CSC308-W15-L11 &ge 1

CSC 308 Lectue Notes Week 10, Part 2
Software Process Assessment
The Future of Software Engineering

Final exam.
A. Dayand time: Friday 10:10AM - 1:00PM
B. Length:<= three hours
C. Opemote.
D. Content:
1. Cumulatve.
Simplefill-in, true/false, as on midterm.
Shortansweras on nidterm and quiz.
Project-relatedas on midterm and sample.

Prototypingjncluding a simple implementation of some aspect of prototyping, submitted during the final
using the CSlhandi n program.

arwDn

E. Topics that may be vered in the short-answer questions:
1. thesoftware process
2. inspectiontesting
3. wersion control with SVN

F. Details of Project-Related Content
1. You're provided a general problem description.
2. Questions:

Definehigh-level GUI layout.

. Do a smple requirements scenario or two

. Defineobjects and operations.

Drav UML.

Definepreconditions and postconditions.

®ooop

G. A Sample Final
1. Gotomain 308 web page, follolink.
2. Prwvides sample of project-related questions.

. Peer review.

A. Seethe handout.

B. Onereview for leaderif you're not it.

O

Onereview for each other team member.

o

Don' review yourself here.

m

Pleasdring the completed peer revigo the final exam on Wednesday.

Software Process Assessment
A. ldeally, a ©ftware project should be conducted in an ordeelyeatable process.

B. Suchis not alvays the case in industrial practice, serin ecademia.

CSC308-W15-L11 &ge 2

C.

In 308 weve wsed a specific process, suitable for theeldpment of medium-scale information processing
systems with a substantial end-user interface component.

IV. "A" versus "The" softwar e process.

A.
B.

The 308 process is by no meahg software process; rathéfris a process, among mgn

Software processes may vary widdbased on the kind of software beingrdeped and the setting in which

it will operate.

1. For example, the process tovédp nev software for an artificial intelligence research project can be
quite different than the process forvdeping a commercial product in a well-kmo application
domain.

2. Also,organizational factors can significantly affect the details of a softwargafament process.

Thecritical factors rgarding a software process are these:

1. For a gien project, it must be completely and formally defined.

2. All project participants must understand and @llbe process (though not necessawg|ib).
3. Theprocess must be regularly subjectveleation so that it canvelve to kecome better.

Thedetails of the process weuvgaamployed in CSC 308, and will emptan 309, are gren in Chapter 2 of
the online text materials.

V. Software process assessment using the Capability Maturity Model (CMM and CMMi)

A.

CMM has been deloped at Carnegie Mellon since around 1987; it is still uymiag refinement, in particu-
lar the "Integrated"” version

Thefive QMM levels (in order of increasing maturity) are:

. Initial -- ad hoc

. Repeatable- basic project management techniques are used

. Defined-- a software engineering process is used

. Managed -- quantitatve QA process is used

. Optimizing-- the process itself can be refined to inverdficiency

g b~ WDN B

. Improrements claimed for more mature processes:

1. Morereliable software
2. Bettervisibility into process, particularly from topye management perspeasi
3. Lesgisk in contracting with firms that ke a nature process in place.

VI. Details of the five CMM le vels

A.
B.

Level 1: completely ad hoc

Level 2:

1. Requirementmanagement
a. Goall: System requirements allocated to software are controlled to establish a baseline &e softw
engineering and management use.
b. Goal 2: Software plans, products, and activities &g konsistent with the system requirements allo-
cated to the software.
2. Projectplanning
a. Goall: Software estimates are documented for use in planning and tracking the software project.
b. Software project activities and commitments are planned and documented.
c. Goal3: Affected groups and individuals agree to their commitments related to the software project.

