
Software Engineering
Formal and Practical

Gene Fisher

California Polytechnic State University
San Luis Obispo

September 2009

Brief Table of Contents

Chapter 1 Introduction ...1

Chapter 2 Software Engineering Processes...17

Chapter 3 Software Process Artifacts ..51

Chapter 4 General Requirements Analysis..67

Chapter 5 Functional Requirements ..93

Chapter 6 Non-Functional Requirements..129

Chapter 7 Requirements Testing ..139

Chapter 8 Structural Model Specification ...147

Chapter 9 Behavioral Model Specification..197

Chapter 10 User Interface Specification..283

Chapter 11 Specification Testing and Verification ..299

Chapter 12 Rapid Prototyping ...301

Chapter 13 General Concepts of Software Design..321

Chapter 14 Design Patterns ...345

Chapter 15 Design Derivation and Refinement ...382

Chapter 16 User Interface Design ...406

Chapter 17 Design Specification ...409

Chapter 18 Design Testing ..417

Chapter 19 Program Implementation ..419

Chapter 20 Program Debugging ..430

Chapter 21 Program Testing ..437

Chapter 22 Program Verification ...463

Chapter 23 Installation, Operations, Maintenance, and Evolution ..483

Chapter 24 Project Management ...485

Chapter 25 Configuration Management ..527

Chapter 26 Project and Product Documentation ...543

Chapter 27 Software Engineering Tools ..563

Chapter 28 Software Engineering Ethics and Law..591

Chapter 29 The Future of Software Engineering...607

Preface

This book is a comprehensive study of software engineering, with emphasis on the practical application of
formal methods.While formal methods are an important part of software engineering, they are by no
means the whole picture.Indeed, many aspects of software development involve principles of aesthetics
and human communication that cannot be readily formalized.Since this text provides a comprehensive
treatment of the field, both formal and non-formal aspects are fully covered. Throughoutthe coverage,
the book integrates formal methods into the major phases of software development, to provide a founda-
tion for the development process.

On Formality
From the author’s perspective, the use of formal methods has been significantly neglected in most soft-
ware engineering texts as well as in industrial practice. In general, far too many software engineers view
formal methods as impractical and largely irrelevant to their regular activities. Thisis a rather unusual
view when one compares software engineering to other science and engineering disciplines. In almost all
such disciplines, formal mathematical analysis is a common practice.

One cause for lack of rigor in software engineering is that formal reasoning can be hard.When given the
chance, human nature will steer us away from hard tasks. The civil engineer, for example, might like to
draw some simple pictures and perform some informal analysis when designing a bridge, without devot-
ing endless hours to formal modeling.Fortunately, the competent civil engineer knows that informal
analysis is not sufficient, and that a bridge may well collapse if a careful mathematical specification is not
developed. Thecivil engineer learns this as part of basic training and the practice of civil engineering
demands that formal analysis is an integral part of the job.

Like the civil engineer, the software engineer should learn that careful formal reasoning can be an integral
part of building complex software systems. In current practice, informal analysis and design are fre-
quently considered adequate for software engineering projects.Furthermore, most software engineers are
not trained in formal methods, nor does the practice of software engineering require the same degree of
mathematical rigor as is required in other branches of engineering. This author firmly believes that as
software engineering matures into a genuine engineering discipline, acceptance and use of formal meth-
ods will be an important part of its maturation.

A key distinction between this text and most others is that here formal methods are considered to be an
integral part of software development, rather than an alternate form of development. Again, that formal
methods are an integral part of development by no means implies that all aspects of software development
are fully formalized or formalizable.

On Practicality
Another aspect of software engineering texts that the author has found disappointing is the depth and thor-
oughness of the examples. Asan instructor, I am convinced that presentation of coherent and detailed
examples is critically important to teaching software engineering effectively.

i

ii Preface

The technical chapters of the book present material in the context of a single large example. Theexample
is an office calendaring system. When software engineering concepts are first introduced, small excerpts
of the example are presented to focus on basic principles.As the presentation of concepts evolves, larger
example components are presented and relevant details are focused upon. The online supplemental mate-
rials have the example in full, including a complete requirements document, a formal specification,
design, Java implementation, testing artifacts, and other supporting material.

The motivation for using a single large example is to avoid a problem the author has found in other texts,
where concepts are presented with relatively small, independent, and generic examples. Suchexample
presentation fails to show the big picture of a complete, non-trivial piece of software. Inthis book, the
initial use of small excerpts avoids overwhelming the reader with too much detail at first. As the reader
gains a better understanding of concepts, the complete details of the example can be consulted to under-
stand how the pieces fit together and to appreciate the scope of the completed product.

The chosen example is large enough in size and scope to embody a number of general technical problems
that are encountered in a wide range of software applications, not just in the domain of office products.
Major technical aspects of the example include the following:

• a substantial end-user interface, with a reasonably wide range of interface elements

• a sufficiently large size to require non-trivial design and implementation techniques, including use of
multiple design patterns

• a sufficiently large size to require non-trivial testing techniques

• basic and advanced data design, including interface to external data stores

• basic and advanced functional design, including exception handling and event-based processing

• distributed processing and remote data access

• a sufficiently large size to require non-trivial project management, configuration control, and docu-
mentation

This book does not provide in-depth coverage of advanced Computer Science topics such as databases
and distributed computing. The focus of the book in such advanced areas is on the specification and
design of software that must address technical problems in these areas, and the use of software libraries
that provide implementation solutions to the problems.

Another motivation for using a single large example is to provide continuity as the book progresses.The
reader sees how initial product storyboards evolve into requirements, a model specification, a design, and
an implementation. The activities of testing, management, configuration control, and documentation hap-
pen along the way. In effect, this evolution tells the story of software engineering.

The Approach Used in the Book
The approach taken in software engineering textbooks is based predominantly on the methodologies that
the books cover. In general, the treatment of methodologies varies widely. Some books present a survey
of different methodologies, giving equal treatment to each of them. Others focus exclusively on a single
methodology.

This book takes an approach somewhere between survey and single-methodology. Overall, the book fol-
lows a specific methodology, defined precisely in terms of the software process and artifacts presented in
Chapters 2 and 3.In terms of survey, most chapters include discussion of alternative methodologies,
comparing and contrasting them to the specific approach taken in that chapter.

The Approach Used in the Book iii

The methodology used in the book is general in scope.It is applicable to a wide range of end-user soft-
ware that performs non-trivial computational tasks and requires a non-trivial human-computer interface.
Not all aspects of the methodology are entirely applicable to all types of software, as is the case with most
methodologies. For example, the part of the methodology that focuses on the human-computer interface
is not applicable to systems software or embedded software that has no significant human interface.
Where appropriate, the book discusses methodological differences in building different types of software
and describes how the specific methods used in the book can be adapted as necessary.

