
CSC307-f15-L8 Slide1

CSC 307 Lecture Notes Week 8

ormal Specs in Testing
Intr o to Testing Techniques

CSC307-f15-L8 Slide2

I. Milestones 7-8

1. Due Mon 23 November

2. Refined model/view designs

3. High-level testing design

4. Approx 75% of implementation operational

5. Data validation for 3 model methods

6. Unit tests for 3 model methods

CSC307-f15-L8 Slide3

II. The Testing "Big Picture"

-- on the board for today ...

CSC307-f15-L8 Slide4

III. Refining method specs for testing

A. Testing requires that we know exactly what
constitutes valid versus invalid inputs.

1. Pre- and postconds answer this question.

2. Used to inform unit test development.

CSC307-f15-L8 Slide5

Overview, cont’d

B. Recap of what pre/postconds mean.

1. Preconditionis one boolean expression that
is true before method executes.

2. Postconditionis one boolean expression that
is true after method completes.

CSC307-f15-L8 Slide6

IV. Formal specs used in testing

A. Formal method test consists of:

1. Inputs within legal ranges, expected output

2. Inputs outside legal ranges, expected output

3. Inputs on boundaries, expected output

CSC307-f15-L8 Slide7

Formal specs in testing, cont’d

B. Preconds used to determine inputs.

C. Postconds used to determine expected output

CSC307-f15-L8 Slide8

V. Formal specs used in verification

A. Programs can be formally verified, that is
provedcorrect.

B. A formal spec is necewsary to do this.

C. We’l l discuss further during last week of
class.

CSC307-f15-L8 Slide9

VI. Precondition enforcement -- "by contract"
versus "defensive programming"

A. Precond failure means an op is "undefined".

1. For abstract spec, this is enough.

2. At imple’n level, precond must be dealt
with more concretely.

3. Tw o basic approaches.

CSC307-f15-L8 Slide10

Precond enforcement, cont’d

B. Approach 1: Precond is guaranteed true,
before method call.

1. This is"programming by contract".

2. Precond enforced by callers.

3. Verified or checked atcalling site.

4. Bottom line -- called method assumes its
precond is always true.

CSC307-f15-L8 Slide11

Precond enforcement, cont’d

C. Approach 2: Precond is checked by
method being called.

1. This is"Defensive programming".

2. Method includes logic to enforce its own
precondition.

3. Enforcement can:

CSC307-f15-L8 Slide12

Precond enforcement, cont’d

a. Assert unconditional failure.

b. Return "null" value.

c. Output error report.

d. Throw an exception.

CSC307-f15-L8 Slide13

Precond enforcement, cont’d

D. In Model/View comm’n, we use exception
handling approach.

E. We’l l discuss further next week.

CSC307-f15-L8 Slide14

VII. General concepts of functional testing.

A. Components are independently testable.

B. Testing is thorough and systematic.

C. Testing is repeatable.

CSC307-f15-L8 Slide15

VIII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

2. "Stubs" written for lower-level methods.

CSC307-f15-L8 Slide16

Testing styles, cont’d

B. Bottom-up

1. Lower-level methods tested first.

2. Function "drivers" written for upper-level
methods.

CSC307-f15-L8 Slide17

Testing styles, cont’d

C. Object-oriented

1. All methods for a particular class are tested.

2. Stubs and drivers written as necessary.

CSC307-f15-L8 Slide18

Testing styles, cont’d

D. Hybrid

1. A combination of top-down, bottom-up, and
object-oriented testing is employed.

2. This is a good practical approach.

CSC307-f15-L8 Slide19

Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

2. Cross fingers and run it.

3. When big bang fizzles,
enter debugger and hack.

CSC307-f15-L8 Slide20

IX. Independently testable designs

A. Modular interfaces designed thoroughly.

1. Don’t fudge on method signatures, pre/post
logic.

2. Be clear on public and protected.

B. Write stubsanddriversas necessary.

CSC307-f15-L8 Slide21

X. General approaches to testing

A. Black box testing

1. Each method viewed as black box.

2. Function tested using spec only.

CSC307-f15-L8 Slide22

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully exercise code logic.