3. Projectracking and wersight

CSC308-W15-L11 &ge 3

4. Subcontraananagement
a. Goall: The prime contractor selects qualified software subcontractors.
b. Goal 2: The prime contractor and the software subcontractor agree to their commitments to each other.
c. Goal3: The prime contractor and the software subcontractor maintain ongoing communications.
d. Goal4: The prime contractor tracks the sait@ subcontract@’ ectual results and performance
against its commitments.
5. Software quality assurance
a. Goall: Software quality assurance activities are planned.
b. Goal 2: Adherence of software products andvéets to the applicable standards, procedures, and
requirements is verified objeady.
c. Goal3: Affected groups and individuals are informed of safevquality assurance activities and
results.
d. Goal4: Noncompliance issues that cannot e rexblwithin the software project are addressed by
senior management.
6. Configuratiormanagement
a. Goall: Software configuration management activities are planned.
b. Goal 2: Selected software work products are identified, controlled vahakde.
c. Goal3: Changes to identified software work products are controlled.
d. Goal4: Affected groups and individuals are informed of the status and content of software baselines
C. Level 3
1. Omanization process focus
a. Goall: Software process ddopment and impneement activities are coordinated across trgadr
zation.
b. Goal 2: The strengths and weaknesses of the software processes used are identiiedoralati
process standard.
c. Goal3: Oganization-lerel process declopment and impneement activities are planned.
2. Omanization process definition
a. Goall: A standard software process for thganization is deeloped and maintained.
b. Goal 2: Information related to the use of thganizations gandard softw@re process by the sofiwe
projects is collected, reviewed, and madailable.
3. Training program
a. Goall: Training activities are planned.
b. Goal 2: Training for deeloping the skills and knowledge needed to perform software management
and technical roles is provided.
c. Goal3: Individuals in the software engineering group and software-related group& resiraining
necessary to perform their roles.
4. Integrated software management
a. Goall: The projecs defined software process is a tailored version of theniation’s dandard soft-
ware process.
b. Goal 2: The project is planned and managed according to the pafftted software process.
5. Software product engineering
a. Goall: The software engineering tasks are definedgiiated, and consistently performed to produce
the software.
b. Goal 2: Software work products are kept consistent with each other.
6. Integroup coordination

a. Goall: Actual results and performances are tracked against toe software plans.

b. Goal 2: Correctie actions are taén and managed to closure when actual results and performance
deviate significantly from the software plans.

c. Goal3: Changes to software commitments are agreed to by the affected groups and individuals.

a. Goall: The customes'requirements are agreed to by all affected groups.
b. Goal 2: The commitments between the engineering groups are agreed to by the affected groups.

CSC308-W15-L11 &ge 4

c. Goal3: The engineering groups identifyack, and resokintergroup issues.

7. Peereviews

a. Goall: Peer revie activities are planned.
b. Goal 2: Defects in the software work products are identified andvesino

D. Level 4
1. Quantitatre process management

a. Goall: The quantitatie process management activities are planned.

b. Goal 2: The process performance of the projadtfined software process is controlled quantiéi

c. Goal3: The process capability of thegenization’s dandard softare process is known in quantitei
terms.

2. Software quality management

a. Goall: The project ftware quality management activities are planned.

b. Goal 2: Measurable goals for software product quality and their priorities are defined.

c. Goal3: Actual progress ward achieving the quality goals for the software products is quantified and
managed.

E. Level 5
1. Defectprevention

a. Goall: Defect preention activities are planned.
b. Goal 2: Common causes of defects are sought out and identified.
c. Goal3: Common causes of defects are prioritized and systematically eliminated.

2. Technology change management

a. Goall: Incorporation of technology changes are planned.
b. Goal 2: Nav technologies arevaluated to determine their effect on quality and productivity.
c. Goal3: Appropriate n& technologies are transferred into normal practice acrossdgheization.

3. Processhange management

a. Goall: Continuous process impmnent is planned.

b. Goal 2: Participants in the ganizations ftware process impuement activities is @anization
wide.

c. Goal3: The oganization's gandard software process and the projects’ defined software processes are
improved continuously.

VII. Atechnologists view of haw to build quality software

A. Thedevelopers of CMM focus largely on the management aspects of theaseffwocess, not the technical
aspects.

1.

Fromtheir perspectie, proper management is ultimately more important to achieving quality a@ftw
than are the particular details of software engineering technology.

Technologists tend to belie the opposite (but this belief is probably mistaken).

. For example, when technologists read that

"CMM does not currently address expertise in particular application domairesadeh\specific
software technologies, or suggesitio slect, hire, motiate, and retain competent people."

technologists vie CMM of limited utility when it comes to assessing what it really takes to build quality
software "in the trenches".

B. So,if we assume that a mature software process is in place, here is one techadegisif the the top ten
things thateally count for achieving quality software:

1. Agood requirements specification, produced with copious end-user feedback.
2. Thoroughand formal test procedures at aildls of development.

3.