Nothing in the book’s methodology is fundamentally new. Each phase of development is based on con-
cepts that have appeared extensively in the software engineering literature and have been applied in prac-
tice. Onelinguistic element of the methodology that is the Formal Modeling and Specification Language
(FMSL). Priorto its appearance in this book, FMSL has not been used extensively except at the univer-
sity where the author teaches. The concepts of FMSL are far from new; they are rooted in well-estab-
lished principles of formal software specification that have been in existence, if not wide-spread use, for at
least two decades.

Following the process definition in Chapter 2, Chapter 3 overviews the software artifacts produced by the
process. Subsequentchapters are organized around the steps of this process and its artifacts.

• Chapters 4 through 6 cover requirements analysis.

• Chapter 7 is devoted to requirements testing, using formalized inspection techniques.

• Chapters 8 through 10 cover the requirements modeling process, resulting in a formal software spec-
ification.

• Chapter 11 presents techniques to test the specification, prior to its refinement into a program design.

• Chapter 12 discusses rapid software prototyping, as a means to convey requirements to the end user
in terms of a partially operational program.

• Chapters 13 through 17 cover software design, from general design principles through formal design
specification.

• Chapter 18 covers design testing, by inspection and partial execution techniques.

• Chapter 19 covers program implementation; since low-level programming is the topic of prerequisite
courses to software engineering, only a single chapter is devoted to implementation.

• Chapters 20 through 22 are devoted to program debugging, testing, and verification.

• Chapter 23 covers post-development software deployment, during which the software is installed,
used, maintained, and upgraded.

• Chapters 24 through 26 cover the pervasive phases of development devoted to project management,
configuration control, and documentation.

• Chapter 27 is an overview of software engineering tools.

• Chapter 28 is an introduction to the topics of software ethics and law.

• The chapters conclude with number 29, which covers the future of software engineering.

Organizationally, the book follows what can be considered a "traditional" software process. This makes
sense for a comprehensive treatment of the subject matter, since a traditional process generally has more
steps and more surviving artifacts than many non-traditional processes. Much of the book’s material can
be used in a process-independent manner, by changing the order in which material is presented, and omit-
ting coverage of material that is not germane to a particular style of process.

iv Preface

Reader Background
The reader of this book is assumed to have training and/or experience at the introductory level of Com-
puter Science.Specifically, the reader should understand basic concepts of programming, including the
design and implementation of data structures. The reader should also understand basic concepts of dis-
crete mathematics, including predicate logic with quantifiers.

Using the Book in Courses
The primary audience for the book is undergraduate and graduate students in software engineering.The
book may be of interest to other readers who desire an introduction to the practical use of formal methods
in software engineering.

The author uses this book in a two-quarter undergraduate sequence, covering twenty weeks in total.The
first quarter covers Chapters 1 through 10 in full, and partially covers Chapters 11 and 12.The second
quarter covers chapters 11 through 22 in full, and partially covers Chapters 23 and 24.During both quar-
ters, selected topics from Chapters 25 through 30 are introduced.

The book is also used in a two-quarter graduate sequence where it is supplemented with readings from
current software engineering literature. In addition, the graduate courses involve projects that treat formal
specification, testing, and verification in greater depth than in the undergraduate sequence.

Since most colleges and universities use the semester rather than quarter system, coverage for a sixteen-
week semester can be adjusted in a number of ways. Onesuggestion is to cover Chapters 1 through 10
and 13 through 22 in depth, plus selected topics from other chapters

Online Supplemental Material
The book is supplemented by a collection of online materials, available at
http://www.csc.calpoly.edu/˜gfisher/se-book. Allof the examples presented in the text are available
online. Alsoavailable are supplemental lecture and course project materials.Executable tools and docu-
mentation are available for the formal specification language introduced in Chapters 8 and 9.Other
experimental tools are also available for suitably brave and tolerant users. See the site for further infor-
mation on currently available tools.

Acknowledgments
The author thanks first and foremost the many students who have endured ten years of draft versions of
this text, in the form of lecture notes and other course materials.Their patience and constructive criticism
have improved the material immeasurably. Most recently, a number of graduate students at Cal Poly Uni-
versity have been particularly helpful in solidifying the concepts presented in the book.They include
Michael Porcelli, Rick Doty, Ira Weiny, Larry Bolef, and Mal Sikand.Faculty colleagues who have
taught me much about software engineering include Peter Freeman, Carl Levitt, Dan Stearns, and Clark
Turner. Finally, I thank my faithful spouse who has endured many fits and frustrations during the writing
of this book, asking only occasionally when it would be done. Thanks Lori.

Chapter 1

Introduction

Software engineering is the disciplined creation of software. Thediscipline is based on general principles
of scientific and engineering problem solving, applied to the specific task of software development. Prob-
lem solving principles employed by the software engineer include defining a problem clearly before start-
ing its solution, and using strategies to manage the complexity of large problems. General engineering
principles include the use of formal modeling to specify a product precisely, and the use of rigorous test-
ing to verify that a product meets its specification.

The principle of defining a problem clearly is fundamental to any problem solving activity. For software
engineering, the "problem" to be solved is based on the needs that people have for software. Hence,the
task of problem definition for the software engineer entails analyzing the requirements that people have
for a software product. Once the requirements are analyzed and understood, they constitute the definition
of the problem to be solved, that is, the definition of the software to be built. Several early chapters of this
book are devoted to the analysis of software requirements and their precise specification.

Like other engineered artifacts, software systems can be large and complex. Scientistsand engineers have
learned to employ various strategies to cope with problem size and complexity. An important general
strategy is that of "divide-and-conquer", which entails breaking down a large and complicated problem
into smaller pieces, so that each piece can be more clearly understood and solved. Software engineers
employ such strategies in the design of a software product, to define and organize the overall product
architecture. Principlesof software design are discussed in chapters of the book following those on
requirements analysis.

Engineers of all kinds build models to help them understand a problem to be solved. Amodel is a simpli-
fied version of a complex engineered artifact. Themodel allows the engineer to focus on basic properties
of the artifact before all of the details of the finished product are completed. Modeling techniques in soft-
ware engineering have evolved over sev eral decades, and the use of modeling is becoming increasingly
widespread in the development of complex software. Thebook discusses software modeling in the
requirements specification phase of software development, as well as in the architectural design phase.

Thorough testing is essential for any well-engineered product. The general goal of testing is to ensure
that a product meets its specification.For a software product, testing can be conducted by thorough
inspection of the product components, in much the same sense that any product is inspected.Software
engineers also utilize testing techniques designed specifically for software. Thesetechniques involve the
development of thorough testing plans that systematically exercise each and every software function to
ensure there are no product defects.Software testing is discussed thoroughly, in individual chapters
devoted to the different aspects of testing.

