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CSC 307 Lecture Notes Week 4

Introduction to Requirements Modeling

Requirements Inspection Testing
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I. Materials:

A. Milestones 3-4 writeup

B. Milestone 4 example

C. Java as an Abstract Modeling Language

D. SOP Volume 2: Requirements Testing
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II. Lab quiz Friday, 16 October
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A. Covers SVN Basics.
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II. Lab quiz Friday, 16 October

A. Covers SVN Basics.

B. Command-line interface.

C. No questions on SVN clients.
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III. After "Analyze" comes "Specify".
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III. After "Analyze" comes "Specify".

A. Formalize functional requirements, so that:

1. Requirements are complete and consistent

2. Requirements are clear and unambiguous

B. This is themodelingstep.
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IV. When to model?
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IV. When to model?

A. In more traditional process, done between

AnalyzeandImplementsteps.

B. In agile process, done as needed in a

Refactorstep.

C. See Figure 1.
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Design ImplementAnalyze Specify

Traditional Approach:
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Design ImplementAnalyze Specify

   Refactor when necessary,
which entails what’s done in
       Specciry and Design

Analyze Implement

Refactor

Traditional Approach:

Agile Approach:
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V. Modeling Languages.
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V. Modeling Languages.

A. There are a number of alternatives.

B. We’l l use a subset of Java.

C. See the handout
"Java as an Abstract Modeling Language".

D. See online notes for further details.
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VI. How formal do we get?
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VI. How formal do we get?

A. We’l l go all the way to formal math logic.

B. We’l l do it step-by-step.

C. See online notes for details.
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VII. Elements of the model.



CSC307-f15-L4 Slide32

VII. Elements of the model.

A. Objects



CSC307-f15-L4 Slide33

VII. Elements of the model.

A. Objects -- classes in Java



CSC307-f15-L4 Slide34

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations



CSC307-f15-L4 Slide35

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java



CSC307-f15-L4 Slide36

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java

C. Modules



CSC307-f15-L4 Slide37

VII. Elements of the model.

A. Objects -- classes in Java

B. Operations -- methods in Java

C. Modules -- packages in Java
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VIII. Heuristics for deriving model
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A. Derive from UI pictures and narrative.



CSC307-f15-L4 Slide40

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:



CSC307-f15-L4 Slide41

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:

1. Buttons, menu items =operations.



CSC307-f15-L4 Slide42

VIII. Heuristics for deriving model

A. Derive from UI pictures and narrative.

B. Heuristics include:

1. Buttons, menu items =operations.

2. Data-entry and output screens =objects.
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Heuristics, cont’d

3. Data-entry dialogs =input objects.
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Heuristics, cont’d

3. Data-entry dialogs =input objects.
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3. Data-entry dialogs =input objects.

4. Output screens =output objects.

5. Number, string, boolean, enum literals
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Heuristics, cont’d

3. Data-entry dialogs =input objects.

4. Output screens =output objects.

5. Number, string, boolean, enum literals
= primitive objects.

6. Hierarchical structure in nested windows.
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Heuristics, cont’d

C. Details of object and operation attributes
derived from scenario narrative.
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IX. Examples from Calendar Tool
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IX. Examples from Calendar Tool

A. Apply the preceding heuristics.
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IX. Examples from Calendar Tool

A. Apply the preceding heuristics.

B. Complete details inspecification
directory of Milestone 4 example.



CSC307-f15-L4 Slide51

X. Deriving scheduling operations
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X. Deriving scheduling operations

A. Schedule command menu:
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X. Deriving scheduling operations

A. Schedule command menu:

Appointment ...
Meeting ...
Task ...
Event ...
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Deriving ops, cont’d

B. Applying first heuristic
(buttons, menus = operations):
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Deriving ops, cont’d

B. Applying first heuristic
(buttons, menus = operations):

void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();
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Deriving ops, cont’d

C. Yet to identify these aspects:
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Deriving ops, cont’d

C. Yet to identify these aspects:

1. What class they go in.

2. What parameter(s) they take.

3. What return value they produce.
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Deriving ops, cont’d

D. Operation names are verbs or verb phrases.
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Deriving ops, cont’d

D. Operation names are verbs or verb phrases.

1. Use suitably modified UI elements.

2. E.g., method name =

menu name+ menu item name

with Java syntax and case conventions.
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XI. Deriving scheduling objects.
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XI. Deriving scheduling objects.

