CSC308-W15-L4 Bge 1

CSC 308 Lecture Notes Week 4
Requirements I nspection Testing
Introduction to Requirements M odeling

I. Thisweeks material:

A. Milestones3 and 4 writeup

B. SOPVolume 2: Requirements Testing
C. Jaa & an Astract Modeling Language
D.

milestoned example

. Lab quiz this Friday30 Anuary.

A. Covers material on SVN Basics handout and Week 4 lab notes.
B. Questionwvill be in terms of command-line interface to SVN.

C. Therewill be no questions on SVN clients.

Preparatiorfor Week 5 requirements walkthroughs.
A. Everyone must atterall of the walkthroughs.

B. They will be held during lab on Monday through Frid&gbruary 2 through 6, per the following schedule:

Time Day Team

12:10-12:34| Mon2Feh DJCars
12:36 - 1:.00 Mon 2 Felj TokenCSC
12:10-12:34| Wed4Feb | Team O
12:36 - 12:00| Wed 4 Feb | FireBreathing Rubber Duckies
12:10-12:34| Fri6 Feb Node
12:36 - 1:00 Fri6 Feb | Team #1

C. Time your presentation to last 22 minutes, which will¢ea lit of time for questions.

D. Thefollowing are oganizational guidelines for your presentation:
1. Presenbne title slide showing the name of your project and the members of your team.

2. Presena few dides werviewing the basic project requirements (from Section 1 of the requirements docu-

ment).

3. Presentwo dides showing the initial Ul for the primary category of users, and an expansion of the com-

mand menus (from Section 2.1 of the requirements).

4. If appropriate, she additional slides of alternate initial Uls for other major gaiges of users (from Sec-
tion 2.1).

5. Presentdditional screen-shot slides that whmajor features of your system (from Sections 2.2 and
beyond).

6. Preparadditional explanatory slides to aid the presentation.

a. You do not necessarily need a lot gpkanatory slides -- you may choose to discuss system features

mostly orally.
b. If you do hae exlanatory slides, theshould hae amly major points, in large text font (at least 24

CSC308-W15-L4 Bge 2

points).

E. You may mak your presentation electronically (e.g., AcrobatwBdPoint, HTML) or on gerhead trans-
parencies.

F. If you prepare your presentation in HTML, pleasgaoize it into slides, so as toad the distraction of
jumping around in a browser during the presentation.

IV. The role of testing in the software engineering process.

A. In what might be called a traditional weof the software process, testing is seen as the last stepyifigjlo
implementation.
1. Inthis view, the program code itself is the only artifact that is subject to formal testing.
2. Whilecode testing is critically important for quality soéwe, the code is not the only artifact that should
be tested.
3. Infact, all of the other major soffwe process artifacts can be tested formally -- the requirements, the
specification, and the design.

B. Figurel compares the position of testing as the final step of the process versus apaesi

Analyze Ordered Process Steps
Pervasive Process Steps
Analyze
Specify Manage
i Specify
Prototype .
| Pervasive steps Configure
are performed
continuously oy,
Prototype at regularly-
. scheduled time
Design throughout the
ordered steps. Test
Design
Implement
|
Document
Implement
Test

b. Process with testing as a pervasive step.

a. Traditional process,
with testing at the end.

Figure 1. Two views of testing in the software process.

CSC308-W15-L4 Bge 3

1.

2.

As discussed in Lecture Noteseék 1, perasve deps run continuously throughout theveepment
process, or at regularly-scheduled intervals.

Inaddition to testing, the other perwasgeps deal with management, configuration, and documentation.

C. Thereare three types of testing that are performed during different stages of the software process.

1.

Inspection testingntails systematic human inspection of alkle of software artect, from requirements
through implementation.

2. Functional testings performed by programmers on the@itable code as it is ddoped.
3. Acceptance testinig performed by end users on the released product.

V. Inspection testing the requirements.

A. Testing with walkthroughs and reviews.

1.

w

Thepurpose is the same as walkthroughs awigwes conducted during the wi@opment of just about gn
kind of product.

Namelywe want to assure that what is being@eped is on track and meets customer needs.
Walkthroughs and reviews are an important means to "debug" the requirements.

Publicreviews can be held at specific milestones during the course of requirements gathering and analy-
Sis.