1

2 Chapter 1 Introduction

While software engineers employ many of the same general techniques used by other engineers, there are
some important differences between software engineering compared to other branches of engineering.
One of the most significant differences is the nature of the product itself.Software is "soft". It is not built
with the "hard" physical materials used for most other engineered artifacts. Software does not "wear out"
in the same physical way that other products do. These characteristics of software can lead to a number
of potential benefits, including inexpensive mass production and high product reliability. The book dis-
cusses how these benefits can be realized when software is well engineered and thoroughly tested.

Another difference between software engineering and its fraternal disciplines is its relatively young age.
The origin of software engineering can be traced to the late 1960s, when the first international conference
was held on the subject [Naur 68].Since that time, there have been many advances in software engineer-
ing practices, and there are likely to be many new advances before the discipline fully matures.

Certain characteristics stand out in young disciplines.For one thing, young disciplines are generally less
formal than they will eventually become. The early years of a discipline can involve a lot of trial and
error, until eventually a set of well-defined principles evolves. Software engineering is beyond its earliest
trial-and-error stages, but software engineering practices are still far less formal than most other types of
engineering. Afundamental tenet of this book is that formal methods of software engineering need to be
more widely practiced.To date, there are few studies that validate or invalidate the use of formal methods
in software engineering.In providing significant coverage of formal methods, this book seeks to help
make the case for their utility.

Another characteristic of young disciplines is breadth of scope, such that a young discipline encompasses
what may evolve into separate sub-disciplines in its future. What is broadly called Software Engineering
today may in future branch into separate disciplines of software architecture, formal engineering, and
software construction.Software architects will interact with human clients in the user-level design of
software products, in a way similar to how building architects interact with their clients.Software engi-
neers, in a more narrow sense than defined today, will focus on the formal mathematical models of the
software system as designed by the architects.Software engineers will play a role analogous to that
played by civil engineers in constructing a building. Software construction specialists will then build the
final software product, as designed and specified by the architects and engineers.Software construction,
like building construction, will be considered more a craft than an engineering science.

Whatever the future may hold, software engineering today covers the range of activities that include gath-
ering user requirements, specifying a product to be built, designing the product, building it, testing it, and
deploying it. This book covers all of these activities. It also covers supporting activities of project man-
agement, configuration control, documentation, and reuse.

1.1. The Different Types of Software
Software is ubiquitous in today’s world. It is applied to tasks as varied as flying spacecraft to balancing a
checkbook. Theterm application domainrefers to the specific area in which software is applied.For
example, spacecraft software is in the domain of aerospace applications; checkbook software is a financial
application.

The fact that software applications are virtually limitless is a major challenge for the software engineer. It
means that software engineers must often work in application domains where they hav elittle or no experi-
ence. Inso doing, they must rely on the expertise of others to ensure that a software product is properly
specified and built. Further, the application domain can significantly affect the process used to develop a
particular type of software. Software engineers must therefore be skilled in communicating with those
who understand the application domain of a software product.

1.1 TheDifferent Types of Software 3

1.1.1. General Categories of Software

While there is no limit to the types of software application, there are some general application categories
that affect the structure of a software product and how it is engineered. Threebroad application cate-
gories are the following:

• end-user software

• system software

• embedded software

These categories are based on who the ultimate user of the software is. With end-user software, the users
are human beings who apply the software to perform useful work. Word processors and web browsers are
examples of end-user software. Froman engineering standpoint, a key aspect of end-user software is its
human-computer interface (HCI). The HCI provides the services that allow the human user to communi-
cate with the software. HCIdevelopment is a very substantial part of the process of engineering end-user
software. Inparticular, the requirements for end-user software are heavily influenced by the HCI.The
software process followed in this book employs auser-centeredtechnique for requirements analysis,
whereby the central means of presenting the requirements is from the standpoint of the HCI. The design
phase of the software process is also heavily influenced by HCI structure.

System software is not used directly by end-users, but rather by other software. Ina web browser, for
example, system software performs tasks such as underlying network communication and remote data
access. Theend user is aware of the work performed by the system software, but has little or no direct
communication with it.Given this, system software generally has little or no HCI. Instead, system soft-
ware has what is called anapplication programmer interface(API). As this name suggests, system soft-
ware can be considered to have human users, but of a different sort than end-product users. The human
users of system software are the application programmers who use the system software to write their
applications. Even though most programmers are human, there is a fundamental difference between HCI
versus API. The HCI is anexternal human interface, whereas the API is aninternal program interface.
From an engineering standpoint, the lack of a HCI affects the process used to develop system software. In
particular, details of user-centered requirements analysis are not applicable to system software. Thereare,
however, important commonalities in the design process for end-user and system software. Thesecom-
monalities are discussed in later chapters of the book.

Embedded software is used within hardware devices that operate with no direct human control.Examples
of embedded software are the controller for an automobile engine or the program that controls some fully
automated manufacturing process.As with system software, there is little or no HCI to embedded soft-
ware. Thedirect user of embedded software is not a human, but rather a hardware device. Froman engi-
neering standpoint, the process of embedded software development has some key differences from that for
end-user or system software. Acommon requirement for embedded software isreal-timeoperation. This
means that the software must respond to external events in a fixed amount of time.End-user software
generally does not have real-time requirements.For example, a web browser that does not respond in a
timely manner may annoy its user, howev er it can still perform its task properly. When an embedded real-
time program does not respond in time, it has fundamentally failed to do its job. Embedded software also
has requirements based on the hardware devices with which in must communicate. Analysis of these
requirements and implementation of the software that meets them often requires specialized technical
knowledge. Despitesome unique characteristics of embedded software, there are commonalities in its
development process compared to that for end-user and system software, as will be discussed in later
chapters.

4 Chapter 1 Introduction

1.1.2. Categories of Software Clientele

There is another major categorization of software that is independent of its application domain. This cate-
gorization is based on the clientele who purchase a software product.From a clientele perspective, the
two general types of software areoff-the-shelfversuscustom.

Off-the-shelf software is also referred asshrink-wrap. It is built by software developers who sell their
product on the open market. Off-the-shelf software can have a broad market, such as a word processor or
web-authoring tool. It can also be built for more specialized applications, but for which there is still a
large enough market to be profitably sold.Software for medical or legal applications are examples of
more specialized off-the-shelf products.

In contrast to off-the-shelf, custom software is built to satisfy the needs of a specific customer, typically
an organization of some kind.Custom software is also referred to asbespoke. When an organization has
needs that cannot be met in whole or in part by an off-the-shelf product, it orders a custom software prod-
uct.

An important distinction between off-the-shelf versus custom software is in the area of ownership and
control. Off-the-shelf software is typically licensed to its users, under specific terms of use. The develop-
ers often retain control and ownership of program source code and other artifacts of software develop-
ment. With "open-source" products, the source code is available to customers, but it is still typically
licensed, and the developers retain some forms of control.

