Software Engineering
Formal and Practical

Gene Fisher

California Polytechnic State University
San Luis Obispo

September 2009

Brief Table of Contents

L@ gF=To 1=t R [1 Yo [o 1o) o 1
Chapter 2 Software ENQINEEriNg PrOCESSESuuuuuuiiiieiiiiiieiiieieeetieeeeeeeeeeeeeerrerererrretrrrrerrtertertrrttertrrrtrrearn 17
Chapter 3 SOftware ProCeSS ATHELSoiiiiiiiiiiiieee e e e 51
Chapter 4 General ReqUIremMENtS ANGIYSIS.uuuuuuuuuuuiiieiiiiiiuiiruiresrernrrrrrerrrrrre————————————————————e———. 67
Chapter 5 FUNCLIONAl REQUIFEMENTSuuiiiiiiiiiiiiiiiiieeieieee ettt ettt eeeeeeee e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeees 93
Chapter 6 Non-Functional REQUINEMENTScoeiiiiiiiiiiiiieeee e, 129
Chapter 7 ReqUINEMENTS ESTINGueuuetieieiiieiieiieeeieeeeeeeeee et et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeaeeeeeaeteeaeeeeeaeeeeeeees 139
Chapter 8 Structural Model SPeCIfiCationccooiiiii i 147
Chapter 9 Behavioral Model SPeCIfICALION..........coiiiiiiiiiie e 197
Chapter 10 User Interface Specification.............oooooi i 283
Chapter 11 Specification Testing ande¥ifiCatioNcooiiiiiiiiiiiee e 299
Chapter 12 Rapid PrOtOtYPINGcevveeeiiieieiiieeiieee ettt ettt ettt ettt e e e e e e e et e aaaaaaaaaaaaaaaaeas 301
Chapter 13 General Concepts Of SOftWAre DESIGNccoiiiiiiiiiiiieeiii et e e 321
Chapter 14 DeSIgN RILEITISuiiiiiiiiieiiiiiii bbb ee e b e s s ssssseasssessassaesessssesesseeseeeseeeeeeeaeeeeeeeeeees 345
Chapter 15 Design Denation and REfINEMENT...........oii e 382
Chapter 16 User INterface DESIGNccooiiiiii i aneaaneannranrrnnnes 406
Chapter 17 Design SPeCIfICALIONcooeiiiiie oo 409
(O FT o = K B =TT | TN =3 1] o 417
Chapter 19 Program IMPleMENTALION ettt eeeeeeeeeeeeeeeeeeeeeseeesesssesssnesseeseennees 419
Chapter 20 Program DebgOINGcoceeiieieieiieeiii e e aee s b ssssessesssssssssesaaessensserseeeeeneeeees 430
Chapter 21 Program BStNG e e e iiiiiiiieeeee et e e e e e e e e e e e s s e et e e e e e s e s e e e e e e e e e s annrrnrreeeeeeaann 437
Chapter 22 Program MrfiCAIONuuuuiiiriiiiiiiiieriisiiesteeeeeesere ettt 463
Chapter 23 Installation, Operations, Maintenance, an@IBtioN................ccccooiiiiiiiiiiiiieeees 483
Chapter 24 ProjeCt ManAgEMIENTciiiiiiii et aaaeaa e ea e eaee e s eesseessessssssssssssssssssnsssnnnees 485
Chapter 25 Configuration Man@gEMENToiii ittt e e e e e e e e e e raeaeeas 527
Chapter 26 Project and Product DOCUMENTALIONuviiiiiiiiiiiiiiiiiiiieceeeeeee e e e e e e e e e e e e aaaaaaaaaas 543
Chapter 27 Software ENGINEENNGODISoiiiiiiiiiiii e e s 563
Chapter 28 Software Engineering Ethics anaViLau...........oocovvvviiiviiiii 591

Chapter 29 The Future of Software ENGINEEIING.ccoiiiuiriiiiiieeei ittt e e 607

Preface

This book is a comprehensi dudy of software engineering, with emphasis on the practical application of
formal methods.While formal methods are an important part of software engineeringatheby no
means the whole picturdndeed, mawy aspects of software gelopment irvolve principles of aesthetics
and human communication that cannot be readily formaliBidce this text provides a compreheasi
treatment of the field, both formal and non-formal aspects are fullsrash Throughouthe cwerage,

the book integrates formal methods into the major phases ofasefti@elopment, to provide a founda-
tion for the dgelopment process.

On Formality

From the authos' perspectie, the use of formal methods has been significanttylaoted in most soft-
ware engineering té¢s as well as in industrial practice. In general, far tooynsaftware engineers we
formal methods as impractical and largely irvalg to their regular agtities. Thisis a rather unusual
view when one compares sofive engineering to other science and engineering disciplines. In almost all
such disciplines, formal mathematical analysis is a common practice.

One cause for lack of rigor in software engineering is that formal reasoning can b&eml gven the
chance, human nature will steer wgag from hard tasks. The civil engineéor example, might lig to

drav some simple pictures and perform some informal analysis when designing a bridge, witlobut de
ing endless hours to formal modelin§ortunately the competent civil engineer knows that informal
analysis is not sfitient, and that a bridge may well collapse if a careful mathematical specification is not
developed. Thecivil engineer learns this as part of basic training and the practiceibérgineering
demands that formal analysis is an integral part of the job.

Like the civil engineerthe software engineer should learn that careful formal reasoning can begaal inte

part of building comple software systems. In current practice, informal analysis and design are fre-
guently considered adequate for software engineering projestthermore, most software engineers are

not trained in formal methods, nor does the practice of software engineering require the same degree of
mathematical rigor as is required in other branches of engineering. This author firmhesbibiéd as

software engineering matures into a genuine engineering discipline, acceptance and use of formal meth-
ods will be an important part of its maturation.

A key dstinction between this x¢ and most others is that here formal methods are considered to be an
integral part of software delopment, rather than an alternate form ofdi@oment. Agin, that formal
methods are an ingeal part of deelopment by no means implies that all aspects of softwardapement

are fully formalized or formalizable.

On Practicality

Another aspect of software engineeringtdehat the author has found disappointing is the depth and thor
oughness of thexamples. Asan instructarl am @rvinced that presentation of coherent and detailed
examples is critically important to teaching software engineering efébcti

i Preface

The technical chapters of the book present material in thextafta single largexample. Theexample

is an office calendaring system. When software engineering concepts are first introduceccsnmd e

of the example are presented to focus on basic principleshe presentation of conceptoles, lager
example components are presented and/iantedetails are focused upon. The online supplemental mate-
rials hare the example in full, including a complete requirements document, a formal specification,
design, Jea implementation, testing artifacts, and other supporting material.

The motvation for using a single large example is twid a problem the author has found in othetge
where concepts are presented with redhtismall, independent, and generixamples. Suclexample
presentation fails to skhothe big picture of a complete, norwidl piece of softwre. Inthis book, the
initial use of small excerptsraids overwhelming the reader with too much detail at first. As the reader
gans a better understanding of concepts, the complete details ofaimple can be consulted to under
stand ha the pieces fit together and to appreciate the scope of the completed product.