Limitedmembers of the technical dtabld detailed walkthroughs to refine requirements specifications.

. Suchwalkthroughs are particularly important in the process of requirements analysis since such a wide

range of people are potentiallyoived.
In 308, intra-group walkthroughs are conducted during our weekly meetings.

. Inaddition, each group will ges two oral reviews to the rest of the class during in the quarter; first is in

week 5 as scheduled also

B. Formal inspection testing.

1.

3.

Startingin week 4, the functional requirements will be formally inspected by a duly appaisezttion
test engineer

. Duringweeks 4 through 11, each group member willcha me-week assignment as the official inspec-

tion tester (see milestone 3 writeup for exact schedule, since it varies based on team size).
Detailsare in the handout entitled "Standard Operating Procedures, Volume 2: Requirements Testing"

C. Modelbuilding as a means of concept testing.

1.

A common practice among engineers is tidddoa model of a proposed engineered artifact, to see if the
high-level ideas about the artifact are sound.

For CSC 308, model building is done during the next ordered step of the software process after require-
ments analysis specification

VI. The next major phase of the software process -- requirements modeling and formal specification.

A. Thegoal is to formalize the user-oriented functional requirements, so that:

1.

therequirements are complete and consistent;

2. therequirements are clear and unambiguous for the system design and implementation team.

B. Whilefully formal modeling of softwre is not (yet) practiced as widely as for other forms of engineered arti-
facts, the utility of formal software models is substantial. Semi-formal modeling is gaining wider acceptance
in the SE world.

VII. Languagedo formally specify requirements.

A. Candidatesnclude:

CSC308-W15-L4 Boe 4

B.

1. "Firmedup" English and pictures -- understandable but imprecise.

2. Semi-formalrequirements specification languages -- helpful for high-Hlemodeling, but not precise
enough to ensure a complete and consistent specification.

3. Graphicahotations -- helpful to clarify some aspects of a formal model, but not generally adequate for a
complete specification.

4. Fully formal textual notations, including mathematics -- these vend imprecision lut are \ery
demanding to use and understand.

Alas,"demanding to use and understand" is an attribute of fitemal engineering notations.
1. Buildingand analyzing formal models is an important part of what engineers do to earn their keep.

2. Without a formal model, we run thery substantial risk of not fully understanding the system we want to
build, and as a result building a faulty system.

Why a formal language?

1. Remee the imprecision and ambiguity of normal English prose.

2. Avoid misunderstanding among analysts and potential useosisistency

3. Prwvide a means to identify when the requirements analysis process is finisbatpleteness.
4.

Praside some quantifiable measures by which to judge if aaletl system actually meets the require-
ments --verifiability.

VIII. Justhow formal do we get?

O o w2

In 308, we will go all the way down to formal mathematical logic.
We will do so in a sequence of steps from informal, to semi-formal, to fully formal.
Eachstep requires more work and more specialized knowledge.

Inthe real world, different participants in the analysis process wi# béferent technical backgrounds.
1. Thereforenot all analysts will be wolved with the most formal aspects of the document.

2. ltis ultimately the job of the systems analyst teetadput from all other analysts and produce a fully for
mal result.

Formality is particularly important in a growing number of "safety-critical" applications, such as avionics and
medical systems, among others.

1. Generatule -- the more important it is to @ that a computer system works propetiie more formally
must it be specified.

2. Formal specification can be used in other areas that do not striglyarsafety, such as erifiably secure
information processing system for financial transactions.

. Furtherdetails on formalizing the requirements.
A.
B.

Thefirst step in formalizing user-oriented requirements is to buidjairements model

The model is a more abstract representation of the requirements, written in a more formal language than
English prose and pictures.

Theobjective in building the model is to depict the structure and operational behavior of a proposed system
accurately and precisely.

Elementof the requirements model are the following:

1. Thedefinition ofobjectsupon which the system operates.

2. Thedefinition ofoperationgthat the system performs.

3. Thedefinition of object and operatia@itributes

CSC308-W15-L4 Bge 5

4. Thedefinition ofrelationshipsbetween objects and operations.
5. Statements of faetbout objects and operations, which statements can be validated to be true or false.
6. Explanatory remarkghat aid in human understanding of the model.

E. Theformal language we will use in 308 isvdawith modifications to mak it uitable as an abstract specifi-
cation language.