With custom software, control and ownership are most typically retained by the customer. The customer
contracts with a developer to deliver a product. Oncedelivered, the customer owns the product wholly. A
variant of custom software is that developed in-houseby an organization. Inthis case, the organization
does not contract for software to be built, but rather develops using its own internal staff. In this case, the
customer and developer are one in the same organization.

From an engineering perspective, the major difference between off-the-shelf versus custom software is in
the requirements process.With custom software, the requirements are developed to meet the needs of
specific customers, and the requirements analysis process engages those specific customers. By its nature,
off-the-shelf software is developed for a broader customer community. This means that requirements
analysis for off-the-shelf software is based on the needs ofprospectivecustomers. Off-the-shelf software
developers often have a marketing department, whose job it is to identify a prospective customer base, and
develop requirements to meet the needs of those perspective customers. Duringthe requirements analysis
process, members of the marketing staff serve in effect as representatives of an actual customer base.

The primary focus of this book is on end-user software, developed as either a custom or off-the-shelf
product. End-usersoftware is a broad and important category, and key aspects of its development process
are applicable to system and embedded software as well. Where appropriate, distinctions will be drawn
between software categories, but for the most part the emphasis is on end-user products. The book does
not cover specific technical details of system and embedded software, such as communication with spe-
cialized system devices or real-time execution.

1.2. The People Involved with Software
A variety of people are involved in the development and use of a software product.These people are
often referred to asstakeholders. As defined here, the term "stakeholder" means anyone who has some
interest, large or small, in a software product.Stakeholders can be broadly categorized into the following
groups:

1.2 ThePeople Involved with Software 5

• end users -- people who will use the software or people who represent those who will use it

• customers -- people who purchase the software, which they may or may not use themselves

• domain experts -- people who fully understand the application domain in which the software
will run

• analysts -- members of the software development staff who specialize in requirements analysis
and specification

• implementors -- members of the development staff who specialize in software design and imple-
mentation

• testers -- members of the development staff and user community who test the software to ensure
that it meets the requirements specification

• managers -- those who manage the development process, as well as those who manage end users
when the software is installed in an organization

• visionaries -- those who have the "big picture" for what the software is intended to do and how it
will be developed

• maintainers and operators -- those who conduct post-development maintenance and operations,
as necessary

• other interested parties -- anyone else interested in the software product, such as those with a
financial investment, or those with societal or legal interest

Theend usergroup is listed first as an indication of its overall importance.A key to a successful software
product is acceptance by its end users.A key to user acceptance, in turn, is to consider the users to be
active players in the development process.For custom software, this means involving as many of the
actual users as possible in the requirements analysis activities. In some cases, end users can also be
involved during the implementation phases of the project, to ensure that the product is being built to their
satisfaction. For an off-the-shelf product, the team that develops the requirements must adequately repre-
sent the needs of potential end users as the requirements are defined, and as necessary during implementa-
tion.

The customergroup are those who acquire the software on behalf of the end users, but may not them-
selves be end users. The customer group is more likely to exist for a custom software product, since cus-
tomers and end users are typically the same for an off-the-shelf product.For custom software in an
organization, the customers can include supervisory or administrative staff who have business-related
software requirements for a software product.For example, a customer could require that a software
product generally improves worker productivity, independent of the specific end-user requirements for the
product.

The group ofdomain expertsis always important to a successful software project, particularly so when
the analysts and implementors are not familiar with the domain. Consider for example the application
domain of medical software, where doctors are the domain experts. Sincesoftware analysts and imple-
mentors are not typically medical experts, the involvement of doctors in the project is critical in order for
the requirements to be properly specified and the implementation to be properly tested.

Theanalystandimplementorgroups do the actual software engineering. Their domain of expertise is the
software. Theanalysts are skilled at communicating with end users and defining requirements.The
implementors are skilled at software design and programming. In some projects, typically small ones, the
analysts and implementors may be the same people. There are however distinct skills required to be a
good analyst or implementor. In general, analysts need good "people skills" so they can interact

6 Chapter 1 Introduction

effectively with end users.Implementors need good technical programming skills, so they can design and
build a correct and efficient piece of software. Whilethere are people who are skilled in both of these
areas, not everyone is able or desirous to excel in both analysis and implementation.

The group of software testersensure that an implemented software product works. Whatit means for
software to work is that it meets its requirements specification. In some cases software testing is con-
ducted by the development staff, that is the analysts and implementors. In other cases, testing is con-
ducted by a third-party team ofquality assurance(QA) personnel.A final round of product testing must
always be conducted by end users, or those acting as end users, to ensure that the product meets all user
needs.

Any project of significant size needs goodmanagers. While there are particular skills required for soft-
ware management, much of what makes a good manager is product-independent. Managers need to be
able to lead teams of developers and keep a project on track in terms of time and budget.

Successful software products are often based on the ideas of one or a few project visionaries. These are
the people who understand the grand scheme of things.They can inspire and motivate all of the stake-
holders to produce a good product. While it is certainly possible to develop good software without
visionary guidance, it is often the case the software is the better for such guidance.

Once a software product is delivered to its users, it typically requires maintenance, and in some cases
operations staff to keep it running properly. Themaintenancestaff is in charge of repairing post-delivery
problems and upgrading the software to meet changing user needs.Such maintenance may be carried out
by members of the original development team, or by staff hired specifically for the post-delivery lifetime
of the software. For highly complex or configurable software, systemoperatorsmay be needed to admin-
ister and configure a software installation.

A final group of stakeholders areother interested partieswho do not participate directly the software
development or use. People who have some financial investment in the software are included in this
group. For custom software, financing is generally the province of a budget department that may have no
involvement in the project other than paying the bills.Off-the-shelf software can be financed by venture
capitalists who are neither end users nor developers, but who are clearly stakeholders due to their mone-
tary investment.

Other interested parties can also be those with a societal or legal interest in the software. Whena group of
people view the use or misuse of a software product as beneficial or detrimental to society at large, they
can become stakeholders. Whenthe use or misuse of software has potential legal ramifications, those
affected can become stakeholders. Ahigh-profile example is the case of the music industry, who have
viewed as theft the use of free music down-loading software, when it violates the music copyrights owned
by the industry.

Depending on the scale of a software project, there may be overlap among the participating groups.For
example, it is not uncommon for domain experts also to be end users. As mentioned above, the analyst,
implementor, and tester groups may have overlapping membership.Given such overlaps, the groups can
be consideredroles that are assumed by the stakeholders. Atdifferent points, a single person can assume
one or more roles.In the upcoming chapters of the book, these roles will be expanded upon further, in the
context of the work that is performed during software development and use.