Oneset of comentions per project, and one extremely nasty manager to enforce them.

CSC308-W15-L11 &ge 5

4. Realdeadlines, and arven nastier manager to enforce them.

5. A document-as-you-go policwhere document commentary is written with the following question in
mind: "What will | need to knw when | come back here in six months and want to understandswhat’
going on?"

6. Thoroughand formal ersion control procedures, including readily accessible access to at least the last
three working versions of the system.

7. Thoughtfullywritten version control log messages.

8. Teamwork, including frequent critical reviews.

9. The7+/-2 rule.

10. Goodspecification and design roadmaps, in wiatdiagraming style(s) you like.

Honorablementions

11. Sleepleprvation when necessary
12. High-qualityjunk food

13. Emacs

14. Top-of-the-line OS X computer

. Notewvorthy Omissions

1. Any particular methodologyobject-oriented or otherwise; just choose one and stick with it.

2. Arny particular deelopment languages; just choose one or more (except for Visual Basic) and stick with
them.

-- The Future of Software Engineering (Fisher’s Version) --

VIIIl. Near term (1-5 years).

A.
B.

Continuedmarket pressure to build imperfect software.

Increaseditigation against imperfect software.
1. Litigation will proceed particularly againsarmfullyimperfect software.

2. Itmay also proceed against software that is disremti wastes substantial amount of users’ time due to
poor performance.

Increasingise of software libraries.

1. Itis happening todayvith libraries like MFC (Microsoft Foundation Classes) angdald&C (Jaa Foun-
dation Classes).

2. Theidea is not to write low-kel code from scratch but to (re)use code from a library.
3. E.g.,instead of writing CSC-103+el hash table code, we uséass HashTabl e from the library.

Increasedocus on code-leel software testing as a means of quality-control.

1. Ewn if software is poorly deloped, code-ledl testing can be used as a means to keep buggyaseftw
from being released.

2. Code-lgel testing tools are becoming more widelgitable and used to manage tests, record results, and
report bugs.

IX. Medium term (5-10 years).

A.

Competitve pressures to build higher-quality software.

1. Considerthe "quality shock” to U.S. car manufacturers from Japanese car anamefs in the mid
1980s.

2. Asimilar shock may be come to U.S. software manufacturers, from other countries.

CSC308-W15-L11 &ge 6

. Professiondicensing of software engineers.
1. Itmay tale ©mMe major software disaster to bring it about.
2. Orit may happen as a natural part of the maturation of our discipline, led bgrébtianking profes-
sional oganizations such as ACM or IEEE.
. Increasedise of software components.
1. Acomponenis the next larger unit in a software libragigove te class.

2. Currentlibraries are composed of class-sized units, such as a class that does searching, another that does

search query command processing, and others that can be used to build the GUI.
3. Areusablecomponents a lagerscale library unit, such as a complete search engine, including its ready-
built GUL.
a. Librarycomponents are built from the smaltmale library classes to form complete, reusable appli-
cations.
b. They're analogous to the kinds of d@rscale components that are used in other forms of engineered
artifacts, such as integrated circuit chips and modular building components.

. Increasedppreciation for spending more time on requirements, specification, and testing, less tige on b
fixing and litigation.
1. Oldproduct time line:

Requirements _) . Product Bug o)
Specification Design Implementation Testing Release Fixing Litigation Profit Made

2. New product time line:

Product
Requirements Specification Design Implementation Release Profit Made

[[[| | | |
[1 1 [[[
Testing Testing Testing Testing

. Increasedise of formal methods, particularly for specification.

1. Formal specs can be used to clearly define the capabilities ofsefilwrary components, so the compo-
nents can be properly used.

2. Formal specs are also a primary communication medium betweerasoftiwelopers and a "program-
mer’s gpprentice”.

. Automated "programmex’gprentice" tools.
1. A programmess gprentice is an intelligent agent that has enough knowledge to be a “junior assistant",
primarily during implementation and functional testing phases of softwasbgment.

2. Theapprentice can track whereva®pers are in the process, do clerical work and some moemeed
work.

a. Clericalwork includes such things as automatically compiling and running tests vénemele is
checked in.

b. More advanced work includes automatic generation of test cases for well-specified ctdisues
these techniques next quarter in 309), as well as intelligent debugging assistance.

