
CSC308-W15-L4 Page 1

CSC 308 Lecture Notes Week 4
Requirements Inspection Testing

Introduction to Requirements Modeling

I. Thisweeks material:

A. Milestones3 and 4 writeup

B. SOPVolume 2: Requirements Testing

C. Java as an Abstract Modeling Language

D. milestone4 example

II. Lab quiz this Friday, 30 January.

A. Covers material on SVN Basics handout and Week 4 lab notes.

B. Questionswill be in terms of command-line interface to SVN.

C. Therewill be no questions on SVN clients.

III. Preparationfor Week 5 requirements walkthroughs.

A. Everyone must attendall of the walkthroughs.

B. They will be held during lab on Monday through Friday, February 2 through 6, per the following schedule:

Time Day Team

12:10 - 12:34 Mon 2 Feb DJ Cars
12:36 - 1:00 Mon 2 Feb TokenCSC
12:10 - 12:34 Wed 4 Feb Team 0
12:36 - 12:00 Wed 4 Feb FireBreathing Rubber Duckies
12:10 - 12:34 Fri 6 Feb Node
12:36 - 1:00 Fri 6 Feb Team #1

C. Time your presentation to last 22 minutes, which will leave a bit of time for questions.

D. Thefollowing are organizational guidelines for your presentation:

1. Presentone title slide showing the name of your project and the members of your team.

2. Presenta few slides overviewing the basic project requirements (from Section 1 of the requirements docu-
ment).

3. Presenttwo slides showing the initial UI for the primary category of users, and an expansion of the com-
mand menus (from Section 2.1 of the requirements).

4. If appropriate, show additional slides of alternate initial UIs for other major categories of users (from Sec-
tion 2.1).

5. Presentadditional screen-shot slides that show major features of your system (from Sections 2.2 and
beyond).

6. Prepareadditional explanatory slides to aid the presentation.

a. You do not necessarily need a lot of explanatory slides -- you may choose to discuss system features
mostly orally.

b. If you do have explanatory slides, they should have only major points, in large text font (at least 24

CSC308-W15-L4 Page 2

points).

E. You may make your presentation electronically (e.g., Acrobat, PowerPoint, HTML) or on overhead trans-
parencies.

F. If you prepare your presentation in HTML, please organize it into slides, so as to avoid the distraction of
jumping around in a browser during the presentation.

IV. The role of testing in the software engineering process.

A. In what might be called a traditional view of the software process, testing is seen as the last step, following
implementation.

1. In this view, the program code itself is the only artifact that is subject to formal testing.

2. Whilecode testing is critically important for quality software, the code is not the only artifact that should
be tested.

3. In fact, all of the other major software process artifacts can be tested formally -- the requirements, the
specification, and the design.

B. Figure1 compares the position of testing as the final step of the process versus a pervasive step.

Design

Prototype

Implement

Analyze

Specify

Test

Configure

Document

Manage

Ordered Process Steps

Pervasive Process Steps

Pervasive steps
are performed
continuously or
at regularly-
scheduled times
throughout the
ordered steps.

Design

Prototype

Implement

Analyze

Specify

Test

b. Process with testing as a pervasive step.

a. Traditional process,
 with testing at the end.

Figure 1: Tw o views of testing in the software process.

CSC308-W15-L4 Page 3

1. As discussed in Lecture Notes Week 1, pervasive steps run continuously throughout the development
process, or at regularly-scheduled intervals.

2. Inaddition to testing, the other pervasive steps deal with management, configuration, and documentation.

C. Thereare three types of testing that are performed during different stages of the software process.
1. Inspection testingentails systematic human inspection of all levels of software artifact, from requirements

through implementation.
2. Functional testingis performed by programmers on the executable code as it is developed.
3. Acceptance testingis performed by end users on the released product.

V. Inspection testing the requirements.

A. Testing with walkthroughs and reviews.

1. Thepurpose is the same as walkthroughs and reviews conducted during the development of just about any
kind of product.