A. Use second heuristic--

data-entry screens = objects
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XI. Deriving scheduling objects.

A. Use second heuristic--

data-entry screens = objects

B. Applying to anEvent object:
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This picture

Start Date: End Date:

Title:

OK Cancel

Schedule an Event

Location:Category:

     Confirms
scheduleEvent
     operation

      Cancels
scheduleEvent
     operation

Components of
   object Event
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derives to this object

class Event {
String title;
Date startDate
Date endDate
Category category
String location;

}
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Deriving objs, cont’d

Start Date: End Date:

Schedule an 

Location:Category:

OK CancelClear

Title:

title startDate endDate categoryEventclass   {  ;  ;   ;   ; ;

Event

location  ; }
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Deriving objs, cont’d

Remember, the heuristic

data-entry screens = objects

is arule of thumb, not an exact rule.
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Deriving objs, cont’d

C. So far we’ve done some initial analysis:
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Deriving objs, cont’d

C. So far we’ve done some initial analysis:

1. The title and location are primitive strings

2. Other types not yet fully defined

class Date { /* ... */ }
class Category { /* ... */ }
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XII. Object derivation details.
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XII. Object derivation details.

A. Java type derived from UI elements.
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XII. Object derivation details.

A. Java type derived from UI elements.

B. Table 1 summarizes.
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Java Type CommonInterface Form
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Java Type CommonInterface Form

int stringeditor, slider, dial
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Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button
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Java Type CommonInterface Form

int stringeditor, slider, dial

double sameas integer

String stringeditor, combo box

boolean stringeditor, on/off button

data field box containing other types

enum radiobuttons; fixed-length list

Collection variable-length list

Method pushbutton or menu item
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XIII. Refining object definitions.
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XIII. Refining object definitions.

A. From narrative for event dialog,Title and
Location are free-form strings.
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XIII. Refining object definitions.

A. From narrative for event dialog,Title and
Location are free-form strings.

B. String type models free-form strings
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Refining objs, cont’d

C. Details of date formats not yet worked out.



CSC307-f15-L4 Slide90

Refining objs, cont’d

C. Details of date formats not yet worked out.

1. Given this, leave def ofDate to later.
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Refining objs, cont’d

C. Details of date formats not yet worked out.

1. Given this, leave def ofDate to later.

2. I.e.,

class Date { /* ... */ }
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Refining objs, cont’d

D. UI displaysCategory as list of selections.
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Refining objs, cont’d

D. UI displaysCategory as list of selections.

1. This might lead to modelCategory as just a
string, represented the selected category name.
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Refining objs, cont’d

D. UI displaysCategory as list of selections.

1. This might lead to modelCategory as just a
string, represented the selected category name.

2. More careful analysis from this picture:
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Refining objs, cont’d

OK Cancel

Category Name:

Color: Black

Add Category
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Refining objs, cont’d

3. Hence, more accurate def is:

class Category {
String name;
Color color;

}
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Refining objs, cont’d

4. Subsequent screen showsColor as

OK Cancel

Category Name:

Color:

Add Category

personal

Black

Red
Orange
Yellow
Green

Purple

Black

Blue
Purple

Black

Brown
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Refining objs, cont’d

5. Hence, model as follows:

enum Color {
Black, Brown, Red, Orange,
Yellow or Green, Blue, Purple;

}
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Refining objs, cont’d

E. Preceding analysis is typical.
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Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.
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Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.

2. Refine based on narrative.
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Refining objs, cont’d

E. Preceding analysis is typical.

1. Derive initial obj defs from UI pictures.

2. Refine based on narrative.

3. Continue until all objects defined in terms of
primitives.
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XIV. Refining operation definitions.
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A. The key step is determining class.
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XIV. Refining operation definitions.

A. The key step is determining class.

B. Clarifies what object is operated on.

C. Analysis determines there’s aCalendarobject.
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Refining ops, cont’d

D. Hence,

class Calendar {
void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

}
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Refining ops, cont’d

E. Using heuristic 3 (data-entries are inputs):

class Calendar {
void scheduleAppointment(Appointment);
void scheduleMeeting(Meeting);
void scheduleTask(Task);
void scheduleEvent(Event);

}
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Refining ops, cont’d

F. We want all of abstract models to compile.
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1. Abstract means leaving out all code.
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Refining ops, cont’d

F. We want all of abstract models to compile.

1. Abstract means leaving out all code.

2. Declare all of the methodsabstract
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Refining ops, cont’d

G. Here’s a compilable def:
abstract class Calendar {

abstract void
scheduleAppointment(Appointment);

abstract void
scheduleMeeting(Meeting);

abstract void
scheduleTask(Task);

abstract void
scheduleEvent(Event);

}
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XV. Identifying collection objects.
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XV. Identifying collection objects.