3. Heres a typothetical scenario of interaction between a progransn@pprentice and a deloper, circa
2015:

Apprentice: Good morning Gene, what shall we work on today?
Fisher: SlickQueryProcessor

Apprentice: OK, module SlickQueryProcessor has been loaded and analgeedirom the

CSC308-W15-L11 &ge 7

development log that the functional testing phase is next for this module, is that correct?
Fisher: Yes.

Apprentice: Shall | generate some test cases for you?

Fisher: Yes.

Apprentice: While generating test cases, | noticed the following problem in the postcondition for
method ValidateQuery:

forall (i | i >= 0 and i <= #response_list)
Val i dDat a(response_list[i])

Given that variable i is being used as a list index, it should not assume the valsiggest:

forall (i | i >= 1 and i <= #response_list)
Val i dDat a(response_list[i])

Shall | male the fix?

Fisher: Yes.

Apprentice: Done. Shall now continue with test case generation?
Fisher: Yes.

Apprentice: ... OK, test cases generatetlVould you like to rview the test cases or shall | run them
now?

Fisher: Run.

Apprentice: Here is a summary of the tesieeution results:

Test Case 1. Passed.
Test Case 2: Passed.

Test Case 8: Fail ed.

Shall we debug the code that caused the failure in Test Case 8?
Fisher: Yes.
Apprentice: Starting debugger o8l i ckQuer yPr ocessor. mai n

Fisher: (Examines code and thinks a bit and then issues the following debugging commands).

set breakpoint in SlickQueryProcesor.enter
run

Apprentice: | recognize the code pattern in mett®d ckQuer yPr ocesor. ent er. It's a\ersion

of hash table entry using out-of-tableedlow. Based on my pattern matching analysis, the problem
seems to be with oyou're splicing into the buak. |suggest you use the library version of hashing in
classAbst r act Tabl e. Shall in install the change and rerun run the tests?

Fisher: Yes.

Apprentice: ... Change installed. ... Recompilation complete. ... Rerunning tests. ... All tests passed.

Is there more work to do today?

Fisher: No. I'll go home early.

CSC308-W15-L11 &ge 8

X. Long term (20 years).

A. Adaptationto fundamentally n& computer architectures, such as optical dataflo

1. Optical computing and related technologies will fundamentally change computer architectures from
essentially sequential to parallel.

2. Thesenew computer architectures will require corresponding changes in software architectures.
3. Inparticular computer code will look more lkdataflav diagrams than the sequential procedural code of
today.
B. Obsolescencef object-oriented technologies.
1. Object-orientedesign is fundamentally unsuited to parallel architectures.
2. Object-orientedechnology will fall into the bit bucket of history.

C. Automaticprogramming.

1. Theprogrammess gprentice had about thevi} of knowledge contained in arverage CSC 103 x
book.

2. However, the apprentice only kmehow to use its knavledge to analyze code written by a human, not to
generate code on its own.

3. Anautomatic programming system takes this next step.
4. \Miz., an automatic programming system can generate code from a system specification.

D. Heres a typothetical scenario of interaction between an automatic programming system arebpede
circa 2025:

AP System:Good morning Genel see from the deslopment log that the specs for the Intelligent Calen-
dar tool are done. Shall | generate the code and test it?

Fisher: Yes.
AP System:Complete code generation will @kbout 20 minutes] suggest you go h& a wp of coffee.
Fisher: OK.

AP System:During the specification analysis phase of code generation, | found and fixed thénfpllo
apparent specification errors:

Do you want to revi& the fixes or shall | proceed with the code generation and testing?
Fisher: Proceed.

AP System:Code generation and testing will &akbout 2 hours.l suggest you go home early today and
check back tomorm.

Fisher: OK, see ya.

XI. Very long term (30-50 years).
A. Theemergence of genuine artificial intelligence.

B. Automaticsoftware engineering; hessthe scenario circa 2050:

Automatic Software Engineer: Good morning Genel see from our interaction log that it has been a
while since we last communicated. Over the lastimenths, | hae net with customers, analyzed their
requirements, and ddoped the specification for the "Analyze the Meaning of Life asWbw It" system.
| am row ready to generate the code and test it. Shall I?

CSC308-W15-L11 &ge 9

Fisher: Sure.

Automatic Software Engineer: Complete code generation and exhagsigsting will tale ebout 48 hours.
| suggest you go home and do whatst is you do these days.

Fisher: OK, ciao.

