test engineer.

CSC307-f15-L4 Slide253

Requirements testing, cont’d

B. Formal inspection testing

1. Starting week 4, requirements are inspected by
inspection test engineer.

2. Each team member reviews another member’s
requirements.

CSC307-f15-L4 Slide254

Requirements testing, cont’d

B. Formal inspection testing

1. Starting week 4, requirements are inspected by
inspection test engineer.

2. Each team member reviews another member’s
requirements.

3. Details in handout, to be discussed next week.

CSC307-f15-L4 Slide255

Requirements testing, cont’d

C. Model building.

CSC307-f15-L4 Slide256

Requirements testing, cont’d

C. Model building.

1. Common practice among engineers.

CSC307-f15-L4 Slide257

Requirements testing, cont’d

C. Model building.

1. Common practice among engineers.

2. For 307, model building is next step of software
process.

CSC307-f15-L4 Slide258

CSC 307 Standard Operating Procedures,

Volume 2: Requirements Testing

CSC307-f15-L4 Slide259

Introduction

CSC307-f15-L4 Slide260

Introduction

• Purpose is to ensure quality.

CSC307-f15-L4 Slide261

Introduction

• Purpose is to ensure quality.

• Done by careful human inspection.

CSC307-f15-L4 Slide262

Introduction

• Purpose is to ensure quality.

• Done by careful human inspection.

• Each group appoints inspectors.

CSC307-f15-L4 Slide263

Introduction

• Purpose is to ensure quality.

• Done by careful human inspection.

• Each group appoints inspectors.

• Duties entered inadministration/
inspection-roster.html.

CSC307-f15-L4 Slide264

Introduction

• Purpose is to ensure quality.

• Done by careful human inspection.

• Each group appoints inspectors.

• Duties entered inadministration/
inspection-roster.html.

• Inspector enforces testing standards.

CSC307-f15-L4 Slide265

Inspection of Functional Requirements

CSC307-f15-L4 Slide266

Inspection of Functional Requirements

• Apply to Section 2 of requirements doc.

CSC307-f15-L4 Slide267

Inspection of Functional Requirements

• Apply to Section 2 of requirements doc.

• Test procedure defined in terms of the HTML
document elements.

CSC307-f15-L4 Slide268

Inspection of Functional Requirements

• Apply to Section 2 of requirements doc.

• Test procedure defined in terms of the HTML
document elements.

• Specifically:

CSC307-f15-L4 Slide269

Tag Denotation Required Inspection

<Hn> Numbered section,
level 1 ≤ n ≤ 6

spelling, grammar, presentation
style

<P> Paragraph Pn, n≥ 1 spelling, grammar, presentation
style

 Image In, n≥ 1. existence of image file, spelling,
grammar, presentation style,
image quality, aesthetics

<A> Anchor An, n≥ 1. existence of anchor target

CSC307-f15-L4 Slide270

Inspection Test Plan and Record

CSC307-f15-L4 Slide271

Inspection Test Plan and Record

• Test planis a five-column table.

CSC307-f15-L4 Slide272

Inspection Test Plan and Record

• Test planis a five-column table.

• A row for each component of rqmts.

CSC307-f15-L4 Slide273

Inspection Test Plan and Record

• Test planis a five-column table.

• A row for each component of rqmts.

• Columns are:

CSC307-f15-L4 Slide274

Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

CSC307-f15-L4 Slide275

Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

CSC307-f15-L4 Slide276

Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

iii. date

CSC307-f15-L4 Slide277

Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

iii. date

iv. status, "DONE" or "FIX"

CSC307-f15-L4 Slide278

Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

iii. date

iv. status, "DONE" or "FIX"

v. remarks

CSC307-f15-L4 Slide279

Test Plan and Record, cont’d

• Test recordis a completed plan.

CSC307-f15-L4 Slide280

Test Plan and Record, cont’d

• Test recordis a completed plan.

• For example:

CSC307-f15-L4 Slide281

Component Inspector Date Status Remarks

2.1 GLF 24oct14 DONE

2.1P1 GLF 24oct14 DONE

2.1I1 GLF 24oct14 FIX image quality is
poor due to small
size; rescan from
original into larger
GIF format

2.1A1 GLF 24oct14 FIX the anchor target is
not found; check file
existence and pro-
tection

CSC307-f15-L4 Slide282

2.1.1 GLF 24oct14 DONE

2.1.1P1 GLF 24oct14 DONE

2.1.1I1 GLF 24oct14 DONE

2.1.1P2 GLF 24oct14 DONE grammatical error in
sentence 1: "num-
ber" => "numbers"

2.1.1P3 GLF 24oct14 DONE

.

CSC307-f15-L4 Slide283

Plan and Record, cont’d

• Plans stored in project subdirectory

testing/requirements

CSC307-f15-L4 Slide284

Plan and Record, cont’d

• Plans stored in project subdirectory

testing/requirements

• Testing file has same root filename as rqmts file,
with added suffix "-test".

CSC307-f15-L4 Slide285

Plan and Record, cont’d

• For example, test plan for
requirements/ui-overview.html

is stored in
testing/requirements/

ui-overview-test.html

CSC307-f15-L4 Slide286

Procedural Details

CSC307-f15-L4 Slide287

Procedural Details

• Inspector job isidentifyproblems, not correct.

CSC307-f15-L4 Slide288

Procedural Details

• Inspector job isidentifyproblems, not correct.

• Inspector responsible for test plans.

CSC307-f15-L4 Slide289

Procedural Details

• Inspector job isidentifyproblems, not correct.

• Inspector responsible for test plans.

• Inspector responsible for performing tests.

CSC307-f15-L4 Slide290

Procedural Details, cont’d

• Time-line:

CSC307-f15-L4 Slide291

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

CSC307-f15-L4 Slide292

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

CSC307-f15-L4 Slide293

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

CSC307-f15-L4 Slide294

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

4. Inspectors check in test record.

CSC307-f15-L4 Slide295

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

4. Inspectors check in test record.

5. Librarian updates release directory.

CSC307-f15-L4 Slide296

Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

4. Inspectors check in test record.

5. Librarian updates release directory.

6. At subsequent team meeting, discuss.

CSC307-f15-L4 Slide297