Different stakeholders have different and sometimes competing interests.Ideally, there should be cooper-
ation and teamwork among all interested parties, to see that a software project is successful.Noteworthy
areas of cooperation among stakeholders include the following:

1.2 ThePeople Involved with Software 7

• end users, domain experts, and analysts function as a team to develop the software requirements;

• analysts and implementors communicate as necessary to ensure that the implementation meets the
requirements, and to deal with any requirements changes that arise during implementation;

• managers and those who they manage function as team, as in any well-run engineering project.

Given such cooperation among the stakeholders, a software project is much more likely to be successful
than without it.

1.3. The Software Life Cycle
Like any other engineered product, software evolves through a number of phases as it is developed and
put to use. Theses phases are often called the software productlife cycle. The major phases of the soft-
ware life cycle have already been identified in the preceding discussion of software types and people.
Here is a summary of the major phases:

• formulate an idea for a software product

• gather and specify software requirements

• design and implement the software

• test the software implementation against the requirements

• deliver, use, and maintain the software

These are only the most basic phases of software development, with many important details left out.In
order for a software product to be successfully engineered, these generalized life cycle phases must be
used as the basis for a more formalsoftware development process. The process defines the specific activi-
ties of each development phase, and the order in which the activities are carried out.

Chapter 2 of the book provides thorough coverage of software processes, including a discussion of the
different approaches to process definition. While the approaches can differ substantially in the details, at
the heart of any successful software process are the basic steps of problem solving outlined at the begin-
ning of this chapter. These steps, and the corresponding phase of the software life cycle are shown in Ta-
ble 1.

Among the various approaches to the software development process, a key difference is the sequence in
which these core problem-solving steps are a carried out. In asequentialsoftware process, each step is
carried out to completion before the next step is begun. Thatis, a complete set of requirements are first
developed, then the design and implementation are completed, then the final product is tested.

Problem-Solving Phase Software Dev elopment Phase

define the problem gather and specify software requirements

solve the problem design and implement the software

verify the solution test the software implementation against the requirements

Table 1: Software development as problem solving.

8 Chapter 1 Introduction

In contrast to a fully sequential approach is aniterativestyle of development. Inthis process approach, a
problem-solving step need only be partially completed before the next is begun. Theprocess starts by
defining a small part of the product requirements.Then that part alone is implemented and tested.The
process then iterates back to the first phase, where the next part of the requirements are specified, and so
on.

The sequential and iterative approaches have advantages and disadvantages that depend on a number of
factors, including project size, application domain, and the skills of the development team.In practice,
software is most often built with a combination of sequential and iterative dev elopment, not purely one
form or another. These process-related issues will be discussed fully in Chapter 2.Also discussed in that
chapter are additional activities of the software process not sequentially related to the core problem-solv-
ing phases. Important among these are the activities of project management, configuration control, and
documentation.

1.4. Software Ar tifacts
A softwareartifact is something produced during the software development process. The ultimate goal of
the process is to produce an operational program, that satisfies user needs.From an end user’s perspec-
tive, this working program is the artifact of primary interest.Customers also need documentation artifacts
that tell them how to use the software. Thisdocumentation can include users’ manuals, tutorials, and
online program help.

From the developers’ perspective, there are many more software artifacts than just the working program
and its user documentation. During the stages of development, other important artifacts are produced.
Table 2 summarizes the software artifacts that can be produced during each stage of the software life
cycle.

Stage of the Software Life Cycle Associated Artifacts

formulate an idea storyboards of software behavior,
rough drafts of the requirements

gather and specify requirements requirements document,
abstract model specification

design and implement the software architectural design model,
program code

test the software test plans,
test results

deliver, use, and maintain the software user documentation,
technical documentation,
defect tracking logs

Table 2: Artifacts produced at each stage of the software life cycle.

1.4 Software Artifacts 9

When formulating the initial ideas for a product, developers can usestoryboardsto work out the way a
program will appear to its end users.Storyboarding is a practice borrowed from the movie industry,
where a director sketches out the scenes of a movie before it is filmed. In a similar way, a software ana-
lyst can sketch out the user interface of a program before it is implemented. These storyboards are cap-
tured as artifacts so they can be reviewed by users and used to refine the requirements.

During the requirements specification stage of development, a detailed requirements document is pro-
duced. Thisis based on the storyboards, plus additional analysis of user needs. From these requirements,
the more formal engineering starts, with the definition of an abstract program model. This model speci-
fies the behavior of the program, but without low-level programming details.

Artif acts of the design and implementation stage include a concrete design of software architecture and
the program code itself.The architectural design model is a refinement of the abstract requirements
model. Software engineers may apply well-known design patterns to refine the architectural model.A
design pattern is a pre-packaged piece of design based on software design experience that has been gained
over the years by software engineers. The most concrete software artifact is the program code, produced
during the implementation stage of development.

Testing artifacts are defined to plan the software testing to be conducted.Once planned, tests are per-
formed by the testing staff, with the results recorded.If any test failures occur, the test record artifacts are
reviewed by the development team to perform the necessary corrections.

Several important artifacts are produced before and during the post-development stage of the software life
cycle. Theuser-level documentation is produced prior to delivery. Dev eloper-level documentation is pro-
vided for the staff who will maintain and enhance the delivered software product. If defects are detected
during software use, they are recorded in some form of defect tracking log. This artifact is used by the
maintenance staff to correct the defect as necessary. When defects are corrected or new product features
are added, the documentation artifacts must be updated accordingly.

Other important software artifacts are produced by project management activities that are conducted
throughout the stages of the software life cycle. Management-relatedartifacts include project scheduling
plans, resource allocation plans, and a records of project meetings.

The artifacts introduced here are samples of the kinds of work products that can be produced in a software
project. Thespecific details of software artifacts depend on the details of the software process that pro-
duces them.For example, a highly iterative software process may produce a less formal requirements
specification, relying instead on the program itself to embody the requirements. Chapters 2 and 3 of the
book discuss details of software process and the artifacts produced during the process.

1.5. Software Languages, Notations, and Methodologies
Software is not built with the same hard materials that are used for other kinds of engineered products.
One might consider the computer hardware on which software runs to be its material, but the engineering
of computer hardware is a separate task from engineering software. Computerengineering and software
engineering are in fact separate disciplines.

The "materials" used to build software are the languages and notations in which software artifacts are
expressed. For example, the English language is a "material" used to express software requirements.A
graphical program diagram can be a material for software design. The distinction between the terms "lan-
guage" and "notation" is not critically important, but for clarity they are distinguished in this book.The
term "language" is used to refer to a primarily textual form of communication; the term "notation" is used

10 Chapter 1 Introduction

to refer to a primarily graphical form.

Table 3 summarizes the kinds of languages and notations that can be used for different software artifacts.
Some of the language names appearing in the table may not be familiar to the reader. The languages are
defined briefly here in the introduction, and more thoroughly as they are used in the book.