F. An overview is presented in the handout entitledvdas an Abstract Modeling Language".

G. Hereis a summary of using Ja & ébstract modeling language:
1. Objectsare modeled as fully abstracvdadasses or enums; no concrete classes, no interfaces.
2. Operationsre modeled as method signatures; no method implementations.
3. Objectattributes are modeled as/dannotations.
4

. Objectrelationships are
a. has-g which is modeled as data fields
b. is-a, which is modeled as inheritance usext ends

Statementef fact are modeled with JML assertions (more on this in coming weeks)

6. Thefollowing Java features araot usedn an abstract model:
&ecutable code

information hiding withpubl i c, pri vat e, or pr ot ect ed
exceptions

. librarydata structures exce@bl | ecti on

. primitive types except nt , doubl e, andbool ean

f. ary other Jaa feature not explicitly mentioned al®

o

PoooTp

X. Heuristicsfor deriving a requirements model from user-oriented requirements scenarios.

A. In our scenario style of requirements analysis, the requirements modeVésl denin the pictures of the user
interface and the accompanying textual nareati

B. Thefollowing heuristics can be used to derin initial set of objects and operations from a graphical user
interface:
1. Functionbuttons and menu items generally correspond to operations.
2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for therathed operation.

4. Outputreporting screens that appear in response to confirming an input dialog (E.g., with arut©K)' b
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements that alloentry of a single numbestring, or boolean value correspond to prin@ti
types.

6. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-
dows and boxes, with primi# dements at the lowestid of nesting.

C. Specificdetails of object and operation attributes arevédrirom the scenario narraé that accompanies the
interface pictures.

XI. Someexamples from the Calendar Tool.

A. To illustrate the devition of a requirements model, Mleapply the preceding basic heuristics to Calendar
Tool example.

B. Completedetails of the initial modeling for the Calendar Tool are in the specification directory of Milestone
4 example.

CSC308-W15-L4 Bge 6

XIl. Deriving scheduling operations.
A. Hereis the top-lgel Schedul e command menu from the Calendar Tool:

Appoi nt nent
Meeting ...
Task ...
Event

B. Applyingthe first heuristic (buttons and menus indicate operations), we can identify tarfglfour oper
ations from théschedul e menu:

voi d schedul eAppoi nt nent () ;
voi d schedul eMeeting();
voi d schedul eTask();
voi d schedul eEvent () ;
C. We havenot yet identified the following aspects of these operations:
1. Whatclass thg go in.
2. Whatparameter(s) thetake.
3. Whatreturn value, if ay they produce.

D. Linguistically operation names shouldnadys be verbs or verb phrases.

1. Dependingn hav the user commands are structured, we can use different combinations of interface ele-
ment names to dee meaningful operation names.

2. Inthis case, which is reasonably typical, veetoncatenated a menu name with the name of each menu
item to denve the operation names.

3. Animportant point is to ha traceability between the terminology used in the user aterénd the cer
responding model.

a. Infact, the dewation of model names can help point out flaws or inconsistencies in the interface sce-
narios.

b. If it is difficult to derve a $mple and meaningful name for an operation from the interface, this is a
sign that the interface naming might well be imjgch

c. Thisis an instance of a recurring principle in requirements analysis and modeling -- "forwsfollo
function”.

d. Thatis, a well-defined interface scenario leads to a well-defined model, and vice versa.

Xlll. Deriving scheduling objects.

A. Fromthe second heuristic (data screens are objects), we can identify as objects each of the data-entry screens
that appear in response to the user selecting one 8ttiheedul e menu operations.

B. To gart with a simple example first, let us consider thevetoh of theEvent object, from the follwing
interface picture:

CSC308-W15-L4 Bge 7

Schedul e an Event O A
Titl e:| | |
Start Dat e:| | End Dat e:| | C%Egg?(éctesn?f
Cat egory:| v| Location:| |
=))

/ \

Confirms Cancels
scheduleEvent scheduleEvent
operation operation

C. Applyingheuristics 5 and 6, we can derithe following object definitions:

cl ass Event {
String title;
Date startDate
Dat e endDat e
Cat egory cat egory
String | ocation;
}
class Date { /* ... */ }
class Category { /* ... */ }

with an annotated version of the detion looking like this:

Schedul e an(Event) O £

Titl el |

Start Datet| |
V] Cocatio) |

(04 l [Clear) Cancel |
\\
GEvenD) {(title) ; startDate; Cat egor Y; ; }

L

CSC308-W15-L4 Bge 8

D. Inthese definitions, weé done the following initial data analysis:
1. Thetitle and location fields are primig gring type.
2. Theother data fields are defined as object types thatewamed, but not yet fully defined.