The chosen example is large enough in size and scope to embody a number of general technical problems
that are encountered in a wide range of software applications, not just in the domdicegbrofiucts.
Major technical aspects of the example include the following:

 a abstantial end-user interface, with a reasonably wide range of interface elements

« a aifficiently lalge size to require non-trivial design and implementation techniques, including use of
multiple design patterns

« a aufficiently large size to require non-trivial testing techniques

* basic and advanced data design, including interface to external data stores

* basic and advanced functional design, including exception handlingremtebased processing
« distributed processing and remote data access

« a afficiently large size to require nonsial project management, configuration control, and docu-
mentation

This book does not provide in-depthveage of advanced Computer Science topics such as databases
and distributed computing. The focus of the book in suclarathd areas is on the specification and
design of software that must address technical problems in these areas, and the usareflguéivies

that provide implementation solutions to the problems.

Another motvation for using a single lge example is to provide continuity as the book progrestes.
reader sees oinitial product storyboardsvelve into requirements, a model specification, a design, and
an implementation. The aciiies of testing, management, configuration control, and documentation hap-
pen along the waylin dfect, this golution tells the story of software engineering.

The Approach Used in the Book

The approach tan in software engineering textbooks is based predominantly on the methodologies that
the books ceer. In general, the treatment of methodologies varies wid8bme books present a sew

of different methodologies, gng equal treatment to each of them. Others fosousively on a single
methodology.

This book taks an approach somewhere betweenesuard single-methodologyOverall, the book fol-
lows a specific methodologglefined precisely in terms of the soéixe process and artifacts presented in
Chapters 2 and 3In terms of surgy, most chapters include discussion of altereatirethodologies,
comparing and contrasting them to the specific approach taken in that chapter.

The Approach Used in the Book i

The methodology used in the book is general in sctipis. applicable to a wide range of end-user soft-
ware that performs non-trial computational tasks and requires a non-trivial human-computeraicgerf

Not all aspects of the methodology are entirely applicable to all types of software, as is the case with most
methodologies. & example, the part of the methodology that focuses on the human-computacenterf

is not applicable to systems software or embedded a@twhat has no significant human iraesd.

Where appropriate, the book discusses methodological differences in building different typesasesoftw
and describes mothe specific methods used in the book can be adapted as necessary.

Nothing in the bools methodology is fundamentally we Each phase of delopment is based on con-
cepts that hae gpeared &ensvely in the software engineering literature andén&een applied in prac-
tice. Onelinguistic element of the methodology that is tleerfal Modeling and Specification Language
(FMSL). Priorto its appearance in this book, FMSL has not been udeds¥ely except at the umer-

sity where the author teaches. The concepts of FMSL are far from newaréheooted in well-estab-
lished principles of formal software specification thatehlbeen in existence, if not wide-spread use, for at
least tvo decades.

Fodlowing the process definition in Chapter 2, Chaptevewiews the software artifacts produced by the
process. Subsequettiapters are genized around the steps of this process and its artifacts.
» Chapters 4 through 6 eer requirements analysis.
» Chapter 7 is deoted to requirements testing, using formalized inspection techniques.
 Chapters 8 through 10 eer the requirements modeling process, resulting in a formal software spec-
ification.
» Chapter 11 presents techniques to test the specification, prior to its refinement into a program design.

» Chapter 12 discusses rapid sadte prototyping, as a means to wey requirements to the end user
in terms of a partially operational program.

» Chapters 13 through 17 w& software design, from general design principles through formal design
specification.

» Chapter 18 ceers design testing, by inspection and partiacetion techniques.

» Chapter 19 ceers program implementation; sincerdevel programming is the topic of prerequisite
courses to software engineering, only a single chaptev@edeto implementation.

 Chapters 20 through 22 arevdied to program debugging, testing, and verification.

» Chapter 23 ceers post-deelopment software deployment, during which the software is installed,
used, maintained, and upgraded.

» Chapters 24 through 26 w& the perasie phases of delopment deoted to project management,
configuration control, and documentation.

» Chapter 27 is anwerview of software engineering tools.
» Chapter 28 is an introduction to the topics of software ethics and la
» The chapters conclude with number 29, whichec®the future of software engineering.

Organizationally the book follows what can be considered a "traditional" softwrocess. This mak
sense for a comprehewsitreatment of the subject matteince a traditional process generally has more
steps and more surviving artifacts than ynaon-traditional processes. Much of the baokiaterial can

be used in a process-independent marnedthanging the order in which material is presented, and omit-
ting coverage of material that is not germane to a particular style of process.

iv Preface

Reader Background

The reader of this book is assumed twehtaining and/or ®perience at the introductoryvig of Com-

puter Science.Specifically the reader should understand basic concepts of programming, including the
design and implementation of data structures. The reader should also understand basic concepts of dis-
crete mathematics, including predicate logic with quantifiers.

Using the Book in Courses

The primary audience for the book is undergraduate and graduate studentsareseftgineeringThe
book may be of interest to other readers who desire an introduction to the practical use of formal methods
in software engineering.

The author uses this book in a two-quarter ugideluate sequence, veoing twenty weeks in totalThe

first quarter ceers Chapters 1 through 10 in full, and partiallwes Chapters 11 and 1Zhe second
guarter cgers chapters 11 through 22 in full, and partially@s Chapters 23 and 248uring both quar

ters, selected topics from Chapters 25 through 30 are introduced.

The book is also used in a two-quarter graduate sequence where it is supplemented with readings from
current software engineering literature. In addition, the graduate cowsk®iprojects that treat formal
specification, testing, and verification in greater depth than in the undergraduate sequence.

Since most colleges and wuadisities use the semester rather than quarter systearage for a sixteen-
week semester can be adjusted in a numberagwOnesuggestion is to e@r Chapters 1 through 10
and 13 through 22 in depth, plus selected topics from other chapters

Online Supplemental Material

The book is supplemented by a collection of online materials/ailable at
http://www.csc.calpolgdu/~gfisher/se-book. Albf the examples presented in the text aneilable
online. Alsoawailable are supplemental lecture and course project mateEstsutable tools and docu-
mentation are \ailable for the formal specification language introduced in Chapters 8 ar@thr
experimental tools are alswailable for suitably bree and tolerant users. See the site for further infor
mation on currently\ailable tools.

Acknowledgments

The author thanks first and foremost the yngindents who hae endured ten years of draft versions of
this text, in the form of lecture notes and other course matefihksr patience and construgi aiticism
have improved the material immeasurablyost recentlya nrumber of graduate students at Cal Poly Uni-
versity have keen particularly helpful in solidifying the concepts presented in the b®bky include
Michael Porcelli, Rick Dotylra Weiny, Larry Bolef, and Mal SikandFaculty colleagues who ke
taught me much about software engineering include Peter Freeman, @trll&n Stearns, and Clark
Turner Finally, | thank my faithful spouse who has endured ynféis and frustrations during the writing
of this book, asking only occasionally when it would be done. Thanks Lori.

Chapter 1

Introduction

Software engineering is the disciplined creation of safew Thediscipline is based on general principles

of scientific and engineering problem solving, applied to the specific task of softwal@pdeent. Prob-

lem solving principles employed by the software engineer include defining a problem clearly before start-
ing its solution, and using strategies to manage the complexitygef paoblems. General engineering
principles include the use of formal modeling to specify a product preciselyhe use of rigorous test-

ing to verify that a product meets its specification.

