CSC 307 Lectue Notes Week 8

ormal Specs in Testing
Intr o to Testing Techniques

CSC307-f15-L8 Slide

|. Milestones 7-8
. Due Mon 23 Neember
. Refined model/ve designs
. High-level testing design

1
2
3
4. Approx 75% of implementation operational
5. Data validation for 3 model methods

6

. Unit tests for 3 model methods

CSC307-f15-L8 Slid&

Il. The Testing "Big Picture"

-- on the board for today ...

CSC307-f15-L8 Slidé

Ill. Refining method specs for testing

A. Testing requires that we kmoexactly what
constitutes valid versusvaid inputs.

1. Pre- and postconds answer this question.

2. Used to inform unit test gelopment.

CSC307-f15-L8 Slidé

Overview, cont’d

B. Recap of what pre/postconds mean.

1. Preconditionis one boolean expression that
IS true before methodecutes.

2. Postconditionis one boolean expression that
IS true after method completes.

CSC307-f15-L8 Slidé

V. Formal specs used in testing

A. Formal method test consists of:
1. Inputs within l@d ranges, expected output
2. Inputs outside lgd ranges, expected output

3. Inputs on boundaries, expected output

CSC307-f15-L8 Slidg

Formal specs in testing, cont'd

B. Preconds used to determine inputs.

C. Postconds used to determine expected output

CSC307-f15-L8 Slid8&

V. Formal specs used In verification

A. Programs can be formally verified, that is
provedcorrect.

B. Aformal spec is necewsary to do this.

C. We'll discuss further during last week of
class.

CSC307-f15-L8 Slid®

VI. Precondition enforcement -- "by contract"
versus "defensve programming"

A. Precond failure means an op is "undefined".
1. For abstract spec, this is enough.

2. At imple’n level, precond must be dealt
with more concretely.

3. Two basic approaches.

CSC307-f15-L8 Slidd0

Precond enforcement, cont’d

B. Approad 1. Precond is guaranteed true,
before method call.

1. This is"programming by contract".
2. Precond enforced by callers.
3. Verified or checked atalling site.

4. Bottom line -- called method assumes Its
precond Is alays true.

CSC307-f15-L8 Slidd1

Precond enforcement, cont’d

C. Approad 2 Precond is checked by
method being called.

1. This is"Defensive programming".

2. Method includes logic to enforce its own
precondition.

3. Enforcement can:

CSC307-f15-L8 Slida 2

Precond enforcement, cont’d

a. Assert unconditional failure.
b. Return "null" value.
c. Output error report.

d. Throw an eception.

CSC307-f15-L8 Slidd3

Precond enforcement, cont’d

D. In Model/View comm’n, we use exception
handling approach.

E. We'll discuss further next week.

CSC307-f15-L8 Slidd4

VIl. General concepts of functional testing.
A. Components are independently testable.

B. Testing Is thorough and systematic.

C. Testing Is repeatable.

CSC307-f15-L8 Slidd5

VIII. Overall system testing styles

A. Top-down
1. Top-level methods tested first.

2. "Stubs" written for lower-heel methods.