XIV. Object denvation details.

A. As discussed in the "va & Modeling Language" handout there are onlywa Java forms used to model
data

B. Table 1 summarizes these, along with the common interface forms.
C. Thesare constructs you should be familiar with inala

D. Thetable notes common interface forms for each of the basic object types.

XV. Refining object definitions.
A. An examination of the narrate for the @ent dialog, indicates that thE t | e andLocat i on components
of an event are free-form strings, hence their definitiorBasi ng types.
B. Javas St ri ng type is used to model ayfree-form text string that the user may type.
C. InMilestone 4, the details of date formats has not yet been worked out.

1. Gwen this, we'll leave the definitions of th®at e class to be resolved later.
2. lL.e.,we'll leave the definitions as
class Date { /* ... */ }

D. Theuser interface displays tl@at egor y as a list of selections.
1. Thismight lead us to consider modeling tB&t egor y component as a list of form
class Category { String* list; }
2. However, a nore careful analysis of the requirementsvghthat for a gien event, theCat egory com-
ponent is only one of a set of possibilities.
3. HencetheCat egor y component would not be a list, but rather just a prumigiring.

4. Furtheranalysis of the requirements shows that a category is not just a plain string, since emei cate
has an explicitly selected col@s $iown in the add-category dialog:

Java Form Meaning Common Interface Form

int numeric integer string editor for numbers; numeric slider bar or dial

double numeric real number samas integer

String free-form string value stringeditor or combo box

boolean true/false value string editor for true/false value; bldtfon

class data field§ components of the class box containing other types

enum literals one of a set of possibilities radio buttons; fixed-length listing of selections

Col l ection zero or more components of variable-length listing of data values or selections
the same type

Met hod the type of an operation push button or menu item

Table 1: Java Modeling Forms.

CSC308-W15-L4 Bge 9

E.

Add Cat egory L] H]

Cat egory Name:| |

Color:[Black V|
((0%) (Cancel)

5. Hencethe most accurate definition Gat egory is
cl ass Category {
String nane;
Col or color;

}

6. A subsequent screen shot in the scenarios shows thatltlee component is one of a fixed set of selec-
tions:

Add Cat egory L] H]

Cat egory Name:| per sonal |

Col or:| Bl ack v

Bl ack
Br own

(oK Red wcel)

G een
Bl ue

7. Accordingly we an modelCol or as follows:

enum Col or {
Bl ack, Brown, Red, Orange, Yellow or Geen, Blue, Purple;
}

Thepreceding analysis for deriving objects is typical in requirements modeling.
1. Firstwe derve initial object definitions from the Ul pictures.
2. Thenwe refine the definitions based on the scenario naerati

3. We mntinue to refine until all objects are defined in terms of puesitior weve decided to defer com-
plete definition of model data until more requirementehiaen completed.

XVI. Refining operation definitions.

A.
B.
C.

Thekey step in refining an operation is determining what object class it belongs in.
Thiswill clarify what object is operated on.

Inthe case of the four scheduling operations, an analysis of the requirements leads us to understand that these
operations work on @alendarobject.

CSC308-W15-L4 Bge 10

D. Hencewe hae the definition

cl ass Cal endar {
voi d schedul eAppoi nt nent () ;
voi d schedul eMeeting();
voi d schedul eTask();
voi d schedul eEvent () ;

}

E. Usingheuristic 3 (data-entry dialogs are input objects), we refine the four scheduling operations as follows:

XVII.

F.

cl ass Cal endar {
voi d schedul eAppoi nt ment (Appoi nt nent) ;
voi d schedul eMeeti ng(Meeting);
voi d schedul eTask(Task) ;
voi d schedul eEvent (Event);

}

. 9nce we vant all of our models to compile with thevdsmmpiler, we reed to clarify that the preceding defi-

nition is intended to be an abstract model.
1. Abstracin this context means, among other things, that weslaat all operational code from the model.