The principle of defining a problem clearly is fundamental fogmoblem solving actiity. For software
engineering, the "problem" to be solved is based on the needs that pepfertsftware. Hencethe
task of problem definition for the sofne engineer entails analyzing the requirements that peogde ha
for a software product. Once the requirements are analyzed and understgomhribtitute the definition

of the problem to be solved, that is, the definition of the swéiwo be bilt. Several early chapters of this
book are deoted to the analysis of software requirements and their precise specification.

Like aher engineered artifacts, software systems can be large and xor@pientisteand engineers ka
learned to emplp various strategies to cope with problem size and codtpleAn important general
stratgyy is that of "divide-and-conquer", which entails breaking down geland complicated problem
into smaller pieces, so that each piece can be more clearly understood add Salftvare engineers
emplogy such strategies in the design of a software product, to define gadizer the oerall product
architecture. Principlesf software design are discussed in chapters of the book following those on
requirements analysis.

Engineers of all kinds build models to help them understand a problem to &é. sAlmmodel is a simpli-

fied version of a compkeengineered artdct. Themodel allows the engineer to focus on basic properties
of the artifict before all of the details of the finished product are completed. Modeling techniques in soft-
ware engineering ha evolved over sevaal decades, and the use of modeling is becoming increasingly
widespread in the delopment of compbe software. Thebook discusses sofawe modeling in the
requirements specification phase of softwareldpment, as well as in the architectural design phase.

Thorough testing is essential foryawell-engineered product. The general goal of testing is to ensure
that a product meets its specificatiofor a ftware product, testing can be conducted by thorough
inspection of the product components, in much the same sense ythabdnct is inspectedSoftware
engineers also utilize testing techniques designed specifically foraseftWwhesdéechniques ivolve the
development of thorough testing plans that systematicalbyaise each andvery software function to
ensure there are no product defecBoftware testing is discussed thoroughly individual chapters
devoted to the different aspects of testing.

2 Chapter 1 Introduction

While software engineers emplmary of the same general techniques used by other engineers, there are
some important differences between saftevengineering compared to other branches of engineering.
One of the most significant differences is the nature of the product &#tivare is "soft". It is not bilt

with the "hard" physical materials used for most other engineeregctstifSoftare does not "wear out"

in the same physical way that other products do. These characteristics of software can lead to a number
of potential benefits, including irpensive mass production and high product reliabilitfhe book dis-

cusses ho these benefits can be realized when software is well engineered and thoroughly tested.

Another difference between sofive engineering and its fraternal disciplines is its redgtiyoung age.

The origin of software engineering can be traced to the late 1960s, when the first international conference
was held on the subject [Naur 68Fince that time, there ¥ keen maw advances in software engineer

ing practices, and there are likely to be snaew advances before the discipline fully matures.

Certain characteristics stand out in young disciplirfes.one thing, young disciplines are generally less
formal than thg will eventually become. The early years of a discipline caolie a bt of trial and

error, until eventually a set of well-defined principlesatves. Softvare engineering is beyond its earliest
trial-and-error stages, but software engineering practices areasiiliss formal than most other types of
engineering. Aundamental tenet of this book is that formal methods of software engineering need to be
more widely practicedTo date, there are vestudies that alidate or inaidate the use of formal methods

in software engineeringln providing significant ceerage of formal methods, this book seeks to help
make the case for their utility.

Another characteristic of young disciplines is breadth of scope, such that a young discipline encompasses
what may golve into separate sub-disciplines in its future. What is broadly called &eftiangineering

today may in future branch into separate disciplines of software architecture, formal engineering, and
software construction.Software architects will interact with human clients in the dees design of

software products, in a way similar tovaduilding architects interact with their clientSoftware engi-

neers, in a more namosense than defined todawill focus on the formal mathematical models of the
software system as designed by the archite@sftware engineers will play a role analogous to that
played by cril engineers in constructing alibding. Software construction specialists will then build the

final software product, as designed and specified by the architects and eng®efenare construction,

like kuilding construction, will be considered more a craft than an engineering science.

Whatever the future may hold, softave engineering today e&rs the range of activities that includatiy-

ering user requirements, specifying a product to be built, designing the product, building it, testing it, and
deplgying it. This book cwers all of these adtities. Italso coers supporting activities of project man-
agement, configuration control, documentation, and reuse.

1.1. The Different Types of Software

Software is ubiquitous in todayworld. Itis applied to tasks as varied as flying spacecraft to balancing a
checkbook. Theerm application domairrefers to the specific area in which sddte is applied.For
example, spacecraft software is in the domain of aerospace applications; checkboaledefanfinancial
application.

The fact that softare applications are virtually limitless is a major challenge for the software endineer
means that software engineers must often work in application domains whehaubkttle or no eperi-
ence. Inso doing, the must rely on the xpertise of others to ensure that a software product is properly
specified and Wilt. Further the application domain can significantly affect the process usedémpa
particular type of softare. Softvare engineers must therefore be skilled in communicating with those
who understand the application domain of a software product.

1.1 TheDifferent Types of Software 3

1.1.1. General Categories of Software

While there is no limit to the types of software application, there are some general applicagonesate
that affect the structure of a software product ang tds engineered. Threéroad application cate-
gories are the following:

 end-user software
* system software
» embedded software

These categories are based on who the ultimate user of tharsoitwWVith end-user software, the users

are human beings who apply the software to perform useftd. WwAord processors and web browsers are
examples of end-user sofare. Froman engineering standpoint, eykaspect of end-user software is its
human-computer inteate (HCI). The HCI provides the services thatvaltbe human user to communi-

cate with the softare. HCldevelopment is a very substantial part of the process of engineering end-user
software. Inparticular the requirements for end-user software aresihemfluenced by the HCIL.The

software process followed in this book employsuser-centeredechnique for requirements analysis,
whereby the central means of presenting the requirements is from the standpoint of the HCI. The design
phase of the software process is also heavily influenced by HCI structure.

System software is not used directly by end-usersrdther by other softave. Ina web bravser for
example, system software performs tasks such as underlyingnket@mmunication and remote data
access. Thend user isware of the work performed by the system softwarg, Has little or no direct
communication with it.Given this, system software generally has little or no HCI. Instead, system soft-
ware has what is called application ppgrammer interfac€APl). Asthis name suggests, system soft-
ware can be considered tovgaluman users, but of a tBfent sort than end-product users. The human
users of system software are the application programmers who use the systeare doftwrite their
applications. E&n though most programmers are human, there is a fundamental difference between HCI
versus APIl. The HCI is aexternal human intetfice, whereas the API is amternal program interdice.
From an engineering standpoint, the lack of a HCI affects the process useeddp dgstem softare. In
particular details of usecentered requirements analysis are not applicable to systenasofthherare,
however, important commonalities in the design process for end-user and systemrsofiviheseom-
monalities are discussed in later chapters of the book.

Embedded software is used within haadlevdevices that operate with no direct human conEgamples

of embedded software are the controller for an automobile engine or the program that controls some fully
automated manufacturing processs with system software, there is little or no HCI to embedded soft-
ware. Thedirect user of embedded soéve is not a human, but rather a hardwakecde Froman engi-

neering standpoint, the process of embedded softwaebgment has someely dfferences from that for
end-user or system sofame. Acommon requirement for embedded softwaneas-time operation. This

means that the software must respond to extensmit®in a fixed amount of timeEnd-user softare
generally does not ka real-time requirementsfFor example, a web browser that does not respond in a
timely manner may anyadts userhoweve it can still perform its task properlyWwhen an embedded real-

time program does not respond in time, it has fundamentalgdfto do its job Embedded software also

has requirements based on the hardware devices with which in must communicate. Analysis of these
requirements and implementation of the safievthat meets them often requires specialized technical
knowledge. Despitessome unique characteristics of embedded so#wthere are commonalities in its
development process compared to that for end-user and system software, as will be discussed in later
chapters.