2. Namely, we want to assure that what is being developed is on track and meets customer needs.

3. Walkthroughs and reviews are an important means to "debug" the requirements.

4. Publicreviews can be held at specific milestones during the course of requirements gathering and analy-
sis.

5. Limitedmembers of the technical staff hold detailed walkthroughs to refine requirements specifications.

6. Suchwalkthroughs are particularly important in the process of requirements analysis since such a wide
range of people are potentially involved.

7. In308, intra-group walkthroughs are conducted during our weekly meetings.

8. In addition, each group will gives two oral reviews to the rest of the class during in the quarter; first is in
week 5 as scheduled above.

B. Formal inspection testing.

1. Startingin week 4, the functional requirements will be formally inspected by a duly appointedinspection
test engineer.

2. Duringweeks 4 through 11, each group member will have a one-week assignment as the official inspec-
tion tester (see milestone 3 writeup for exact schedule, since it varies based on team size).

3. Detailsare in the handout entitled "Standard Operating Procedures, Volume 2: Requirements Testing"

C. Modelbuilding as a means of concept testing.

1. A common practice among engineers is to build a model of a proposed engineered artifact, to see if the
high-level ideas about the artifact are sound.

2. For CSC 308, model building is done during the next ordered step of the software process after require-
ments analysis --specification.

VI. Thenext major phase of the software process -- requirements modeling and formal specification.

A. Thegoal is to formalize the user-oriented functional requirements, so that:

1. therequirements are complete and consistent;

2. therequirements are clear and unambiguous for the system design and implementation team.

B. While fully formal modeling of software is not (yet) practiced as widely as for other forms of engineered arti-
facts, the utility of formal software models is substantial. Semi-formal modeling is gaining wider acceptance
in the SE world.

VII. Languagesto formally specify requirements.

A. Candidatesinclude:

CSC308-W15-L4 Page 4

1. "Firmedup" English and pictures -- understandable but imprecise.

2. Semi-formalrequirements specification languages -- helpful for high-level modeling, but not precise
enough to ensure a complete and consistent specification.

3. Graphicalnotations -- helpful to clarify some aspects of a formal model, but not generally adequate for a
complete specification.

4. Fully formal textual notations, including mathematics -- these remove all imprecision but are very
demanding to use and understand.

B. Alas,"demanding to use and understand" is an attribute of many formal engineering notations.

1. Buildingand analyzing formal models is an important part of what engineers do to earn their keep.

2. Without a formal model, we run the very substantial risk of not fully understanding the system we want to
build, and as a result building a faulty system.

C. Why a formal language?

1. Remove the imprecision and ambiguity of normal English prose.

2. Avoid misunderstanding among analysts and potential users --consistency.

3. Provide a means to identify when the requirements analysis process is finished --completeness.

4. Provide some quantifiable measures by which to judge if a delivered system actually meets the require-
ments --verifiability.

VIII. Justhow formal do we get?

A. In 308, we will go all the way down to formal mathematical logic.

B. We will do so in a sequence of steps from informal, to semi-formal, to fully formal.

C. Eachstep requires more work and more specialized knowledge.

D. In the real world, different participants in the analysis process will have different technical backgrounds.

1. Therefore,not all analysts will be involved with the most formal aspects of the document.

2. It is ultimately the job of the systems analyst to take input from all other analysts and produce a fully for-
mal result.

E. Formality is particularly important in a growing number of "safety-critical" applications, such as avionics and
medical systems, among others.

1. Generalrule -- the more important it is to prove that a computer system works properly, the more formally
must it be specified.

2. Formal specification can be used in other areas that do not strictly involve safety, such as verifiably secure
information processing system for financial transactions.

IX. Furtherdetails on formalizing the requirements.

A. Thefirst step in formalizing user-oriented requirements is to build arequirements model.

B. The model is a more abstract representation of the requirements, written in a more formal language than
English prose and pictures.

C. Theobjective in building the model is to depict the structure and operational behavior of a proposed system
accurately and precisely.