A. Ke y aspect of data modeling.

B. Collections contain zero or more objects.

C. Identified by descriptive language, known pat-
tern of operations.
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Identifying collections, cont’d

D. E.g., end of Section 2.2:

"After scheduling and confirming an appoint-
ment, the appointment data are entered in an
online working copy of the user’s calendar."
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Identifying collections, cont’d

E. Use JavaCollection to model:

abstract class Calendar {

abstract void scheduleAppointment(Appointment);

abstract void scheduleMeeting(Meeting);

abstract void scheduleTask(Task);

abstract void scheduleEvent(Event);

Collection<Appointment> data;

}
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Identifying collections, cont’d

F. Over-simplification, since calendars can con-
tain meetings, tasks and events, as well.
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Identifying collections, cont’d

F. Over-simplification, since calendars can con-
tain meetings, tasks and events, as well.

G. We’l l refine soon, like this

Collection<ScheduledItem> data;



CSC307-f15-L4 Slide121

Identifying collections, cont’d

H. Also identify collections by four ops:
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Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.
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Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.

2. I.e., ops to add, delete, edit, and find.
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Identifying collections, cont’d

H. Also identify collections by four ops:

1. Additive, destructive, modifying, selective.

2. I.e., ops to add, delete, edit, and find.

3. Coming up, we’ll consider this to be a
formal specification pattern.
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XVI. Deriving a monthly view object.
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View commands.
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XVI. Deriving a monthly view object.

A. Many objects will be derived from calendar
View commands.

B. As initial example, consider in a month view:
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Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 1110 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

2728 29 30

10-11 AM 

1. Colloq
9-10 AM O

10-11 AM 
11 AM-12 

9-10 AM O

8-9 AM Ra

8-9 AM Ra

8-9 AM Ra
9 AM-5 PM 

8-9 AM Ra
9 AM-5 PM 

8-9 AM Ra

10-11 AM 
11 AM-12 
2:30-4:30

9-10 AM O

8-9 AM Ra

8-9 AM Ra

8-9:30 AM

10-11 AM 
11 AM-12 

9-10 AM O

8-9 AM Ra

Monthly Agenda

1. Send c

1. Prepar

8-9 AM Ra
2. Buy so

Jim’s Bir

Labor Day

Autumnal 8-9 AM St

10-11 AM 
9-10 AM O
8-9:30 AM 

11 AM-2 P

11 AM-2 P

11 AM-2 P

1. Colloq

11 AM-12 

Today September 2014
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C. From this we can derive:
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import java.util.Collection;
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import java.util.Collection;

/**
* A MonthlyAgenda contains a small daily view for each
* day of the month, organized in the fashion typical
* in paper calendars.
*/
class MonthlyAgenda {

FullMonthName name;
DayOfTheWeek firstDay;
int numberOfDays;
Collection<SmallDayView> items;

}
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class FullMonthName {
String month;
int year;

}
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class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }
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class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }
/**
* A SmallDayView has the number of the date and a list
* of zero or more short item descriptions.
*/

class SmallDayView {
int DateNumber;
Collection<BriefItemDescription> items;

}
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class BriefItemDescription {
String title;
Time startTime;
Duration duration;
Category category;

}
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class BriefItemDescription {
String title;
Time startTime;
Duration duration;
Category category;

}

class Time { /* ... */ }
class Duration { /* ... */ }
class Category { /* ... */ }
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XVII. Observations on requirements modeling.
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1. E.g., should the Calendar of scheduled items
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2. Should dates be modeled as simple strings or
a composite class?
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XVII. Observations on requirements modeling.

A. Can derive in different ways.

1. E.g., should the Calendar of scheduled items
or collection of years?

2. Should dates be modeled as simple strings or
a composite class?

3. Which of these is "correct", "most accurate"?
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Observations, cont’d

B. Answer -- modelas perceived by the end user.
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Observations, cont’d

B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.
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B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.