4 Chapter 1 Introduction

1.1.2. Categories of Software Clientele

There is another major categorization of software that is independent of its application domain. This cate-
gorization is based on the clientele who purchase a software prdetoch a clientele perspeedi the
two general types of software ané-the-shelfzersuscustom

Off-the-shelf software is also referred glwink-wrap It is huilt by software deelopers who sell their
product on the open mak Of-the-shelf software can ti@ a woad market, such as awl processor or
web-authoring tool. It can also beilb for more specialized applications, but for which there is still a
large enough market to be profitably solfoftware for medical or lgd applications are examples of
more specialized off-the-shelf products.

In contrast to dfthe-shelf, custom software is built to satisfy the needs of a specific custppieally

an oganization of some kindCustom software is also referred tob@spoke When an aganization has
needs that cannot be met in whole or in part by &thefshelf product, it orders a custom software prod-
uct.

An important distinction between off-the-shelf versus custom software is in the area of ownership and
control. Of-the-shelf softvare is typically licensed to its users, under specific terms of use. Véeme

ers often retain control and ownership of program source code and otrestsudif software delop-

ment. Wth "open-source” products, the source codevalable to customers,ut it is still typically
licensed, and the delopers retain some forms of control.

With custom software, control and ownership are most typically retained by the custtraeustomer
contracts with a deloper to deler a product. Oncealelivered, the customemms the product whollyA
variant of custom software is that\d®opedin-houseby an oganization. Inthis case, the genization
does not contract for software to be built, but rathgeldps using its own internal sfafln this case, the
customer and deloper are one in the sameganization.

From an engineering perspegtithe major difference between off-the-shelf versus custom software is in

the requirements proces®Vith custom softare, the requirements arevel®ped to meet the needs of

specific customers, and the requirements analysis process engages those specific customers. By its nature,
off-the-shelf software is deloped for a broader customer communiffhis means that requirements
analysis for off-the-shelf software is based on the neegsspectivecustomers. @fthe-shelf softvare

developers often hae a narketing department, whose job it is to identify a prospeatistomer base, and

develop requirements to meet the needs of those perspenstomers. Duringhe requirements analysis
process, members of the marketingfdafve in dfect as representags of an &tual customer base.

The primary focus of this book is on end-user safey deeloped as either a custom orf-ttie-shelf
product. End-usesoftware is a broad and important agiey, and key aspects of its deelopment process

are applicable to system and embedded software as well. Where appropriate, distinctions withbe dra
between software categoriesitfor the most part the emphasis is on end-user products. The book does
not cover specific technical details of system and embedded software, such as communication with spe-
cialized system devices or real-timeeution.

1.2. The People Involved with Software

A variety of people are wolved in the deelopment and use of a software produthese people are
often referred to astakeholders As defined here, the term "stakeholder" means anyone who has some
interest, large or small, in a sofive product.Staleholders can be broadly categorized into the vioiig
groups:

1.2 ThePeople Imolved with Software 5

* end users -- people who will use the software or people who represent those who will use it
* customers -- people who purchase the software, whicly timay or may not use themselves

» domain experts -- people who fully understand the application domain in which the atw
will run

 analysts -- members of the software d#opment stadfwho specialize in requirements analysis
and specification

* implementors -- members of the delopment stefwho specialize in software design and imple-
mentation

* testers -- members of the delopment stadfand user community who test the software to ensure
that it meets the requirements specification

* managers -- those who manage thev@mpment process, as well as those who manage end users
when the software is installed in argarization

e visionaries -- those who hae the "big picture" for what the softwe is intended to do andvadt
will be dereloped

» maintainers and operators -- those who conduct postagopment maintenance and operations,
as necessary

* other interested parties -- anyone else interested in the software product, such as those with a
financial irvestment, or those with societal ogéeinterest

Theend usegroup is listed first as an indication of itgemall importance.A key o a siccessful softare

product is acceptance by its end usekskey 0 user acceptance, in turn, is to consider the users to be

active payers in the deslopment processFor custom software, this meansvalving as mawg of the

actual users as possible in the requirements analysistiasti In some cases, end users can also be
involved during the implementation phases of the project, to ensure that the product isulheiagheir
satishction. for an off-the-shelf product, the team thateeps the requirements must adequately repre-

sent the needs of potential end users as the requirements are defined, and as necessary during implementa-
tion.

The customergroup are those who acquire the software on behalf of the end users, but may not them-
sehes be end users. The customer group is moetylio exist for a custom software product, since cus-
tomers and end users are typically the same for an off-the-shelf prdeélwctustom software in an
organization, the customers can include supervisory or admimaraaff who hae husiness-related
software requirements for a software produEor example, a customer could require that a safev
product generally impres worker productiity, independent of the specific end-user requirements for the
product.

The group ofdomain &pertsis always important to a successful sofing project, particularly so when

the analysts and implementors are not familiar with the domain. Consider for example the application
domain of medical software, where doctors are the domgieres. Sincesoftware analysts and imple-
mentors are not typically medical experts, thelwement of doctors in the project is critical in order for

the requirements to be properly specified and the implementation to be properly tested.

The analystandimplementoigroups do the actual software engineering. Their domaixrpErése is the
software. Theanalysts are skilled at communicating with end users and defining requireriiéets.
implementors are skilled at sotwe design and programming. In some projects, typically small ones, the
analysts and implementors may be the same people. Thereveeeshdistinct skills required to be a
good analyst or implementorin general, analysts need good "people skills" soy tben interact

6 Chapter 1 Introduction

effectively with end userslmplementors need good technical programming skills, soddée design and
build a correct and efficient piece of soéve. Whilethere are people who are skilled in both of these
areas, not\veryone is able or desirous to excel in both analysis and implementation.

The group of softare testersensure that an implemented software produatke: Whatit means for

software to work is that it meets its requirements specification. In some casearsdfegting is con-

ducted by the delopment stdf that is the analysts and implementors. In other cases, testing is con-
ducted by a third-party team qtiality assuance(QA) personnel.A final round of product testing must

always be conducted by end users, or those acting as end users, to ensure that the product meets all user
needs.

Any project of significant size needs goownagers While there are particular skills required for soft-
ware management, much of what reaka good manager is product-independent. Managers need to be
able to lead teams of di@opers and keep a project on track in terms of time and budget.

Successful software products are often based on the ideas of onevoprajéet visionaries These are
the people who understand the grand scheme of thifigg; can inspire and motate all of the stad-

holders to produce a good product. While it is certainly possible welogiegood softwre without
visionary guidance, it is often the case the software is the better for such guidance.

Once a softare product is delered to its users, it typically requires maintenance, and in some cases
operations stéto keep it running properlyThe maintenancestaf is in chaige of repairing post-defery
problems and upgrading the software to meet changing user ri&gcts maintenance may be carried out
by members of the original ddopment team, or by sfdfired specifically for the post-deéry lifetime

of the softvare. For highly comple or configurable software, systeoperatorsmay be needed to admin-
ister and configure a software installation.