D. Elementsof the requirements model are the following:

1. Thedefinition ofobjectsupon which the system operates.

2. Thedefinition ofoperationsthat the system performs.

3. Thedefinition of object and operationattributes.

CSC308-W15-L4 Page 5

4. Thedefinition ofrelationshipsbetween objects and operations.

5. Statements of factabout objects and operations, which statements can be validated to be true or false.

6. Explanatory remarksthat aid in human understanding of the model.

E. Theformal language we will use in 308 is Java, with modifications to make it suitable as an abstract specifi-
cation language.

F. An overview is presented in the handout entitled "Java as an Abstract Modeling Language".

G. Hereis a summary of using Java as abstract modeling language:

1. Objectsare modeled as fully abstract Java classes or enums; no concrete classes, no interfaces.

2. Operationsare modeled as method signatures; no method implementations.

3. Objectattributes are modeled as Java annotations.

4. Objectrelationships are
a. has-a, which is modeled as data fields
b. is-a, which is modeled as inheritance usingextends

5. Statementsof fact are modeled with JML assertions (more on this in coming weeks)

6. Thefollowing Java features arenot usedin an abstract model:
a. executable code
b. information hiding withpublic, private, or protected
c. exceptions
d. librarydata structures exceptCollection
e. primitive types exceptint, double, andboolean
f. any other Java feature not explicitly mentioned above

X. Heuristicsfor deriving a requirements model from user-oriented requirements scenarios.

A. In our scenario style of requirements analysis, the requirements model is derived from the pictures of the user
interface and the accompanying textual narrative.

B. Thefollowing heuristics can be used to derive an initial set of objects and operations from a graphical user
interface:

1. Functionbuttons and menu items generally correspond to operations.

2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically, data-entry dialogs that appear in response to invoking an operation generally corre-
spond to the input object(s) for the invoked operation.

4. Outputreporting screens that appear in response to confirming an input dialog (E.g., with an "OK" button)
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements that allow entry of a single number, string, or boolean value correspond to primitive
types.

6. Thehierarchical structure of objects is generally displayed in the interface by nested or cascading win-
dows and boxes, with primitive elements at the lowest level of nesting.

C. Specificdetails of object and operation attributes are derived from the scenario narrative that accompanies the
interface pictures.

XI. Someexamples from the Calendar Tool.

A. To illustrate the derivation of a requirements model, we’ll apply the preceding basic heuristics to Calendar
Tool example.

B. Completedetails of the initial modeling for the Calendar Tool are in the specification directory of Milestone
4 example.

CSC308-W15-L4 Page 6

XII. Deriving scheduling operations.

A. Hereis the top-level Schedule command menu from the Calendar Tool:

Appointment ...
Meeting ...
Task ...
Event ...

B. Applying the first heuristic (buttons and menus indicate operations), we can identify the following four oper-
ations from theSchedule menu:

void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

C. We hav enot yet identified the following aspects of these operations:

1. Whatclass they go in.

2. Whatparameter(s) they take.

3. Whatreturn value, if any, they produce.

D. Linguistically, operation names should always be verbs or verb phrases.

1. Dependingon how the user commands are structured, we can use different combinations of interface ele-
ment names to derive meaningful operation names.

2. In this case, which is reasonably typical, we’ve concatenated a menu name with the name of each menu
item to derive the operation names.

3. An important point is to have traceability between the terminology used in the user interface and the cor-
responding model.

a. In fact, the derivation of model names can help point out flaws or inconsistencies in the interface sce-
narios.

b. If it is difficult to derive a simple and meaningful name for an operation from the interface, this is a
sign that the interface naming might well be improved.

c. This is an instance of a recurring principle in requirements analysis and modeling -- "form follows
function".

d. Thatis, a well-defined interface scenario leads to a well-defined model, and vice versa.

XIII. Deriving scheduling objects.

A. Fromthe second heuristic (data screens are objects), we can identify as objects each of the data-entry screens
that appear in response to the user selecting one of theSchedule menu operations.