CSC307-f15-L8 Slidd6

Testing styles, cont'd

B. Bottom-up
1. Lower-level methods tested first.

2. Function "drvers" written for upper-leel
methods.

CSC307-f15-L8 Slida7

Testing styles, cont'd

C. Object-oriented
1. All methods for a particular class are tested.

2. Stubs and dvers written as necessary.

CSC307-f15-L8 Slidé8

Testing styles, cont'd

D. Hybrid

1. A combination of top-down, bottom-up, and
object-oriented testing iIs employed.

2. This Is a good practical approach.

CSC307-f15-L8 Slidd9

Testing styles, cont'd

E. Big-bang
1. All compiled in one hugexecutable.
2. Cross fingers and run it.

3. When big bang fizzles,
enter debugger and hack.

CSC307-f15-L8 Slideo

IX. Independently testable designs

A. Modular interfaces designed thoroughly.

1. Don’t fudge on method signatures, pre/post
logic.

2. Be clear on public and protected.

B. Write stubsanddriversas necessatry.

CSC307-f15-L8 Slide1

X. General approaches to testing

A. Black box testing
1. Each method viewed as black box.

2. Function tested using spec only.

CSC307-f15-L8 Slide2

General approaches, cont’d

B. White-box testing
1. Testing based on method code.
2. Inputs that fully &ercise code logic.

3. Each control path isxercised at least once
by some test.

CSC307-f15-L8 Slide3

General approaches, cont’d

C. Runtime precond enforcement

1. Code added to methods to enforce preconds
at runtime.

2. E.g., Input range checking.

3. Function returns (or throws) error if condi-
tion Is not met.

CSC307-f15-L8 Slide4

General approaches, cont’d

D. Formal verification
1. Pre/post conds treated as mbthéorems.
2. Function body treated as mdthormula.

3. Verification entails proving precond implies
postcondthroughmethod body.

CSC307-f15-L8 Slide5

XI. Functional unit test details
A. List of test caseproduced for each method.

B. This constitutes thenit test plan

C. Tabuar form:

CSC307-f15-L8

Slide6

Case No. Inputs ExpectedOutput Remarks
1 parm1=... refparm1=...
parmm = ... refparmn=...
return = ...
datafielda=..., datafielda="...
datafield z=...] datafieldz=...
n parm1=... refparm1=...
parmm = ... refparmn=...
return = ...
datafielda=..., datafielda="...
datafield z=...] datafieldz=...

CSC307-f15-L8 Slide7

Unit test detalls, cont’'d

D. Note that

1. Must specify all input parameters and data
fields.

2. Must specify all ref parms, return val, modi-
fied fields.

3. Not mentioned assumed "doare".

CSC307-f15-L8 Slides

Unit test detalls, cont'd
E. One test plan for each method.

F. Unit test plans included in module test plan
for complete class.

CSC307-f15-L8 Slide9

XIl. Module, I.e., class testing
A. Write unit test plans for each method.
B. For class as whole, writelass test plan

C. Guidelines:

CSC307-f15-L8 Slid&0

Class testing, cont’d
1. Start with unit tests for constructors.
2. Next, unit test other construedél methods.
3. Unit test selector methods.
4. Test certain method interleavings.

5. Stress test.

CSC307-f15-L8 Slida1

Class testing, cont’d

D. Use a test dver that:
1. executes each method test plan,
2. checks the results,

3. reports ag erroneous results

CSC307-f15-L8 Slid&2

Class testing, cont’d

E. Concrete milestone 8 examples:

cal tool /testing/
| npl enent at1 on/ source/ | aval
cal t ool / nodel / schedul e/
Schedul eTest . | ava

cal tool /testing/
| npl enent at1 on/ source/ | ava/
cal t ool / nodel / cal db/
User Cal endar Test . | ava

CSC307-f15-L8 Slid&3

Class testing, cont’d

F. Java cetalls

1. Each clasX has companion testing class
namedXTest

2. Test class Is subclass of class It tests.

3. Each metho&.fhas a companion unit test
method nameXTest.testF

CSC307-f15-L8 Slida4

Class testing, cont’d

4. Comment at top of test class describes the
module test plan.

5. The comment for each unit test method
describes unit test plan.

6. Unit test details coming up.

CSC307-f15-L8 Slid&5

XIll. Integration testing
A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
iIntegrated modules.

D. Continues until entire system Is integrated.

CSC307-f15-L8 Slid&6

Integration testing, cont'd

E. Concrete example:

cal tool /testing
| npl enent ati on/ source/ | aval/ cal t ool /
| nt egration-test-plan. htmn

CSC307-f15-L8

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

3. Addadm n toschedul e+vi ew+cal db

. AC
. AC

. AC
. AC

© 0O N O U A

. AC

O

O

O

cal db. server toschedule + ...

Integratecal db + cal db. server

optionstoschedule + ...

fi

| etoschedul e + ...

edit schedule + ...

to

n-level cal t ool classes

Slidg7

CSC307-f15-L8 Slida8

XIV. Black box testing heuristics

A. Provide inputs where the precondition is
true.

B. Provide inputs where the precondition is
false.

CSC307-f15-L8 Slid&9

Black box heuristics, cont’'d

C. For data ranges:

1. Provide inputs bels, within, aboe each
precond range.

2. Provide inputs that produce outputs at bot-
tom, within, at top of each postcond range.

CSC307-f15-L8 Slidd0

Black box heuristics, cont’'d

D. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

2. This means 2test cases, whereis number
of logical terms.

CSC307-f15-L8 Slidé1

Black box heuristics, cont’'d

E. For collection classes:

. Test empty collection.

est with one, tw dements.

. Add substantial number of elements.

1
2
3
4. Delete each element.
5. Repeat add/del sequence.
6

. Stress test with order of magnitude greater
than expected size.