A final group of sta&holders arether interested partiesho do not participate directly the soéve
development or use. People whoveaome financial imestment in the softare are included in this
group. for custom software, financing is generally the province afdgét department that mayvearo
involvement in the project other than paying the bill¥f-the-shelf software can be financed lgnture
capitalists who are neither end users naeldgers, but who are clearly stakeholders due to their mone-
tary investment.

Other interested parties can also be those with a societgiebimterest in the softare. Whera goup of
people viev the use or misuse of a soéve product as beneficial or detrimental to society at largg, the
can become stakolders. Wherthe use or misuse of sofime has potential ¢ ramifications, those
affected can become stlholders. Ahigh-profile example is the case of the music industho have
viewed as theft the use of free music down-loading softwwhen it violates the music copyrightened

by the industry.

Depending on the scale of a software project, there maydokw among the participating groupBor
example, it is not uncommon for domairperts also to be end users. As mentioned/glibe analyst,
implementoy and tester groups may V& ovelapping membershipGiven such oerlaps, the groups can
be consideretblesthat are assumed by the sthklders. Adifferent points, a single person can assume
one or more rolesln the upcoming chapters of the book, these roles will be expanded upon farther
context of the work that is performed during softwaregiigment and use.

Different stakeholders ta dfferent and sometimes competing interestieally, there should be cooper
ation and teamark among all interested parties, to see that a software project is succhisg@ulorthy
areas of cooperation among stakeholders include the following:

1.2 ThePeople Imolved with Software 7

* end users, domain experts, and analysts function as a teawelopdie software requirements;

* analysts and implementors communicate as necessary to ensure that the implementation meets the
requirements, and to deal withyaquirements changes that arise during implementation;

» managers and those who yhreanage function as team, as iry avell-run engineering project.

Given such cooperation among the stakeholders, a softyroject is much more likely to be successful
than without it.

1.3. The Software Life Cycle

Like any ather engineered product, softwanemlees through a number of phases as it ieldped and
put to use. Theses phases are often called the software plifelagtle The major phases of the soft-
ware life cycle hae dready been identified in the preceding discussion of softvypes and people.
Here is a summary of the major phases:

» formulate an idea for a software product

» gather and specify software requirements

* design and implement the software

« test the software implementation against the requirements
* deliver, use, and maintain the software

These are only the most basic phases of softwleelopment, with may important details left outln
order for a software product to be successfully engineered, these generalizgdidifphases must be
used as the basis for a more formaftwae development pocess The process defines the specific\acti
ties of each deelopment phase, and the order in which the activities are carried out.

Chapter 2 of the book provides thorouglvetage of software processes, including a discussion of the
different approaches to process definition. While the approaches can differ substantially in the details, at
the heart of ansuccessful software process are the basic steps of problem solving outlined afinhe be
ning of this chapterThese steps, and the corresponding phase of the software life cycle are shawn in T
ble 1.

Among the various approaches to the safwde&elopment process, aelg dfference is the sequence in

which these core problem-solving steps are a carried out.ség@entialsoftware process, each step is

carried out to completion before the next step gube Thatis, a complete set of requirements are first
developed, then the design and implementation are completed, then the final product is tested.

Problem-Solving Phase Software Development Phase

define the problem gaher and specify software requirements
solve the problem design and implement the software
verify the solution test the software implementation against the requirements

Table 1. Software deelopment as problem solving.

8 Chapter 1 Introduction

In contrast to a fully sequential approach istarative style of deelopment. Inthis process approach, a
problem-solving step need only be partially completed before the nexgus.b&heprocess starts by

defining a small part of the product requiremerithen that part alone is implemented and testdue

process then iterates back to the first phase, where the next part of the requirements are specified, and so
on.

The sequential and itere@ gpproaches hee alvantages and disaantages that depend on a number of
factors, including project size, application domain, and the skills of theogenent team.In practice,
software is most often built with a combination of sequential and Neravdopment, not purely one

form or another These process-related issues will be discussed fully in Chapfds@ discussed in that
chapter are additional activities of the software process not sequentially related to the core problem-solv-
ing phases. Important among these are the activities of project management, configuration control, and
documentation.

1.4. Software Artifacts

A softwareartifact is something produced during the saites d@elopment process. The ultimate goal of
the process is to produce an operational program, that satisfies userFre@dsan end usey’perspec-
tive, this working program is the artifact of primary intereSustomers also need documentation actg

that tell them hw to use the softare. Thisdocumentation can include users’ manuals, tutorials, and
online program help.

From the deelopers’ perspecte, there are manmore software articts than just the working program
and its user documentation. During the stages wéldement, other important artifacts are produced.
Table 2 summarizes the software artifacts that can be produced during each stage of #re Bfetw
cycle.

Stage of the Software Life Cycle Associated Artifacts

formulate an idea storyboards of software behavior,
rough drafts of the requirements

gather and specify requirements requirements document,
abstract model specification

design and implement the software architectural design model,
program code

test the software test plans,
test results

deliver, use, and maintain the software user documentation,
technical documentation,
defect tracking logs

Table 2: Artifacts produced at each stage of the software life cycle.

1.4 Softvare Artifacts 9

When formulating the initial ideas for a productyelepers can usstoryboardsto work out the way a
program will appear to its end userStoryboarding is a practice borrowed from the movie industry
where a director sketches out the scenes ofvaentiefore it is filmed. In a similaray, a ©ftware ana-

lyst can sketch out the user interface of a program before it is implemented. These storyboards are cap-
tured as artifacts so thean be reviewed by users and used to refine the requirements.

During the requirements specification stage ofeld@ment, a detailed requirements document is pro-
duced. Thigs based on the storyboards, plus additional analysis of user needs. From these requirements,
the more formal engineering starts, with the definition of an abstract program model. This model speci-
fies the behavior of the program, but without lowelg@orogramming details.

Artifacts of the design and implementation stage include a concrete design afesafitehitecture and

the program code itselfThe architectural design model is a refinement of the abstract requirements
model. Softvare engineers may apply well-known design patterns to refine the architectural dodel.
design pattern is a pre-packaged piece of design based on software design experience thatawuasdeen g
over the years by software engineers. The most concrete software artifact is the program code, produced
during the implementation stage ofvdl®pment.

Testing artifacts are defined to plan the software testing to be condW@text planned, tests are per
formed by the testing staff, with the results recordéany test failures occuthe test record artifacts are
reviewed by the delopment team to perform the necessary corrections.

Several important artificts are produced before and during the postlalement stage of the software life
cycle. Theuser-leeel documentation is produced prior to dely. Devdoper-level documentation is pro-
vided for the stdfwho will maintain and enhance the defed software product. If defects are detected
during software use, thieare recorded in some form of defect tracking log. This artifact is used by the
maintenance stifo correct the defect as necessawhen defects are corrected omngroduct features

are added, the documentation artifacts must be updated accordingly.

Other important software artifacts are produced by project management activities that are conducted
throughout the stages of the software lyele. Management-relatettifacts include project scheduling
plans, resource allocation plans, and a records of project meetings.

The artifacts introduced here are samples of the kinds of work products that can be produced mre softw
project. Thespecific details of software adifts depend on the details of the software process that pro-
duces them.For example, a highly iterate ftware process may produce a less formal requirements
specification, relying instead on the program itself to embody the requirements. Chapters 2 and 3 of the
book discuss details of software process and the artifacts produced during the process.