2. Henceto compile in Jaa we nmust declare all of the methods to dlest r act , as well as the class that
contains these methods.

. So,here is the compilable definition of the modeled Calendar object, along with its operations:

abstract class Cal endar {
abstract voi d schedul eAppoi nt nent (Appoi nt ment) ;
abstract voi d schedul eMeeti ng(Meeting);
abstract voi d schedul eTask(Task);
abstract voi d schedul eEvent (Event);

Identifying collection objects.

. A key aspect of data modeling is the identificatiorcoflectionobjects.
. Abstractly a ollection contains zero or more objects of a particular type.

. Interms of requirements scenarios, collections can be identified by language that describes objects with mul-

tiple entries, and operations that add entries to the collection.

. For example, in Section 2.2 of the CalendaolTscenarios, the following kind of language helps identify the

calendar as a collection of appointments:

"After scheduling and confirming an appointment, the appointment datantered in an online
working copy of the user'calendar.”

. With Java & a nodeling language, we will use ti@ol | ect i on interface to model abstract collections, as

in this definition ofCal endar :

abstract class Cal endar {
abstract voi d schedul eAppoi nt ment (Appoi nt ment) ;
abstract void schedul eMeeti ng(Meeting);
abstract void schedul eTask(Task);
abstract void schedul eEvent (Event);

Col | ect i on<Appoi nt ment > dat a;

}

Representing a Calendar as a collectioAmboi nt ment s is in fact an eer-simplification of aCal endar ,
since calendars can contain meetings, tasksamtise as well as appointments.

CSC308-W15-L4

G.

XVIII.

Rge 11

We'll address this issue soon, by defining a parent class for these four types of scheduled items, and repre-
sentingCal endar data thusly:

Col | ecti on<Schedul edl t en> dat a;

. Anotherway to identify collections in requirements scenarios is by the pattern of operations that are used on

collections.

1. Theoperations aradditive destructivemodifying and selective

2. Inmore common terms, these are operations to add, delete, edit, and find items in a collection.
3. Inupcoming notes, we'll consider this to be a formal specification pattern.

Deriving a monthly viev object.

A significant number of objects and operations will ultimately bevettrirom the calenda¥i ew com-
mands.

As an initial example, consider in Figure 2 the monthlywikat is displayed in response to the user select-
ing theMont h item in theVi ewmenu.

Cal endar Tool OE
File Edi t Schedul e View Adnmin Opti ons Hel p
Sept enber 2015 O/
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
28 27 29 30

Figure 2: Monthly calendar vie.

CSC308-W15-L4 Bge 12

C. Fromthis we can deve the following objects:
import java.util.Collection;

/**
* A Mont hl yAgenda contains a small daily view for each day of the nonth,
* organized in the fashion typical in paper cal endars.
>/
cl ass Mont hl yAgenda {
Ful | Mont hNanme nane;
DayOf TheWeek fir st Day;
i nt nunber O Days;
Col | ecti on<Snal | DayVi ew> itens;

}

cl ass Ful | Mont hNanme {
String nonth;
int year;

}
enum DayCf TheWweek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }

/**
* A Smal | DayVi ew has the nunber of the date and a list of zero or nore short
* jtem descri ptions.
>/
cl ass Smal | DayVi ew {
i nt Dat eNunber ;
Col | ection<BriefltenDescription> itens;

}

class BriefltenDescription {
String title;
Tinme startTine;
Durati on duration;
Cat egory category;

}

class Time { /* ... *| }
class Duration { /* ... */ }
class Category { /* ... */ }

XIX. Someobservations on requirements modeling.
A. TheCalendar Tool will provide some interesting examples where a model can\m deanumber of dif-
ferent ways.
1. For example, should the Calendar itself be modeled as a collection of scheduled items or as a collection of
years?
2. Shoulddates be modeled as simple strings or a composite objects?
3. Whichof these is the "correct" or "most accurate" way to model?

B. Thegeneral answer to such questions is that weestni model objects and operatioas perceived by the
end user

1. Oursingle criterion for model correctness and acouiadiased on he well we represent objects and
operations in terms of what the user thinks.

2. Whatwe definitely do not want to do is model things in terms of efficient computer data structures.
3. We will discuss these requirements modeling ideas more in upcoming lectures.

CSC308-W15-L4 Bge 13