3. Each control path is exercised at least once
by some test.

CSC307-f15-L8 Slide23

General approaches, cont’d

C. Runtime precond enforcement

1. Code added to methods to enforce preconds
at runtime.

2. E.g., input range checking.

3. Function returns (or throws) error if condi-
tion is not met.

CSC307-f15-L8 Slide24

General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

2. Function body treated as math’l formula.

3. Verification entails proving precond implies
postcond,throughmethod body.

CSC307-f15-L8 Slide25

XI. Functional unit test details

A. List of test casesproduced for each method.

B. This constitutes theunit test plan.

C. Tabular form:

CSC307-f15-L8 Slide26

Case No. Inputs ExpectedOutput Remarks

1 parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
return = ...

data field a = ... data field a = ...
... ...

data field z = ... data field z = ...

n parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
return = ...

data field a = ... data field a = ...
... ...

data field z = ... data field z = ...

CSC307-f15-L8 Slide27

Unit test details, cont’d

D. Note that

1. Must specify all input parameters and data
fields.

2. Must specify all ref parms, return val, modi-
fied fields.

3. Not mentioned assumed "don’t care".

CSC307-f15-L8 Slide28

Unit test details, cont’d

E. One test plan for each method.

F. Unit test plans included in module test plan
for complete class.

CSC307-f15-L8 Slide29

XII. Module, i.e., class testing

A. Write unit test plans for each method.

B. For class as whole, writeclass test plan.

C. Guidelines:

CSC307-f15-L8 Slide30

Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

4. Test certain method interleavings.

5. Stress test.

CSC307-f15-L8 Slide31

Class testing, cont’d

D. Use a test driver that:

1. executes each method test plan,

2. checks the results,

3. reports any erroneous results

CSC307-f15-L8 Slide32

Class testing, cont’d

E. Concrete milestone 8 examples:

caltool/testing/
implementation/source/java/

caltool/model/schedule/
ScheduleTest.java

caltool/testing/
implementation/source/java/

caltool/model/caldb/
UserCalendarTest.java

CSC307-f15-L8 Slide33

Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

2. Test class is subclass of class it tests.

3. Each methodX.f has a companion unit test
method namedXTest.testF.

CSC307-f15-L8 Slide34

Class testing, cont’d

4. Comment at top of test class describes the
module test plan.

5. The comment for each unit test method
describes unit test plan.

6. Unit test details coming up.

CSC307-f15-L8 Slide35

XIII. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

D. Continues until entire system is integrated.

CSC307-f15-L8 Slide36

Integration testing, cont’d

E. Concrete example:

caltool/testing
implementation/source/java/caltool/
integration-test-plan.html

CSC307-f15-L8 Slide37

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

8. Add edit schedule + ...

9. Add top-level caltool classes

CSC307-f15-L8 Slide38

XIV. Black box testing heuristics

A. Provide inputs where the precondition is
true.

B. Provide inputs where the precondition is
false.

CSC307-f15-L8 Slide39

Black box heuristics, cont’d

C. For data ranges:

1. Provide inputs below, within, above each
precond range.

2. Provide inputs that produce outputs at bot-
tom, within, at top of each postcond range.

CSC307-f15-L8 Slide40

Black box heuristics, cont’d

D. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

2. This means 2n test cases, wheren is number
of logical terms.

CSC307-f15-L8 Slide41

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.