1.5. Software Languages, Notations, and Methodologies

Software is not built with the same hard materials that are used for other kinds of engineered products.
One might consider the computer hardware on which aoéwns to be its material, but the engineering

of computer hardware is a separate task from engineeringaseft'omputeengineering and softae
engineering are in fact separate disciplines.

The "materials" used to build software are the languages and notations in whichres@ttifacts are
expressed. & example, the English language is a "material” used to express software requirefnents.
graphical program diagram can be a material for software design. The distinction between the terms "lan-
guage" and "notation” is not critically important, but for clarityythee distinguished in this bookThe

term "language" is used to refer to a primariltaal form of communication; the term "notation” is used

10 Chapter 1 Introduction

to refer to a primarily graphical form.

Table 3 summarizes the kinds of languages and notations that can be used for differant sofiacts.
Some of the language names appearing in the table may not be familiar to the Teadanguages are
defined briefly here in the introduction, and more thoroughly gsatkeeused in the book.

Since softvare requirements must be understood by end usess,ateemost typically expressed in
English and pictures. Requirements documents can be produced in papeWWbem.requirements are
extensive, viewing them in online format can be a@nient. A widely used form for electronic docu-
ments is HTML (Hypetext Mark-up Language) [Wld Wide Web Consortiur@9]. Thisis the language
displayed by a normal web weer The requirements examples in the online supplement for this book
are in HTML.

A formal software specification can bepeessed in a language designed specifically for this purpose,
such as Z (pronounced "Zed") [8@y R] or SeclL [Fisher 06]. SpeclL is the language used in this
book to express specificationSoftware specifications can also be expressed in graphical form, using a
notation such as UML (Unified Modeling Language) [Rumbaugh 98]. UML is also used in this book.

Software design can bejgressed in a language or notation that focuses on the major structural elements
of a program, leaving out thewdevel details of implementationFor the Jaa programming language,
Javadoc is such a notatior-or expressing designs graphicallyML can be used. Since UML is a gen-
eral-purpose notation, it can be used for both specification and design. The design examples in this book
and the online supplement are expressedviadda and UML.

Software implementations are expressed in programming languages, from which thezgsy analy to
choose. Implementaticgxamples in this book usevia

The languages and notations listed in Table 3 are those used predominately in this book. These particular
languages and notations are by no means the only forxpodssion for software aréitts. Whileit is
necessary to choose specific concrete languages in which to communicate, most of the underlying soft-
ware engineering concepts demguage ndependent For example, the concepts of underlying saitev
requirements are almost entirely independent of the particular natural language in which the requirements
are epressed. Whetheequirements are written in English, French, or some other natural language, the

Software Artifact Language or Notation

requirements Englishnd pictures, in electronic or paper form

specification a formal specification language, such as Z or SpecL;
a modeling notation, such as UML

design a dructured software documentation format, such sadde;
a modeling notation, such as UML

implementation a programming language, such asalar C++;
a gaphical program diagramming notation

Table 3: Languages and notations used for software artifacts.

1.5 Softvare Languages, Notations, and Methodologie$1

requirements for a particular sotive product must express the same product functiondtyether a
program is written in d&, C++, or some other language, it must be&hia fundamentally the same way.

There are of course highly practical reasons for choosing one langteagaather It would be silly for
example to write software requirements in French for a user community who understands only English.
At the implementation iesl, there are often practical reasons for choosing one programming language
over another The important point to emphasize here is that the fundamental concepts presented in this
book are independent of the particular language or notation in whighathexpressed. lis highly

likely that most, if not all of the non-natural languages used in this book will become outdated within a
decade. Theeaderand alas the authpare therefore well advised to focus on concepts, not the particular
details of language. In a field as rapidly changing as ao&wngineering, its practitioners must be pre-
pared to learn and use different languages during the course of their careers.

Software languages and notations are used in the xtootea software engineeringethodology A
methodology is a particular approach tedeping software. Generallya methodology defines a process

of development and the structure of aaiits that the process produces. There are a wide variety of soft-
ware methodologies that & been devisedwer the years. Some arery broad and general, encompass-
ing the entire software lifeycle. TheUnified Software Process is a well-kwoexample of a broad soft-
ware methodology [Jacobson 99]. Other methodologies focus on a specific stage of ffobelite a par
ticular software artdct. For example, the methodology of design patterns focuses in particular on archi-
tectural software design [Gamma 95].

Overall, the book follows a specific methodolpdgfined precisely in terms of the software process pre-
sented in Chapter 2ZT'he chapters that fole cover the parts of the methodology that apply to théedif

ent phases of the software lifgcte. For requirements specification, a usentered approach is
employed, where the requirements arganized around scenarios that depict the way the user interacts
with the softvare. Amodel-based specification methodology is used to formalize the requirerfiets.
specification model defines precisely the software data and functions presented in-tleatesed sce-

narios. Thedesign and implementation stage ov@epment emplyg object-oriented, function-oriented,

and pattern-based methodologies. The object-oriented methodotyagyzes the design around soére

data objects; the function-oriented methodology focuses on the functions that manipulate the data.
Design patterns are emgkxd to talke alvantage of well-established forms of software design that ha
been recognized and refined by the community of experienced software designers. The testing phase of
development is presented incrementallyith a separate chaptervied to the testing of each of the
major software artifacts.

1.6. Pervasive Principles

As noted at the beginning of the chaptke practice of software engineeringalves some general prin-

ciples of problem solving. These are principles employed by scientists and engineers in a variety of disci-
plines, adapted in discipline-specifiays. Suctprinciples should be considered general guidelines, not
iron-clad rules. Beingweare of these principles helps one understand problem solving in kigh-le
terms, and helps ganize ones thinking about solutions to compl@roblems.

1.6.1. Divide and Conquer

Divide and conqueis a fundamental problem solving stiggte Smply put, it means breaking up adar
problem into smallermore manageable pieces. In software engineering, Wdedind conquer principle
is applied at all keels of development.

12 Chapter 1 Introduction

The software deslopment process is fundamentally based aiddiand conquerThe overall process is
subdvided into a series of process steps, with each step focusing on a particular aspegopmheat.
The artifacts produced by each step form pieces ofv&ralbsoftware product.

Within each declopment step, gdide and conquer is applied in specifiayg. Softvare requirements are
divided into individual cases of use, where each case focuses on a particular aspect of software functional-
ity. The design and implementation of the software is divided into modular units, each one of which has a
functionally cohesie purpose.

From a people perspeat| divide and conquer applies towwaevdopment teams are composed and
organized. Indvidual team members are assigned appropriately-sized pieceslof Work assignments
are based on team members’ areas of expertise, so menargisg\skills are applied mostfettively to
conquer individualized delopment tasks.

1.6.2. Hierarchy

Hierarchical organizationis another basic principle of science and engineeridgrbert Simon, the
famous economist and computer scientist, argues that higrarehratural and fundamental property of
comple systems [Simon 69].

For problem solving, hierarchical ganization can be used in conjunction wittvide and conquerA

large problem is not simply divided into a flat collection of pafather the problem is divided into
parts, sub-parts, sub-sub-parts, and so\Wfthin each part/sub-part decomposition, the sub-parts are a
logically related collection of pieces,ganized to sole a marticular aspect of the problem.

Pat/subpart decomposition is pasie in software engineeringFor example, software requirements are
organized into major categories of functionalityhese are in turn dided into functional sub-cajeries.