2. Don’t model for computational efficiency.



CSC307-f15-L4 Slide145

Observations, cont’d

B. Answer -- modelas perceived by the end user.

1. Helps achieve model correctness, accuracy.

2. Don’t model for computational efficiency.

3. We’l l discuss further in upcoming lectures.
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XVIII. Some Milestone 4 Details
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XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.
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1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.
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XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.

b. Classes can be in one or more.java files.
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XVIII. Some Milestone 4 Details

A. Modeling for Milestone 4.

1. See M4 example for guide of how much.

a. Each team member must commit at least
four model classes.

b. Classes can be in one or more.java files.

c. Team coordination needed for shared
objects and package structure.
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Milestone 4, cont’d

2. Create package sub-directories under
specification directory.
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Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.
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Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.

4. The files must compile withjavac.
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Milestone 4, cont’d

2. Create package sub-directories under
specification directory.

3. Put.java files in appropriate package dirs.

4. The files must compile withjavac.

5. Documentation must be generated with
javadoc.
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Milestone 4, cont’d

B. Requirements inspection testing.
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Milestone 4, cont’d

B. Requirements inspection testing.

1. Review procedure in the SOP Vol. 2.
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Milestone 4, cont’d

B. Requirements inspection testing.

1. Review procedure in the SOP Vol. 2.

2. Decide as team the time of pre-testing check-
in, so librarian can release by 11:59PM.
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XIX. Guidelines for modularizing a model.

A. To modularizemeans subdivide into
independent units.

B. Dictionary definition of amodule--

"... an independent unit that can be used to
construct a more complex structure".
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Modularization, cont’d

C. In Java, modules defined aspackages.
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Modularization, cont’d

C. In Java, modules defined aspackages.

D. Good heuristic uses large-grain UI structure.

1. Each menu in a menu-based UI is a module.

2. Similarly, top-level UI toolbars can be
considered modules.
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Modularization, cont’d

E. Given these heuristics, packaging structure of
Calendar Tool can look like this:
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Modularization, cont’d

E. Given these heuristics, packaging structure of
Calendar Tool can look like this:

package file;
package edit;
package schedule;
package view;
package admin;
package options;
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Modularization, cont’d

F. Within each package are appropriate classes.
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2. Packaging structure is easy to view in
javadoc form.
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Modularization, cont’d

F. Within each package are appropriate classes.

1. For Cal Tool focus isschedule andview.

2. Packaging structure is easy to view in
javadoc form.

3. Each package dir haspackage.html.
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in this weeks lecture notes:

XX. Summary of core steps of modeling
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Additional material to read
in this weeks lecture notes:

XX. Summary of core steps of modeling

XXI. Specific modeling guidelines.

XXII. Details of object derivation.

XXIII. Details of operation derivation.
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Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example
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Additional material to read
in this weeks lecture notes:

XXIV. A detailed cal tool scheduling example

XXV. A detailed cal tool viewing example

XXVI. Summary Observations about Modeling

. . . and some additional topics
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Now Some Topics from the Handout

Overview of Using Jav aas an
Abstract Modeling and Specification Language
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1. Tabular and Graphical Modeling Notations
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1. Tabular and Graphical Modeling Notations

• Same model in tabular or graphical form.

• Tabular form called a "data dictionary".

• Graphical notation based on UML and others.
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1.1. DataDictionaries
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1.1. DataDictionaries

• A well-used notation.
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1.1. DataDictionaries

• A well-used notation.

• Shows objects, components, and descriptions.

• E.g.,
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Object Name Components Description

Appointment . . .  . . .

Calendar . . .  . . .

ScheduledItem . . .  . . .

Meeting . . .  . . .

StaffMeeting . . .  . . .

UserMeeting . . .  . . .
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Data Dictionaries, cont’d

• We’l l use Javadoc for data dictionaries.
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Data Dictionaries, cont’d

• We’l l use Javadoc for data dictionaries.

• It’s programmer-oriented, but OK.
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1.2. ClassDiagrams
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1.2. ClassDiagrams

• Depict object composition and inheritance.
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1.2. ClassDiagrams

• Depict object composition and inheritance.

• Show operations associated with objects.