B. To start with a simple example first, let us consider the derivation of theEvent object, from the following
interface picture:

CSC308-W15-L4 Page 7

Start Date: End Date:

Title:

OK Cancel

Schedule an Event

Location:Category:

 Confirms
scheduleEvent
 operation

 Cancels
scheduleEvent
 operation

Components of
 object Event

C. Applyingheuristics 5 and 6, we can derive the following object definitions:

class Event {
String title;
Date startDate
Date endDate
Category category
String location;

}
class Date { /* ... */ }
class Category { /* ... */ }

with an annotated version of the derivation looking like this:

Start Date: End Date:

Schedule an

Location:Category:

OK CancelClear

Title:

title startDate endDate categoryEventclass { ; ; ; ; ;

Event

location ; }

CSC308-W15-L4 Page 8

D. In these definitions, we’ve done the following initial data analysis:

1. Thetitle and location fields are primitive string type.

2. Theother data fields are defined as object types that we’ve named, but not yet fully defined.

XIV. Object derivation details.

A. As discussed in the "Java as Modeling Language" handout there are only a few Java forms used to model
data

B. Table 1 summarizes these, along with the common interface forms.

C. Theseare constructs you should be familiar with in Java.

D. Thetable notes common interface forms for each of the basic object types.

XV. Refining object definitions.
A. An examination of the narrative for the event dialog, indicates that theTitle andLocation components

of an event are free-form strings, hence their definition asString types.
B. Java’s String type is used to model a any free-form text string that the user may type.
C. InMilestone 4, the details of date formats has not yet been worked out.

1. Given this, we’ll leave the definitions of theDate class to be resolved later.

2. I.e.,we’ll leave the definitions as

class Date { /* ... */ }

D. Theuser interface displays theCategory as a list of selections.

1. Thismight lead us to consider modeling theCategory component as a list of form

class Category { String* list; }

2. However, a more careful analysis of the requirements shows that for a given event, theCategory com-
ponent is only one of a set of possibilities.

3. Hence,theCategory component would not be a list, but rather just a primitive String.

4. Furtheranalysis of the requirements shows that a category is not just a plain string, since each category
has an explicitly selected color, as shown in the add-category dialog:

Java Form Meaning Common Interface Form

int numeric integer string editor for numbers; numeric slider bar or dial

double sameas integernumeric real number

String stringeditor or combo boxfree-form string value

boolean true/false value string editor for true/false value; on/off button
class data fields components of the class box containing other types

enum literals one of a set of possibilities radio buttons; fixed-length listing of selections

Collection variable-length listing of data values or selectionszero or more components of
the same type

Method push button or menu itemthe type of an operation

Table 1: Java Modeling Forms.

CSC308-W15-L4 Page 9

OK Cancel

Category Name:

Color: Black

Add Category

5. Hence,the most accurate definition ofCategory is

class Category {
String name;
Color color;

}

6. A subsequent screen shot in the scenarios shows that theColor component is one of a fixed set of selec-
tions:

OK Cancel

Category Name:

Color:

Add Category

personal

Black

Red
Orange
Yellow
Green

Purple

Black

Blue
Purple

Black

Brown

7. Accordingly, we can modelColor as follows:

enum Color {
Black, Brown, Red, Orange, Yellow or Green, Blue, Purple;

}

E. Thepreceding analysis for deriving objects is typical in requirements modeling.

1. Firstwe derive initial object definitions from the UI pictures.

2. Thenwe refine the definitions based on the scenario narrative.

3. We continue to refine until all objects are defined in terms of primitives, or we’ve decided to defer com-
plete definition of model data until more requirements have been completed.

XVI. Refiningoperation definitions.

A. Thekey step in refining an operation is determining what object class it belongs in.

B. Thiswill clarify what object is operated on.

C. In the case of the four scheduling operations, an analysis of the requirements leads us to understand that these
operations work on aCalendarobject.

CSC308-W15-L4 Page 10

D. Hence,we have the definition

class Calendar {
void scheduleAppointment();
void scheduleMeeting();
void scheduleTask();
void scheduleEvent();

}

E. Usingheuristic 3 (data-entry dialogs are input objects), we refine the four scheduling operations as follows:

class Calendar {
void scheduleAppointment(Appointment);
void scheduleMeeting(Meeting);
void scheduleTask(Task);
void scheduleEvent(Event);

}

F. Since we want all of our models to compile with the Java compiler, we need to clarify that the preceding defi-
nition is intended to be an abstract model.