Since software requirements must be understood by end users, they are most typically expressed in
English and pictures. Requirements documents can be produced in paper form.When requirements are
extensive, viewing them in online format can be convenient. A widely used form for electronic docu-
ments is HTML (Hyper-text Mark-up Language) [World Wide Web Consortium99]. Thisis the language
displayed by a normal web browser. The requirements examples in the online supplement for this book
are in HTML.

A formal software specification can be expressed in a language designed specifically for this purpose,
such as Z (pronounced "Zed") [Spivey 92] or SpecL [Fisher 06]. SpecL is the language used in this
book to express specifications.Software specifications can also be expressed in graphical form, using a
notation such as UML (Unified Modeling Language) [Rumbaugh 98]. UML is also used in this book.

Software design can be expressed in a language or notation that focuses on the major structural elements
of a program, leaving out the low-level details of implementation.For the Java programming language,
Javadoc is such a notation.For expressing designs graphically, UML can be used. Since UML is a gen-
eral-purpose notation, it can be used for both specification and design. The design examples in this book
and the online supplement are expressed in Javadoc and UML.

Software implementations are expressed in programming languages, from which there are very many to
choose. Implementationexamples in this book use Java.

The languages and notations listed in Table 3 are those used predominately in this book. These particular
languages and notations are by no means the only form of expression for software artifacts. Whileit is
necessary to choose specific concrete languages in which to communicate, most of the underlying soft-
ware engineering concepts arelanguage independent. For example, the concepts of underlying software
requirements are almost entirely independent of the particular natural language in which the requirements
are expressed. Whetherrequirements are written in English, French, or some other natural language, the

Software Artifact Language or Notation

requirements Englishand pictures, in electronic or paper form

specification a formal specification language, such as Z or SpecL;
a modeling notation, such as UML

design a structured software documentation format, such as Javadoc;
a modeling notation, such as UML

implementation a programming language, such as Java or C++;
a graphical program diagramming notation

Table 3: Languages and notations used for software artifacts.

1.5 Software Languages, Notations, and Methodologies11

requirements for a particular software product must express the same product functionality. Whether a
program is written in Java, C++, or some other language, it must behave in fundamentally the same way.

There are of course highly practical reasons for choosing one language over another. It would be silly for
example to write software requirements in French for a user community who understands only English.
At the implementation level, there are often practical reasons for choosing one programming language
over another. The important point to emphasize here is that the fundamental concepts presented in this
book are independent of the particular language or notation in which they are expressed. Itis highly
likely that most, if not all of the non-natural languages used in this book will become outdated within a
decade. Thereader, and alas the author, are therefore well advised to focus on concepts, not the particular
details of language. In a field as rapidly changing as software engineering, its practitioners must be pre-
pared to learn and use different languages during the course of their careers.

Software languages and notations are used in the context of a software engineeringmethodology. A
methodology is a particular approach to developing software. Generally, a methodology defines a process
of development and the structure of artifacts that the process produces. There are a wide variety of soft-
ware methodologies that have been devised over the years. Some are very broad and general, encompass-
ing the entire software life cycle. TheUnified Software Process is a well-know example of a broad soft-
ware methodology [Jacobson 99]. Other methodologies focus on a specific stage of the life cycle or a par-
ticular software artifact. For example, the methodology of design patterns focuses in particular on archi-
tectural software design [Gamma 95].

Overall, the book follows a specific methodology, defined precisely in terms of the software process pre-
sented in Chapter 2.The chapters that follow cover the parts of the methodology that apply to the differ-
ent phases of the software life cycle. For requirements specification, a user-centered approach is
employed, where the requirements are organized around scenarios that depict the way the user interacts
with the software. Amodel-based specification methodology is used to formalize the requirements.The
specification model defines precisely the software data and functions presented in the user-centered sce-
narios. Thedesign and implementation stage of development employ object-oriented, function-oriented,
and pattern-based methodologies. The object-oriented methodology organizes the design around software
data objects; the function-oriented methodology focuses on the functions that manipulate the data.
Design patterns are employed to take advantage of well-established forms of software design that have
been recognized and refined by the community of experienced software designers. The testing phase of
development is presented incrementally, with a separate chapter devoted to the testing of each of the
major software artifacts.

1.6. Per vasive Principles
As noted at the beginning of the chapter, the practice of software engineering involves some general prin-
ciples of problem solving. These are principles employed by scientists and engineers in a variety of disci-
plines, adapted in discipline-specific ways. Suchprinciples should be considered general guidelines, not
iron-clad rules. Being aware of these principles helps one understand problem solving in high-level
terms, and helps organize one’s thinking about solutions to complex problems.

1.6.1. Divide and Conquer

Divide and conqueris a fundamental problem solving strategy. Simply put, it means breaking up a large
problem into smaller, more manageable pieces. In software engineering, the divide and conquer principle
is applied at all levels of development.

12 Chapter 1 Introduction

The software development process is fundamentally based on divide and conquer. The overall process is
subdivided into a series of process steps, with each step focusing on a particular aspect of development.
The artifacts produced by each step form pieces of the overall software product.

Within each development step, divide and conquer is applied in specific ways. Software requirements are
divided into individual cases of use, where each case focuses on a particular aspect of software functional-
ity. The design and implementation of the software is divided into modular units, each one of which has a
functionally cohesive purpose.

From a people perspective, divide and conquer applies to how dev elopment teams are composed and
organized. Individual team members are assigned appropriately-sized pieces of work. Work assignments
are based on team members’ areas of expertise, so members’ varying skills are applied most effectively to
conquer individualized development tasks.

1.6.2. Hierarchy

Hierarchical organization is another basic principle of science and engineering.Herbert Simon, the
famous economist and computer scientist, argues that hierarchy is a natural and fundamental property of
complex systems [Simon 69].

For problem solving, hierarchical organization can be used in conjunction with divide and conquer. A
large problem is not simply divided into a flat collection of parts.Rather, the problem is divided into
parts, sub-parts, sub-sub-parts, and so on.Within each part/sub-part decomposition, the sub-parts are a
logically related collection of pieces, organized to solve a particular aspect of the problem.

Part/subpart decomposition is pervasive in software engineering.For example, software requirements are
organized into major categories of functionality. These are in turn divided into functional sub-categories.
At the bottom of the hierarchy are specific use cases, each one of which focuses on a particular aspect of
user-level functionality.

Hierarchy is used extensively in program design and implementation. In the Java language, for example,
programs are hierarchically decomposed into packages, classes, methods, and data.Methods are
organized into invocation hierarchies, i.e., how methods call other methods. Data are organized in pre-
dominantly two forms of hierarchy -- aggregation and inheritance.Aggregation is defined by the hierar-
chy of class data membership.Inheritance is defined by the class/sub-classes relationships, well-known in
object-oriented program development.