6. Stress test with order of magnitude greater
than expected size.

CSC307-f15-L8 Slide42

XV. Function paths

A. Control flow through method body.

B. Branching defines path separation point.

C. Flow chart show paths clearly.

D. Each path is labeled with a number.

CSC307-f15-L8 Slide43

XVI. White box testing heuristics

A. Exercise each path at least once.

B. For loops:

1. zero times (if appropriate),

2. one time

3. two times

4. a substantial number of times

5. max number times (if appro)

CSC307-f15-L8 Slide44

White box heuristics, cont’d

C. Provide inputs to reveal imple’n flaws:

1. particular operation sequences

2. inputs of particular size or range

3. inputs that may cause overflow, underflow,
other abnormal behavior

4. inputs that test well-known problems in
algorithm

CSC307-f15-L8 Slide45

XVII. 307 Testing Approach

A. Write black-box tests from spec.

B. Verify white-box cases using coverage tool

CSC307-f15-L8 Slide46

XVIII. Testing Implementation --
core of unit a testing method

1. Setup-- set up inputs necessary to run test

2. Invoke -- invoke the methodunder test
and acquire its output

3. Validate -- validate that actual output
equals expected output

CSC307-f15-L8 Slide47

XIX. Testing Implementation --
detailed anatomy of a unit test method.

A. Class and method under test:

CSC307-f15-L8 Slide48

class X {

// Method under test
public Y m(A a, B b, C c) { ... }

// Data field inputs
I i;
J j;

// Data field output
Z z;

}

CSC307-f15-L8 Slide49

B. Testing class and method:

CSC307-f15-L8 Slide50

class XTest {
public void testM() {

// Set up inputs
X x = new X(...);
aValue=...; bValue=...; cValue=...;

// Invoke method
Y y = m(aValue, bValue, cValue);

// Validate output
expectedY=...; expectedZ=...;
assertEqual(y, expectedY);
assertEqual(z, expectedZ);

}
}

CSC307-f15-L8 Slide51

C. Summary of test artifact locations:

1. javadoc comment for method under test has
JML spec

2. javadoc comment for testing method has
unit test plan

3. javadoc comment for testing class has
class test plan

CSC307-f15-L8 Slide52

Test artifact locations, cont’d

4. code in method under test
does useful work

5. code in testing method
calls method under test, checks results

6. code in testing class has
testing methods, supporting data fields

CSC307-f15-L8 Slide53

XX. A testing example using TestNG.

A. TestNG recommended for 307.

1. "NG" stands for "Next Generation".

2. Very similar to JUnit, interoperable.

3. You may useJUnit, or comparable.

CSC307-f15-L8 Slide54

TestNG or equivalent, cont’d

4. testing framework requirements:

a. must support method-level unit testing

b. must support class-level testing

c. Must support regression testing.

CSC307-f15-L8 Slide55

TestNG or equivalent, cont’d

B. Good TestNG how-to doc linked from
307/examples/milestone8

C. Also TestNG usage examples.

D. We’l l go over these examples now.

CSC307-f15-L8 Slide56

TestNG or equivalent, cont’d

• Schedule.java model class

• ScheduleTest.java testing class

• plus these support files (for Milestone 10):

ο Makefile to build and run

ο simple TestNG config file

ο command-line execution script

CSC307-f15-L8 Slide57

TestNG or equivalent, cont’d

E. Important Note:
For Milestone 8, you need to

• implement three unit tests per team member

• they do not need to execute for M8

• test execution required for the final project

CSC307-f15-L8 Slide58

XXI. Reconciling path coverage

A. Write purely black box tests.

B. To ensure coverage, execute under path cover-
age analyzer.

C. If analyzer reports paths not being covered,
strengthen black box tests.

CSC307-f15-L8 Slide59

Reconciling path coverage

1. Uncovered paths may contain useless code.

2. When legitimate code, add new black box
test cases.

D. "Grey box" test plan can have path column:

CSC307-f15-L8 Slide60

Reconciling path coverage

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= ref parm 1 = p
... ...