1. Abstractin this context means, among other things, that we leave out all operational code from the model.

2. Henceto compile in Java we must declare all of the methods to beabstract, as well as the class that
contains these methods.

G. So,here is the compilable definition of the modeled Calendar object, along with its operations:

abstract class Calendar {
abstract void scheduleAppointment(Appointment);
abstract void scheduleMeeting(Meeting);
abstract void scheduleTask(Task);
abstract void scheduleEvent(Event);

}

XVII. Identifying collection objects.

A. A key aspect of data modeling is the identification ofcollectionobjects.

B. Abstractly, a collection contains zero or more objects of a particular type.

C. In terms of requirements scenarios, collections can be identified by language that describes objects with mul-
tiple entries, and operations that add entries to the collection.

D. For example, in Section 2.2 of the Calendar Tool scenarios, the following kind of language helps identify the
calendar as a collection of appointments:

"After scheduling and confirming an appointment, the appointment data are entered in an online
working copy of the user’s calendar."

E. With Java as a modeling language, we will use theCollection interface to model abstract collections, as
in this definition ofCalendar:

abstract class Calendar {
abstract void scheduleAppointment(Appointment);
abstract void scheduleMeeting(Meeting);
abstract void scheduleTask(Task);
abstract void scheduleEvent(Event);

Collection<Appointment> data;
}

F. Representing a Calendar as a collection ofAppointments is in fact an over-simplification of aCalendar,
since calendars can contain meetings, tasks and events, as well as appointments.

CSC308-W15-L4 Page 11

G. We’ll address this issue soon, by defining a parent class for these four types of scheduled items, and repre-
sentingCalendar data thusly:

Collection<ScheduledItem> data;

H. Anotherway to identify collections in requirements scenarios is by the pattern of operations that are used on
collections.

1. Theoperations areadditive, destructive, modifying, andselective.

2. Inmore common terms, these are operations to add, delete, edit, and find items in a collection.

3. Inupcoming notes, we’ll consider this to be a formal specification pattern.

XVIII. Deri ving a monthly view object.

A. A significant number of objects and operations will ultimately be derived from the calendarView com-
mands.

B. As an initial example, consider in Figure 2 the monthly view that is displayed in response to the user select-
ing theMonth item in theView menu.

September 2009September 2015

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 1110 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

2728 29 30

HelpFile Edit Schedule View Admin Options

Calendar Tool

Figure 2: Monthly calendar view.

CSC308-W15-L4 Page 12

C. Fromthis we can derive the following objects:

import java.util.Collection;

/**
* A MonthlyAgenda contains a small daily view for each day of the month,
* organized in the fashion typical in paper calendars.
*/

class MonthlyAgenda {
FullMonthName name;
DayOfTheWeek firstDay;
int numberOfDays;
Collection<SmallDayView> items;

}

class FullMonthName {
String month;
int year;

}

enum DayOfTheWeek { Sun, Mon, Tue, Wed, Thu, Fri, Sat }

/**
* A SmallDayView has the number of the date and a list of zero or more short
* item descriptions.
*/

class SmallDayView {
int DateNumber;
Collection<BriefItemDescription> items;

}

class BriefItemDescription {
String title;
Time startTime;
Duration duration;
Category category;

}

class Time { /* ... */ }
class Duration { /* ... */ }
class Category { /* ... */ }

XIX. Someobservations on requirements modeling.

A. TheCalendar Tool will provide some interesting examples where a model can be derived in anumber of dif-
ferent ways.

1. For example, should the Calendar itself be modeled as a collection of scheduled items or as a collection of
years?

2. Shoulddates be modeled as simple strings or a composite objects?

3. Whichof these is the "correct" or "most accurate" way to model?

B. Thegeneral answer to such questions is that we strive to model objects and operationsas perceived by the
end user.

1. Oursingle criterion for model correctness and accuracy is based on how well we represent objects and
operations in terms of what the user thinks.

2. Whatwe definitely do not want to do is model things in terms of efficient computer data structures.

3. We will discuss these requirements modeling ideas more in upcoming lectures.

CSC308-W15-L4 Page 13