CSC307-f15-L8 Slidé2

XV. Function paths
A. Control flav through method body.
B. Branching defines path separation point.
C. Flow chart shav paths clearly.

D. Each path is labeled with a number.

CSC307-f15-L8 Slidé3

XVI. White box testing heuristics
A. EXxercise each path at least once.

B. For loops:
. zero times (if appropriate),
. one time
. two times

. a wbstantial number of times

o H~ W N -

. max number times (if appro)

CSC307-f15-L8 Slidé4

White box heuristics, cont’d

C. Provide inputs to real imple’n flaws:
1. particular operation sequences
2. Inputs of particular size or range

3. Inputs that may cause@flow, underflow,
other abnormal behavior

4. Inputs that test well-known problems in
algorithm

CSC307-f15-L8 Slidéb5

XVIIl. 307 Testing Approach
A. Write black-box tests from spec.

B. Verify white-box cases using eerage tool

CSC307-f15-L8 Slidé6

XVIII. Testing Implementation --
core of unit a testing method

1. Setup-- set up inputs necessary to run test

2. Invoke -- invoke the methodunder test
and acquire Its output

3. Validate -- validate that actual output
equals expected output

CSC307-f15-L8 Slidé7

XIX. Testing Implementation --
detailed anatomy of a unit test method.

A. Class and method under test:

CSC307-f15-L8 Slidé8

class X {
[/ Met hod under test
public Y mMAa Bb, Cc) { ... }

[/ Data field inputs
| i
JJ;

/] Data field output
/ Z;

CSC307-f15-L8 Slidé9

B. Testing class and method.:

CSC307-f15-L8 Slid&0

cl ass XTest {
public void testM) {

[/ Set up Inputs
XX = new X(...);
aVal ue=...; bValue=...; cValue=...;

/1 | nvoke net hod
Y y = m(aVal ue, bVal ue, cVal ue);

[/ Val i dat e out put
expectedY=...; expectedZ=. ..
assert Equal (y, expectedY),
assert Equal (z, expected?),

CSC307-f15-L8 Slidé1

C. Summary of test artifact locations:

1. | avadoc comment for method under test has
JML spec

2.] avadoc comment for testing method has
unit test plan

3.] avadoc comment for testing class has
class test plan

CSC307-f15-L8 Slidé2

Test artifact locations, cont’'d

4. code in method under test
does useful work

5. code In testing method
calls method under test, checks results

6. code In testing class has
testing methods, supporting data fields

CSC307-f15-L8

Slidé3

XX. Atesting example using TestNG.

A. TestNG recommended for 307.

1. "NG" stands for "Next Generation".

2. Very similar to JUnit, interoperable.

3. YOu may use.

Unit, or comparable.

CSC307-f15-L8 Slidé4

TestNG or equialent, cont’d
4. testing framwork requirements:
a. must support methoduel unit testing
b. must support classyel testing

c. Must support regression testing.

CSC307-f15-L8 Slidé5

TestNG or equwvalent, cont'd

B. Good TestNG how-to doc linked from
307/ exanpl es/ m | est one8

C. Also TestNG usage examples.

D. Well go over these examples mo

CSC307-f15-L8 Slid&6

TestNG or equwvalent, cont'd
e Schedul e. | ava model class
« Schedul eTest . | ava testing class

* plus these support files (for Milestone 10):
o Makefile to build and run
o simple TestNG config file

o command-line xecution script

CSC307-f15-L8 Slid&7

TestNG or equwvalent, cont'd

E. Important Note:
For Milestone 8, you need to

e Implement three unit tests per team member
* they do not need to recute for M8

e test xecution required for the final project

CSC307-f15-L8 Slidé8

XXI. Reconciling path cawerage
A. Write purely black box tests.

B. To ensure cwerage, &ecute under path oer-
age analyzer.

C. If analyzer reports paths not beingreaed,
strengthen black box tests.

CSC307-f15-L8 Slid&9

Reconciling path cowerage
1. Uncovered paths may contain useless code.

2. When legitimate code, addwédlack box
test cases.

D. "Grey box" test plan can iva path column:

CSC307-f15-L8 Slid&0

Reconciling path cowerage

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= refparm 1 = P

parmm=| refparmn=

CSC307-f15-L8 Slidé1

XXIIl. Large inputs and outputs
A. For collections classes, i/o can grdarge.
B. Can be specified as file data.