Hierarchy is widely used in human organization. The"org chart" is a familiar way to depict the hierarchi-
cal structure of people within an organization, including a software development team.High-level project
managers are near the top of the hierarchy, with individual developers nearer the bottom.

The use of hierarchy occurs in many other aspects of software engineering including user interfaces, mod-
eling, testing, and documentation. These will be expanded upon in upcoming chapters.

1.6.3. Multiple Views

When a problem has been divided and hierarchically organized, the pieces can be viewed from different
perspectives. Assumingmultiple perspectives helps the viewer see things that may go unnoticed when
only a single perspective is taken.

The project stakeholders described in Section 1.2 can have widely varying viewpoints on a developing
software product. Considering their varying perspectives is critically important to a project’s success. To

1.6 Pervasive Principles 13

do so, the software process must involve regular communication among the stakeholders, so their different
viewpoints can be shared and reconciled.

Multiple views can also be based on different representations of software artifacts. Data-orientedand
function-orientedrepresentations provide two alternative views of software components. In the data-ori-
ented representation, the software is viewed primarily as collection of data objects, with functions belong-
ing to those objects.In a function-oriented view, the software is viewed primarily as a collection of func-
tions, with data passed among the functions. Neither view is the correct way to look at software. Both
views can be useful for understanding a complex software system, throughout its development.

Another aspect of multiple viewing is the use of two or more people on the same task.For highly techni-
cal tasks, paired work teams may help reduce errors.A common example of this is the overlapping duties
performed by the pilot and co-pilot of a large aircraft. While flight procedures are very well known to the
pilot, having the co-pilot explicitly check the pilot’s work is a well-accepted means to avoid oversights.
In software development, the concept ofpair programminghas been reported to be effective in design,
implementation, and testing [Williams 00].In this style of development, two programmers work side-by-
side, on the same computer, to dev elop a single component of software. Underthe proper circumstances,
their paired work on the same task can produce better results than a single programmer working alone.

There are many other aspects software development where the use of multiple views can be beneficial.
These will be discussed in upcoming chapters.

1.7. The Role of Formal Methods in Software Engineering
A "formal method" is one based on formal mathematical principles. At the implementation stage of
development, software engineering is an inherently formal activity. This is because programming lan-
guages are based on formal principles.Not all programming languages are defined in terms of fully for-
mal mathematics, however there is no question that programming is based on principles of formal mathe-
matical logic. The colloquial term "program logic" is often used to describe the behavioral portions of
software. Programimplementors work with Boolean logic and discrete mathematics all the time.Hence,
formal methods at the level of programming are nothing new to the software engineer.

As commonly used in the field of software engineering, the term "formal methods" means more than for-
malization at just the implementation level. In particular, it means applying formal mathematical reason-
ing to the requirements, specification, design, and testing phases of software development. Itis at these
levels that formal methods are far less widely used in the practice of software engineering.

For too many software engineers, there is an unfortunate mind-set that "formal" is synonymous with "not
practical". Amajor goal of this book to demonstrate that this is not the case.Formal mathematical nota-
tions can be of significant practical value in a number of areas, including the following:

• thorough understanding of software requirements

• precise definition of a software design

• automated generation of program test plans

When analyzing requirements, formal methods can be described as a means to "keep the analyst honest".
It is often surprising to discover just how vaguely understood some software requirement is until one tries
to formalize the requirement.Formalization can reveal requirements flaws in the form of oversights or
inconsistencies that could be very difficult to recognize otherwise. While such flaws can be be discovered
when the requirements are implemented, they can be discovered too late, when their correction is more

14 Chapter 1 Introduction

costly in terms of program redesign than had a flaw been recognized earlier in the requirements.Worse
yet, critical flaws in a requirements specification can go entirely undiscovered by a program design and
implementation team. In some cases, such flaws can contribute to catastrophic software failures, as in the
case of the Ariane 5 rocket [Lions 96]. With requirements for large and complex software, the use of for-
mal methods has significant practical benefits inrequirements interaction management [Robinson 03].
This is the task of discovering and managing critical relationships among the components of a large
requirements specification.

In the design stage of software engineering, a practical technique based on formal methods isdesign by

contractTM [Mitchell 01]. With design by contract, the input/output behavior of program functions is
defined using formal mathematical logic.The formal definition of a function is a precisecontract, by
which users of the function can be sure of its input requirements and output results.Having a precise def-
inition of function behavior can be of significant practical value to the software designer, who needs to
understand clearly what functions do in order to design a program that uses those functions.

In the area of testing, the use of formal methods can be quite practical when it comes to the generation of
program testing plans. When program functions are defined using formal logic,unit testsfor the func-
tions can be automatically generated. Unit tests are used to exercise the functions and to report the test
results, so that any errors detected during testing can be repaired before the program is delivered. There
are commercially available tools that automatically generate unit tests from formal function definitions,
for example JTest [Parasoft 01]. The use of such tools can have significant practical benefit, since the
activity of manually generating unit tests can be quite tedious and time-consuming.

Formal methods are not applicable to all software artifacts. For example, the user-readable form of soft-
ware requirements must be written in language that end users understand, which is most typically a
human natural language like English. Even for artifacts that are not fully formalizable, having a formal
mind-set can still be useful, in the sense that care is taken to be as precise as possible when writing docu-
ments in English.

It is important for advocates of formal methods not to over-sell the benefits.Formal methods are no
panacea. Theuse of formal methods cannot guarantee that software will never fail. Guaranteesabout
failure cannot be made for any engineering discipline, however formal its methods.For example, modern
civil engineers use highly formal analysis in their work, but the structures they design do still fail some-
times. Whatusing formal methods can do is give the engineer, software and otherwise, greater confidence
that an engineered artifact will function correctly.

There is no question that using formal methods can be time consuming in the early stages of software
development. Itis the contention of formal methods advocates that this is time well spent, and that when
the final product is delivered, it will work better, with less post-release time being spent on defect repair.

As noted earlier, there have been few studies that validate or invalidate the utility of formal methods in
software engineering.Tw o notable studies with somewhat conflicting results are presented in [Pfleeger
97] and [Sobel 02]. There are many articles in the literature debating the pros and cons of formal meth-
ods. Thepositive or neg ative support in these articles is based largely on well-reasoned argumentation,
rather than solid empirical data. More empirical studies need to be conducted.

A recurring point raised in the literature on formal methods is that they are not widely used in the practice
of software engineering. Authors have cited varying reasons for this under-utilization, prominent among
them being a lack of adequate training in formal methods.It is in the area of training where this book is
intended to make a contribution, by explaining the techniques of formal methods thoroughly, and by pro-
viding concrete practical examples of their use. The reader may judge whether the practical benefits of

1.7 TheRole of Formal Methods in Software Engineering15

formal methods have in fact been demonstrated.