parm m = ref parm n =

CSC307-f15-L8 Slide61

XXII. Large inputs and outputs

A. For collections classes, i/o can grow large.

B. Can be specified as file data.

C. Referred to in test plans.

CSC307-f15-L8 Slide62

XXIII. Test drivers

A. Once defined, test must be executed.

B. Test driverwritten as stand-alone program.

1. Executes all tests.

2. Records results.

3. Providesresult differencer.

CSC307-f15-L8 Slide63

Test drivers, con’td

C. Makefile-based example in

caltool/testing/
implementation/source/java/Makefile

Template in

classes/307/lib/unix3-Makefiles/
testing-Makefile

D. Perform tests initially using debugger.

CSC307-f15-L8 Slide64

XXIV. Testing concrete UIs

A. Performed in the same basic manner.

B. User input is simulated.

C. Output screens validated initially by human.

D. Machine-readable form of screen to compare
results mechanically.

CSC307-f15-L8 Slide65

Testing concrete UIs, cont’d

E. We’l l look at mechanized GUI testing
briefly next week.

F. No time to implement it in 307.

CSC307-f15-L8 Slide66

XXV. Unit test is "dress rehearsal"
for i ntegration testing ...

A. Integration"should not"reveal further errors.

B. From experience, it often does.

C. In so doing, individual tests become stronger.

CSC307-f15-L8 Slide67

XXVI. Testing with large data.

A. Suppose we have

class SomeModestModel {
...

}

class HumongousDatabase {
...

}

CSC307-f15-L8 Slide68

Large-data requirements, cont’d

B. May be time consuming to implement stub.

C. Bottom-up testing is appropriate.

CSC307-f15-L8 Slide69

XXVII. Other testing terminology

A. The testing oracle.

1. Someone(thing) who knows correct answers.

2. Used to define expected results.

3. Also used to analyze incorrect test results.

4. In 307, oracle defined as implementation of
method postcondition.

CSC307-f15-L8 Slide70

Terminology, cont’d

5. When building truly experimental code, spec-
based oracle may not be possible.

a. E.g., AI systems.

b. Need initial prototype development.

CSC307-f15-L8 Slide71

Terminology, cont’d

B. Regression testing

1. Runall tests whenever any change is made.

2. Must happen before release.

3. Ideally happens much more often.

4. Ongoing research on "smart" regression.

CSC307-f15-L8 Slide72

Terminology, cont’d

C. Mutation testing

1. It’s a way to test the tests.

2. Strategy --mutateprogram, then rerun tests.

3. E.g., "if (x < y)" is mutated to "if (x >= y)".

CSC307-f15-L8 Slide73

Terminology, cont’d

4. With such mutation, tests should fail where
the mutated code produces bad result.

5. If previously successful tests donot fail, ... ?

CSC307-f15-L8 Slide74

Terminology, cont’d

a. The tests are too weak and need to be
strengthened.

b. The mutated section of code was "dead" and
should be removed.

CSC307-f15-L8 Slide75

Terminology, cont’d

6. Generally, the first of these is the case.

7. Mutation can be used systematically to:

CSC307-f15-L8 Slide76

Terminology, cont’d

a. Provide measure of testing effectiveness.

b. Compare different testing strategies.

CSC307-f15-L8 Slide77

XXVIII. Testing directory structure

A. Figure 1 in notes ...

CSC307-f15-L8 Slide78

*.{h,C} project-specific
package directories
 with .java files

design implementation

c++

diffs

 project-specific
package directories
 iwth .class files

JVM INTELjava

...

T

*.html javadoc images Makefile source executables Makefile input output-good

output *.o output diffs

CSC307-f15-L8 Slide79

Test dir structure, cont’d

B. Contents of testing subdirs:

CSC307-f15-L8 Slide80

Directory or File Description

*Test.java Implementation of class testing plans.

input Test data input files used by test classes.

output-good Output results from last good run of the tests.

output-prev-good Previous good results, in case current results
were erroneously confirmed to be good.

$PLATFORM/output Current platform-specific output results.

$PLATFORM/diffs Differences between current and good results.

$PLATFORM/Makefile Makefile to compile tests, execute tests, and
difference current results with good results.

$PLATFORM/.make* Shell scripts called from the Makefile to per-
form specific testing tasks.

$PLATFORM/
.../*.class

Test implementation object files.

CSC307-f15-L8 Slide81