C. Referred to in test plans.

CSC307-f15-L8 Slidé2

XXIIl. Test drivers
A. Once defined, test must beceuted.

B. Test driverwritten as stand-alone program.
1. Executes all tests.
2. Records results.

3. Providesresult differencer

CSC307-f15-L8 Slidé3

Test drivers, con’td

C. Makefile-based example in

cal tool /testing/
| npl enent ati on/ source/ | aval/ Makefil e

Template In

cl asses/ 307/ 11 b/ uni x3- Mbakefi | es/
testi ng- Makefil e

D. Perform tests initially using debugger.

CSC307-f15-L8 Slidé4

XXIV. Testing concrete Uls

A. Performed in the same basic manner.

B. User input Is simulated.

C. Output screens validated initially by human.

D. Machine-readable form of screen to compare
results mechanically.

CSC307-f15-L8 Slidé5

Testing concrete Uls, cont’d

E. Well look at mechanized GUI testing
briefly next week.

F. No time to implement it in 307.

CSC307-f15-L8 Slidé6

XXV. Unit test Is "dress rehearsal”
for I ntegration testing ...

A. Integration'should not"reveal further errors.
B. From experience, it often does.

C. In so doing, individual tests become stronger.

CSC307-f15-L8 Slidé&7

XXVI. Testing with large data.

A. Suppose we va

cl ass SoneMbdest Model {

}

cl ass HunongousDat abase {

}

CSC307-f15-L8 Slidé8

Large-data requirements, cont’d
B. May be time consuming to implement stub.

C. Bottom-up testing Is appropriate.

CSC307-f15-L8 Slidé9

XXVII. Other testing terminology

A. The testing oracle.
1. Someone(thing) who knows correct answers.
2. Used to define expected results.
3. Also used to analyze incorrect test results.

4. In 307, oracle defined as implementation of
method postcondition.

CSC307-f15-L8 Slidg0

Terminology, cont’d

5. When building truly experimental code, spec-
based oracle may not be possible.

a. E.g., Al systems.

b. Need initial prototype delopment.

CSC307-f15-L8 Slidé1

Terminology, cont’d

B. Regression testing
1. Runall tests whener any change is made.
2. Must happen before release.
3. Ideally happens much more often.

4. Ongoing research on "smart" regression.

CSC307-f15-L8 Slidg2

Terminology, cont’d
C. Mutation testing
1. It's a way to test the tests.
2. Strategy -mutateprogram, then rerun tests.

3. E.g., "If (X <Yy)"Is mutated to "if (x >=y)".

CSC307-f15-L8 Slidé3

Terminology, cont’d

4. With such mutation, tests should fail where
the mutated code produces bad result.

5. If previously successful tests dot fail, ... ?

CSC307-f15-L8 Slidg4

Terminology, cont’d

a. The tests are too weak and need to be
strengthened

b. The mutated section of code was "dead" and
should be remoed.

CSC307-f15-L8 Slid&5

Terminology, cont’d

6. Generallythe first of these is the case.

/. Mutation can be used systematically to:

CSC307-f15-L8 Slidé6

Terminology, cont’d

a. Provide measure of testing effeemness.

b. Compare different testing strategies.

CSC307-f15-L8 Slidg7

XXVIII. Testing directory structure

A. Figure 1 in notes ...

CSC307-f15-L8 Slidé8

desi gn i mpl enent ati on
*. htm j avadoc i mages Makefil e source execut abl es Makefil e i nput out put - good
j ava c++)T‘EL\
project-specific *{h, G out put d| ffs . out put diffs

package directories
with .java files
project-specific
package directories
iwth .class files

CSC307-f15-L8 Slidg9

Test dir structure, cont’d

B. Contents of testing subdirs:

CSC307-f15-L8

Directory or File

Slid&0

Description

*Test .| ava
| nput
out put - good

out put - prev-good

$PLATFORM out put
SPLATFORMdIi ffs
SPLATFORM Makefil e

$PLATFORM . nake*

$PLATFORM
.../l *.class

Implementation of class testing plans.
Test data input files used by test classes.
Output results from last good run of the tests.

Previous good results, in case current results
were erroneously confirmed to be good.

Current platform-specific output results.
Differences between current and good results.

Makefile to compile testsxecute tests, and
difference current results with good results.

Shell scripts called from the Makefile to per-
form specific testing tasks.

Test implementation object files.

CSC307-f15-L8 Slidé1