1.8. The Issue of Software Quality, or Lack Thereof
At the first NAT O Software Engineering conference in 1968, the participants discussed a "crisis" in soft-
ware development [Naur 68]. As perceived by a number of conference contributors, the crisis was due to
software practices being inadequate to cope with the increasing size and complexity of software systems.
As a result, software quality was low, particularly in terms of software failing to operate correctly.

Nearly thirty-five years after the NAT O conference, the cover article in a prominent technology magazine
was entitled "Why Software Is So Bad" [Mann 02].While not proclaiming a software crisis, articles such
as this represent a view held by many about software products. The view is that significant improvements
still need to be made in software engineering practices if the quality of software is to improve.

There are nearly as many definitions of "software quality" as there are authors who write about it. Here is
a simple definition that captures what this book’s author believes are the two key criteria of a quality soft-
ware product:

• the product works correctly

• the users like it

What it means for a product to "work correctly" is that it functions according to its specification. This in
turn means that everyone concerned with the product must understand the specification.For end users,
the understandable version of a specification typically comes in two forms. Duringproduct development,

user-level requirements present the specification in terms understandable to the end user. After delivery1,
user-level product documentation describes what the software does, as does actual product behavior.

For the software developers, the specification needs to be precise enough to ensure that the implementa-
tion works correctly. To meet this need, this textbook advocates the development of a more formal ver-
sion of the product specification, with technical details not normally understandable to the end user. The
point of this more formal specification is to ensure that the developers understand the product precisely.
As the specification is refined, the analysts’ formal understanding is (re)conveyed to the users in language
they can understand, namely the requirements document, user documentation, and actual program behav-
ior.

A formal specification is key to ensuring that the product works correctly from an engineering standpoint.
What it means formally for a program to work correctly is that each and every component of the program
implementation functions according to the specification of that component.Without a specification that is
precise, complete, and unambiguous, it can be difficult to ensure fully correct operation from an engineer-
ing standpoint.

The lack of a sufficiently precise specification is a typical cause for poor software quality in terms of the
"works correctly" quality criterion. Consider the following scenario.A user has a clear idea of what a
custom software product is supposed to do.The user consults with a software analyst and they work out
the details of the product requirements.The analyst then communicates these requirements to the imple-
mentors, who build a program. Upon delivery of the program, the customer says "Hey wait, this isn’t
what it’s supposed to do. What’s going on here?"

1 For an iterative dev elopment process, delivery may come in a number of phases.

16 Chapter 1 Introduction

What is "going on" in the preceding scenario can be common in software development. Somewhere in
the chain of communication from user to analyst to implementor, the user’s "clear" idea was not properly
communicated. Thereare a number of approaches that have been proposed to solve this problem. One
solution is to ensure that the requirements specification is written in a clear and precise enough form that
no one misunderstands it.Another solution is to shorten the communication chain between customer and
implementor, so that they communicate more directly and more frequently. With either or both of these
solutions, the fact remains that a clearly understood requirements specification is a key to correctly oper-
ating software, and hence to quality software. Inthe article cited above on bad software, the authors con-
cluded that poor understanding of requirements is a major causative factor of poor-quality software.

The second quality criterion of a user "liking" the software is more difficult to measure than correct opera-
tion. Liking a product can be based on a wide range of subjective product qualities, including the way it
looks and how easy it is to use.The best way to achieve these kind of qualities is by fully involving the
user in the analysis and testing of product requirements. In this way, the user has the opportunity to eval-
uate the product before it is delivered, to ensure that it has the necessary likeable qualities.Developers
should not underestimate the psychological benefit of end-user involvement. Auser who participates
fully in the requirements process has a sense of investment and ownership in a product. This sense can
very positively impact the user’s perception of product quality, that is, how much the user likes it.

For a custom software product, the software analyst should involve as many actual end users as possible
throughout the requirements analysis and end-user testing phases of development. For off-the-shelf prod-
ucts, those who develop the requirements must be sure that they fully understand and represent the ideas
of the ultimate product users. Some prominent software flops have been the result of a developer’s "really
cool idea" that resulted in a product that no real users wanted. Themoral of such flops is that one can
develop software that works brilliantly well, but that is worthless because no one wants to use it.

This discussion of software quality has been user-centered. Thereare other aspects of software quality
that are invisible to the end user. These aspects have to do with the engineering process for building the
software, and the internal software artifacts that the end user rarely or never sees. Internalartifacts
include the formal specification, the program design, and the program implementation.Quality criteria
for these and other internal artifacts are discussed in later chapters of the book, in the context of the spe-
cific techniques used to build those artifacts.

Chapter 1 References 17

References

[Fisher 06]
Fisher, G. A Formal Modeling and Specification Language, Version 4, Department of Computer Sci-
ence Technical Report, California Polytechnic State University, San Luis Obispo (December 2006).

[Gamma 95]
Gamma, E., R. Helm, R. Johnson, and J. Vlissides.Design Patterns,Addison-Wesley (1995).

[Jacobson 99]
Jacobson, I., G. Booch, and J. Rumbaugh.The Unified Development Process,Addison-Wesley
(1999).

[Lions 96]
Lions, J. L.ARIANE 5 Flight 501 Failure, Report by the Inquiry Board,Paris (19 July 1996).

[Mann 02]
Mann, C. C. Why Software Is So Bad,MIT’s Technology Review105(4)(July/August 2002).

[Mitchell 01]
Mitchell, R. and J. McKim.Design by Contract by Example,Addison-Wesley (2001).

[Naur 68]
Naur, P., B. Randell, and (Eds.).Software Engineering: Report of a Conference Sponsored by the
NATO Science Committee,Scientific Affairs Division, NAT O (October 1968).

[Parasoft 01]

Parasoft.Using Design by ContractTM to Automate JavaTM Software and Component Testing,Para-
soft Corporation (2001).

[Pfleeger 97]
Pfleeger, S. L. and L. Hatton. Investigating the Influence of Formal Methods,IEEE Computer
30(2) p. 33-43 (February 1997).

[Robinson 03]
Robinson, W. N. and S. D. Pawlowski. RequirementsInteraction Management,ACM Computing
Surveys35(2) p. 375-408 (June 2003).

[Rumbaugh 98]
Rumbaugh, J., I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual,
Addison-Wesley (1998).

[Simon 69]
Simon, H. A.The Sciences of the Artificial,MIT-Press (1969).

[Sobel 02]
Sobel, A. E. K. and M. R. Clarkson.Formal Methods Application: An Empirical Tale of Software
Development, IEEE Transactions on Software Engineering28(3) p. 308-320 (March 2002).

[Williams 00]
Williams, L., R. R Kessler, and W. Cunningham. "Strengtheningthe Case for Pair Programming",
IEEE Software17(4) p. 19-25 (July/August 2000).

18 Chapter 1 Introduction

[World Wide Web Consortium 99]
World Wide Web Consortium."HTML 4.01 Specification". December 1999.