• Elements are:
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Class Diagrams, cont’d

1. three-part object boxes
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Class Diagrams, cont’d

1. three-part object boxes

2. one-part object boxes
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Class Diagrams, cont’d

1. three-part object boxes

2. one-part object boxes

3. ovals for operations
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Class Diagrams, cont’d

4. connecting edges:
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Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance
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Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance

b. hollow diamond for composition
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Class Diagrams, cont’d

4. connecting edges:

a. hollow triangle for inheritance

b. hollow diamond for composition

c. ’*’ or number for repetition
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Class Diagrams, cont’d

Parent

Component1
Component2
Component3

Op1
Op2
Op3

Child1

Child2

Child3

Sample Class Diagram
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Class Diagrams, cont’d

class Parent {
Comp1 c1;
Comp2 c2;
Comp3 c3;
void Op1();
void Op2();
void Op3();

}
class Child1 extends Parent {}
class Child2 extends Parent {}
class Child3 extends Parent {}
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Calendar Tool example:

Calendar

StaffMeeting

UserMeeting

 ScheduledItem

Title
StartDate
EndDate

       Appointment

StartTime
Duration
Location
AppointmentSecurity
Priority
RemindInfo
Details

        Meeting

StartTime
Duration
Location
MeetingSecurity
Priority
RemindInfo
Attendees
Details
Minutes

*
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1.3. Dataflow Diagrams
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1.3. Dataflow Diagrams

• Depict flow of objects between operations.
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1.3. Dataflow Diagrams

• Depict flow of objects between operations.

• Elements:

1. circular/oval nodes for operations

2. directed edges, for i/o

3. graph levels for operation hierarchy
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    Some
Operation

In1

In2

In3

Out1

Out2

Out3

Top-Level Dataflow:

Corresponding Java:

class X {
    Outputs someOperation(In1, In2, In3);
}
class Outputs {
    Out1 o1;  Out2 o2;  Out3 o3;
}
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Op1aIn1 Out1

Out3

Op1b Op1c Out2

In3

In2

Data1

Data2

Level 1 Expansion:

Corresponding Java:

Outputs1_2_3 Op1(In1, In2, In3);
Outputs1_3_D Op1a(In1);
Data2 Op1b(In2, In3);
Out2 Op1c(Data1, Data2);
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1.4. Package Diagrams
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1.4. Package Diagrams

• For large-grain modeling.
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1.4. Package Diagrams

• For large-grain modeling.

• Depict relationship between modules.

• Elements:
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Package Diagrams, cont’d

1. folder-shaped rectangles for modules
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Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines
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Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines

a. data communication
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Package Diagrams, cont’d

1. folder-shaped rectangles for modules

2. interconnection lines

a. data communication

b. functional communication
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Package Diagrams, cont’d

Module1

Obj1

Obj2

Module2

Module3

Op1
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References --Beginnings of Software Modeling
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References --Beginnings of Software Modeling

[Ross 77] "Structured Analysis (SA)"

featuring the SADT diagram
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the Problem Statement Language
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References --Beginnings of Software Modeling

[Ross 77] "Structured Analysis (SA)"

featuring the SADT diagram

[Teichroew 77] "PSL/PSA"

the Problem Statement Language

[Greenspan 82] "Capturing World Knowledge"

adds inheritance to SADT
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References --Getting Seriously Formal
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References --Getting Seriously Formal

[Guttag 85] "Larch Family of Spec Languages"

major influence on JML

[Goguen 88] "Introducing OBJ3"

a dif ferent, mind-altering approach
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featuring the "Boombaugh" diagram
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References --The World Takes Notice

[Rumbaugh 91] "Object-Oriented Modeling"

featuring the OMT diagram

[Booch, et al. 99] "UML Ref Manual"

featuring the "Boombaugh" diagram

[OMG 05] "UML 2.0 Ref Manual"

the OMG takes over
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XXVII. Testing in the SE process.
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XXVII. Testing in the SE process.

A. In a bad process, testing is the very last step.

1. Program code only is formally tested.

2. Code testing is important, but should not be the
only testing.

3. All artifacts can be tested formally -- require-
ments, specification, and design.
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Testing in the SE process, cont’d

B. Figure 1 compares the position of testing.
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Design

Prototype

Implement

Analyze

Specify

Test

Configure

Document

Manage

Ordered Process Steps

Pervasive Process Steps

Pervasive steps
are performed
continuously or
at regularly-
scheduled times
throughout the
ordered steps.