At the bottom of the hierarghare specific use cases, each one of which focuses on a particular aspect of
user-level functionality.

Hierarcly is used atensiely in program design and implementation. In thealJanguage, forxample,
programs are hierarchically decomposed into packages, classes, methods, anieatlatals are
organized into ivocation hierarchies, i.e., nomethods call other methods. Data arganized in pre-
dominantly two forms of hierarch -- aggregation and inheritanceAggregaion is defined by the hierar

chy of class data membershipnheritance is defined by the class/sub-classes relationships, well-known in
object-oriented program deopment.

Hierarcty is widely used in human genization. Thé'org chart" is a familiar way to depict the hierarchi-
cal structure of people within anganization, including a software dgdopment team.High-level project
managers are near the top of the hiengraifth individual developers nearer the bottom.

The use of hierarghoccurs in maw other aspects of software engineering including user interfaces, mod-
eling, testing, and documentation. These will be expanded upon in upcoming chapters.

1.6.3. Multiple Views

When a problem has been divided and hierarchicafignized, the pieces can be viewed fronfediént
perspecties. Assumingmultiple perspecties helps the viewer see things that may go unnoticed when
only a single perspegt is taken.

The project stakeholders described in Section 1.2 cea \Wwaely varying vievpoints on a desloping
software product. Considering their varying perspastis citically important to a project’ auccess. @

1.6 Perasve Rinciples 13

do so, the software process musblie regular communication among the stakeholders, so théardliit
viewpoints can be shared and reconciled.

Multiple views can also be based on different representations of softwaaetartidata-orientedand
function-orientedrepresentations provide evdternatve views of software components. In the data-ori-
ented representation, the software iswad primarily as collection of data objects, with functions belong-
ing to those objectsln a function-oriented vie, the software is viewed primarily as a collection of func-
tions, with data passed among the functions. Neithev \8¢he corectway to look at softvare. Both
views can be useful for understanding a comptétware system, throughout its\éopment.

Another aspect of multiple weéng is the use of tavor nore people on the same tagkor highly techni-

cal tasks, paired ark teams may help reduce errosscommon example of this is the@lapping duties
performed by the pilot and co-pilot of a large aircraft. While flight proceduressayevell known to the
pilot, having the co-pilot explicitly check the pilst'work is a well-accepted means teo oversights.

In software deelopment, the concept qfair programminghas been reported to bdesftive in design,
implementation, and testing [Williams 00 this style of deelopment, tvo programmers work side-by-
side, on the same compuyttr devdop a single component of softme. Undethe proper circumstances,
their paired work on the same task can produce better results than a single programmer working alone.

There are manother aspects software \#opment where the use of multiple wig can be beneficial.
These will be discussed in upcoming chapters.

1.7. The Role of Formal Methods in Software Engineering

A "formal method" is one based on formal mathematical principles. At the implementation stage of
development, software engineering is an inherently formal @tyi This is because programming lan-
guages are based on formal principl&t all programming languages are defined in terms of fully for
mal mathematics, lngever there is no question that programming is based on principles of formal mathe-
matical logic. The colloquial term "program logic" is often used to describe the behavioral portions of
software. Progranimplementors wrk with Boolean logic and discrete mathematics all the tikhence,

formal methods at thewel of programming are nothing neto the software engineer.

As commonly used in the field of software engineering, the term "formal methods" means more-than for
malization at just the implementatiorvée In particular it means applying formal mathematical reason-

ing to the requirements, specification, design, and testing phases of softwgoprdent. Itis at these

levels that formal methods are far less widely used in the practice of software engineering.

For too mary software engineers, there is an unfortunate mind-set that "formal" isysyoois with "not
practical". Amajor goal of this book to demonstrate that this is not the daseal mathematical nota-
tions can be of significant practical value in a number of areas, including the following:

« thorough understanding of software requirements
» precise definition of a software design
 automated generation of program test plans

When analyzing requirements, formal methods can be described as a means to "keep the analyst honest".
It is often surprising to diseer just hav vaguely understood some sofing requirement is until one tries

to formalize the requirement-ormalization can necal requirements flaws in the form ofepsights or
inconsistencies that could be very difficult to recognize otherwise. While such flaws can be \matisco

when the requirements are implementedy tten be disceered too late, when their correction is more

14 Chapter 1 Introduction

costly in terms of program redesign than had & tieen recognized earlier in the requiremeforse
yet, critical flaws in a requirements specification can go entirely unéiszbby a program design and
implementation team. In some cases, such flaws can contribute to catastrophic saftware &s in the
case of the Ariane 5 roek[Lions 96]. With requirements for large and compaftware, the use of fer
mal methods has significant practical benefitseguirements interaction magament[Robinson 03].
This is the task of diseering and managing critical relationships among the components of@ lar
requirements specification.

In the design stage of sofme engineering, a practical technique based on formal methddsigs by

contract™ [Mitchell 01]. With design by contract, the input/output béba of program functions is
defined using formal mathematical logi¢he formal definition of a function is a precisentract by
which users of the function can be sure of its input requirements and output rdsuitey a precise def-
inition of function behavior can be of significant practicalue to the software designevho needs to
understand clearly what functions do in order to design a program that uses those functions.

In the area of testing, the use of formal methods can be quite practical when it comes to the generation of
program testing plans. When program functions are defined using formaldagitestsfor the func-

tions can be automatically generated. Unit tests are usedrmse the functions and to report the test
results, so that grerrors detected during testing can be repaired before the programvsetkli There

are commercially \ailable tools that automatically generate unit tests from formal function definitions,

for example JTest [Parasoft 01]. The use of such tools can dumificant practical benefit, since the
activity of manually generating unit tests can be quite tedious and time-consuming.

Formal methods are not applicable to all softwareaotd. Br example, the user-readable form of soft-

ware requirements must be written in language that end users understand, which is most typically a
human natural language dilEnglish. Een for artifacts that are not fully formalizable ving a formal

mind-set can still be useful, in the sense that care is taken to be as precise as possible when writing docu-
ments in English.

It is important for advocates of formal methods not versell the benefits.Formal methods are no
panacea. These of formal methods cannot guarantee that software widr rfiail. Guaranteesbout
failure cannot be made for yengineering discipline, hweever formal its methodsFor example, modern
civil engineers use highly formal analysis in their worlit the structures tlyedesign do still fail some-
times. Whausing formal methods can do ivgithe enginegmroftware and otherwise, greater confidence
that an engineered artifact will function correctly.

There is no question that using formal methods can be time consuming in the early stagesad softw
development. ltis the contention of formal methods advocates that this is time well spent, and that when
the final product is delered, it will work betterwith less post-release time being spent on defect repair.

As noted earlierthere hae keen fev studies that validate or validate the utility of formal methods in
software engineering.Two notable studies with somewhat conflicting results are presented inggtflee
97] and [Sobel 02]. There are nyaarticles in the literature debating the pros and cons of formal meth-
ods. Thepositve a negdive aupport in these articles is based largely on well-reasorgarnentation,
rather than solid empirical data. More empirical studies need to be conducted.

A recurring point raised in the literature on formal methods is thptateenot widely used in the practice

of software engineering. Authorsveadted varying reasons for this under-utilization, prominent among
them being a lack of adequate training in formal methdis. in the area of training where this book is
intended to madk a ontribution, by explaining the techniques of formal methods thoroughtl/by pro-

viding concrete practical examples of their use. The reader may judge whether the practical benefits of

1.7 TheRole of Formal Methods in Software Engineeringl5

formal methods hae in fact been demonstrated.