Design

Prototype

Implement

Analyze

Specify

Test

b. Process with testing as a pervasive step.

a.  Traditional process,
     with testing at the end.
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Testing in the SE process, cont’d

1. Pervasive steps run continuously or at regularly-
scheduled intervals.



CSC307-f15-L4 Slide241

Testing in the SE process, cont’d

1. Pervasive steps run continuously or at regularly-
scheduled intervals.

2. Other pervasive steps are management, configu-
ration, documentation.
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Testing in the SE process, cont’d

C. Three types of testing.
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Testing in the SE process, cont’d

C. Three types of testing.

1. Inspection testingentails systematic human
inspection of all artifacts.

2. Functional testingis performed by programmers
on executable code.

3. Acceptance testingis performed by end users on
released product.
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XXVIII. Testing the requirements.
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XXVIII. Testing the requirements.

A. Customer reviews
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XXVIII. Testing the requirements.

A. Customer reviews

1. Same as for any kind of product.

2. Namely, assure we’re on track and meeting cus-
tomer needs.

3. A means to "debug" requirements spec.
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Requirements testing, cont’d

B. Formal inspection testing
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Requirements testing, cont’d

B. Formal inspection testing

1. Starting week 4, requirements are inspected by
inspection test engineer.

2. Each team member reviews another member’s
requirements.

3. Details in handout, to be discussed next week.
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Requirements testing, cont’d

C. Model building.
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Requirements testing, cont’d

C. Model building.

1. Common practice among engineers.

2. For 307, model building is next step of software
process.
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CSC 307 Standard Operating Procedures,

Volume 2: Requirements Testing
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Introduction

• Purpose is to ensure quality.

• Done by careful human inspection.

• Each group appoints inspectors.

• Duties entered inadministration/
inspection-roster.html.

• Inspector enforces testing standards.
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Inspection of Functional Requirements
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Inspection of Functional Requirements

• Apply to Section 2 of requirements doc.
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Inspection of Functional Requirements

• Apply to Section 2 of requirements doc.

• Test procedure defined in terms of the HTML
document elements.

• Specifically:
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Tag Denotation Required Inspection

<Hn> Numbered section,
level 1 ≤ n ≤ 6

spelling, grammar, presentation
style

<P> Paragraph Pn, n≥ 1 spelling, grammar, presentation
style

<IMG> Image In, n≥ 1. existence of image file, spelling,
grammar, presentation style,
image quality, aesthetics

<A> Anchor An, n≥ 1. existence of anchor target
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Inspection Test Plan and Record
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Inspection Test Plan and Record

• Test planis a five-column table.

• A row for each component of rqmts.

• Columns are:
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Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3
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Test Plan and Record, cont’d
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Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

iii. date

iv. status, "DONE" or "FIX"
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Test Plan and Record, cont’d

i. component denotation, e.g., 2.2.1 I3

ii. inspector initials

iii. date

iv. status, "DONE" or "FIX"

v. remarks
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Test Plan and Record, cont’d

• Test recordis a completed plan.
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Test Plan and Record, cont’d

• Test recordis a completed plan.

• For example:
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Component Inspector Date Status Remarks

2.1 GLF 24oct14 DONE

2.1P1 GLF 24oct14 DONE

2.1I1 GLF 24oct14 FIX image quality is
poor due to small
size; rescan from
original into larger
GIF format

2.1A1 GLF 24oct14 FIX the anchor target is
not found; check file
existence and pro-
tection
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2.1.1 GLF 24oct14 DONE

2.1.1P1 GLF 24oct14 DONE

2.1.1I1 GLF 24oct14 DONE

2.1.1P2 GLF 24oct14 DONE grammatical error in
sentence 1: "num-
ber" => "numbers"

2.1.1P3 GLF 24oct14 DONE

. . .  . . . . . .  . . .
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Plan and Record, cont’d

• Plans stored in project subdirectory

testing/requirements
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Plan and Record, cont’d

• Plans stored in project subdirectory

testing/requirements

• Testing file has same root filename as rqmts file,
with added suffix "-test".
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Plan and Record, cont’d

• For example, test plan for
requirements/ui-overview.html

is stored in
testing/requirements/

ui-overview-test.html
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Procedural Details

• Inspector job isidentifyproblems, not correct.

• Inspector responsible for test plans.

• Inspector responsible for performing tests.
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Procedural Details, cont’d

• Time-line:
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Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

4. Inspectors check in test record.

5. Librarian updates release directory.
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Procedural Details, cont’d

• Time-line:

1. Each member checks in work.

2. Everyone updates their work directory.

3. Inspectors perform inspection.

4. Inspectors check in test record.

5. Librarian updates release directory.

6. At subsequent team meeting, discuss.



CSC307-f15-L4 Slide297