1.8. The Issue of Software Quality, or Lack Thereof

At the first NATO Software Engineering conference in 1968, the participants discussed a "crisis" in soft-
ware derelopment [Naur 68]. As peroad by a rumber of conference conttitors, the crisis was due to
software practices being inadequate to cope with the increasing size and complexity afessjtstems.

As a result, software quality wasaipparticularly in terms of software failing to operate correctly.

Nearly thirty-five years after the ATO conference, the &er article in a prominent technology mazjne
was entitled "Why Software Is So Bad" [Mann 02While not proclaiming a software crisis, articles such
as this represent a weheld by mawy about software products. The wads that significant impreements
still need to be made in software engineering practices if the quality of software is tedmpro

There are nearly as madefinitions of "softvare quality” as there are authors who write about it. Here is
a dmple definition that captures what this baokithor beliees ae the tvo key aiteria of a quality soft-
ware product:

* the product works correctly
* the users lik it

What it means for a product to 8wk correctly” is that it functions according to its specification. This in
turn means thatveryone concerned with the product must understand the specific&iorend users,
the understandable version of a specification typically comesoifiotins. Duringproduct deelopment,

user-level requirements present the specification in terms understandable to the entftiesetelivery?,
user-level product documentation describes what the software does, as does actual product behavior.

For the software deslopers, the specification needs to be precise enough to ensure that the implementa-
tion works correctly To meet this need, this textbook advocates thesldpment of a more formaler-

sion of the product specification, with technical details not normally understandable to the eftheser
point of this more formal specification is to ensure that thveloleers understand the product precisely

As the specification is refined, the analysts’ formal understanding is (veyedno the users in language

they can understand, namely the requirements document, user documentation, and actual program beha
ior.

A formal specification isdy o ensuring that the product works correctly from an engineering standpoint.
What it means formally for a program to work correctly is that eachangd eomponent of the program
implementation functions according to the specification of that compoWéttiout a specification that is
precise, complete, and unambiguous, it can Biedifto ensure fully correct operation from an engineer
ing standpoint.

The lack of a sufficiently precise specification is a typical cause for pooraseftwality in terms of the
"works correctly" quality criterion. Consider the following scenarouser has a clear idea of what a
custom software product is supposed to @ibe user consults with a software analyst ang wark out

the details of the product requiremenidie analyst then communicates these requirements to the imple-
mentors, who bild a program. Upon dedery of the program, the customer says yHeait, this isnt

what it’'s supposed to do. What'going on here?"

! For an iterative devdopment process, deliry may come in a number of phases.

16 Chapter 1 Introduction

What is "going on" in the preceding scenario can be common inaseftieelopment. Somehere in

the chain of communication from user to analyst to implemgtiierusers "clear" idea was not properly
communicated. Therare a number of approaches thatenbeen proposed to s@whis problem.One

solution is to ensure that the requirements specification is written in a clear and precise enough form that
no one misunderstands inother solution is to shorten the communication chain between customer and
implementoy so hat thg communicate more directly and more frequenWith either or both of these
solutions, the fact remains that a clearly understood requirements specificatiay itv @dkrectly oper

ating software, and hence to quality sa@fte: Inthe article cited abh@ o bad software, the authors con-
cluded that poor understanding of requirements is a major caufatior of poor-quality software.

The second quality criterion of a user "liking" the software is more difficult to measure than correct opera-
tion. Liking a product can be based on a wide range of subgg@oduct qualities, including the way it
looks and hw easy it is to use.The best way to achie these kind of qualities is by fully wolving the

user in the analysis and testing of product requirements. In #yidhve user has the opportunity teake

uate the product before it is dedied, to ensure that it has the necessary likeable qualiieslopers

should not underestimate the psychological benefit of end-ugadvement. Auser who participates

fully in the requirements process has a sensevetiment and ownership in a product. This sense can
very positively impact the uses perception of product qualityhat is, hav much the user likes it.

For a austom software product, the software analyst showdvie as nary actual end users as possible
throughout the requirements analysis and end-user testing phasedabment. ©r off-the-shelf prod-
ucts, those who delop the requirements must be sure thay thadly understand and represent the ideas
of the ultimate product users. Some prominent sar@wlops hee been the result of a deoper’s "really
cool idea" that resulted in a product that no real userged. Thamoral of such flops is that one can
develop software that works brilliantly well, but that is worthless because no one wants to use it.

This discussion of softare quality has been usegntered. Therare other aspects of software quality
that are invisible to the end uséFhese aspects Y& © do with the engineering process for building the
software, and the internal software aatifs that the end user rarely owveresees. Internahrtifacts
include the formal specification, the program design, and the program implemenQitiality criteria
for these and other internal artifacts are discussed in later chapters of the book, in #ieottmespe-
cific techniques used to build those artifacts.

Chapter 1 References 17

References

[Fisher 06]
Fisher G. A Formal Modeling and Specification Language, Version 4, Department of Computer Sci-
ence Technical Report, California Polytechnic Statevésity, San Luis Obispo (December 2006).

[Gamma 95]
Gamma, E., R. Helm, R. Johnson, and J. Vlissidesign PatternsAddison-Weslg (1995).

[Jacobson 99]
Jacobson, I, G. Booch, and J. Rumbaubghe Unified Deelopment Rycess,Addison-Wesley
(1999).

[Lions 96]
Lions, J. LARIANE 5 Flight 501 Failwe, Report by the Inquiry Board?ais (19 July 1996).

[Mann 02]
Mann, C. C. Wl Software Is So Bad,MIT’s Technology Revied05(4)(July/August 2002).

[Mitchell 01]
Mitchell, R. and J. McKimDesign by Contract by Exampleddison-Weslg (2001).

[Naur 68]
Naur, P, B. Randell, and (Eds.poftwae Engineering: Report of a Conference Sponsored by the
NATO Sience Committe&cientific Afairs Division, NATO (October 1968).

[Parasoft 01]

Paasoft. Using Design by Coract™ to Automate dva'™ Softwae and ComponentéBting,Paa-
soft Corporation (2001).

[Pfleeger 97]
Pfleeger S. L. and L. Hatton. Investigating the Influence of Formal MethodslEEE Computer
30(2) p. 33-43 (February 1997).

[Robinson 03]
Robinson, WN. and S. D. Rwlowski. Requirementinteraction Management ACM Computing
Surveys35(2) p. 375-408 (June 2003).

[Rumbaugh 98]
Rumbaugh, J., I. Jacobson, and G. Boodihe Unified Modeling Langge Refeence Manual,
Addison-Weslg (1998).

[Simon 69]
Simon, H. A.The Sciences of the Artificill T-Press (1969).

[Sobel 02]
Sobel, A. E. K. and M. R. Clarksorizormal Methods Application: An Empirical Tale of Soéve
Development, IEEE Transactions on SoftwarEngineering28(3) p. 308-320 (March 2002).

[Williams 00]
Williams, L., R. R Kessleyand W. Cunningham. "Strengthenirthe Case for Pair Programming"”,
IEEE Softwarel7(4) p. 19-25 (July/August 2000).

18 Chapter 1 Introduction

[World Wide Web Consortium 99]
World Wide Web Consortium"HTML 4.01 Specification"December 1999.

