CSC308-W15-L5 Bge 1

CSC 308 Lectue Notes Week 5
Details of Requirements Model
Derivation and Refinement

|. Administratve matters.

A. Getstarted on basic modeling for Milestone 4.

1. Seehe Milestone 4 example for roughlyvaanuch you should do.
a. Eachteam member must commit at least$ava model classes, ganized into packages.
b. The model classes can be in one or mgrava files.
c. You'll need some team coordination for the major shared objects and the packaging structure.

2. Createackage sub-directories in the projepeci f i cat i on directory.
3. Put. j ava files to the appropriate package directories.
4. The files must compile withavac.

B. Remembethat this is the first week of inspection testing.
1. Review the procedure in the SOP \ol. 2 handout, which we’ll ga m lecture on Monday.

2. Inparticular be sure to decide in your team at what time on Friday yen dhursday) pre-testing check-
in is due in order for the inspection tester to get things done so the librarian can release them by 11PM.

3. Notethat the due time for Milestone 4 has been to 11PM (from 7PM) in ordervm@rmadequate time
for inspection testing.

II. Guidelinesfor modularizing a software model.
A. To modularize means to subdivide parts into independent units.
B. Heres an excerpt from the regular English dictionary definition farodule" that applies very well to soft-
ware modeling:
"A moduleis an independent unit that can be used to construct a more complex structure”.

C. Inthe specific case of a model defined wmaJenodules are defined aackages.

D. A good heuristic for defining model packages is to use the large-grain structure defined in thee softw
requirements.

1. For example, each menu in a menu-based Ul can be considered a package.
2. Similarly, the top-leel Ul toolbars can be considered to be packages.

3. Thetable of contents of the requirements can alseigeoguidance for the gaenization of the model
packages.

4. Theimportant point is that it makes sense twentae model package genization correspond to theay
the user percees the high-leel organization of the software.
a. Thisis another example of the "form follows function" idea noted in Lecture Notes 4.
b. That is, a well-defined genization of the user inteate leads to a well-defined model packaging
structure, and vice versa.

E. Given these guidelines, the packaging structure of the Calendar Tool model can be defined as follows:

package file;
package edit;
package schedul e;
package view,
package adnin;
package options;

F. Within each package are the classes that support the packaggionality.

CSC308-W15-L5 Bge 2

1. For 308 Milestone 4xample, the primary focus is on teehedul e andvi ew packages, since these
contain the most important and interesting features of the Calendar Tool.

2. Thepackaging structure is easy towie j avadoc form in the Milestone 4 example.

3. Notethatj avadoc is not a required delrerable for Milestone 4; i$ provided in the Milestone 4xam-
ple for cowvenient viewing.

[ll. Summaryof core steps of the model detion and refinement process.

A. Derive initial model from Ul screens using these heuristics:
1. Functionbuttons and menu items generally correspond to operations.
2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for therathed operation.

4. Outputreporting screens that appear in response to confirming an input dialog (e.g., with anutiol)' b
generally correspond to the output object(s) for the confirmed operation.

5. Interface elements with a single numlsing, or boolean value corresponding to priwgtibjects.

6. Thehierarchical structure of objects is generally displayed in the auieithy nested or cascading win-
dows and boxes, with primi# dements at the lowestid of nesting.

7. Wholepull-down menus and large editing dialogs generally correspond to modules.

B. Refine object model using requirements narratie.
1. Definecomponent details down to prinvié-level objects.
2. Addinheritance based on references to "generic" objects mentioned invearrati
3. Addobiject descriptions that synopsize nawatietails.

C. Refine operation model using requirements narratie and thoughtful functional analysis.
1. Fully specify operation inputs and outputs.
2. Identifydefault inputs that the user does not need to enter explicitly in the interface.
3. Identifycollection objects and add them to operation inputs/outputs, to ensure functional behavior.

IV. Specific modeling guidelines.

A. Objectand operation naming.

1. Derve dbject and operation names directly from requirements pictures andverrati

2. Thenoun or noun phrase in the banner of a dialog is the name of the objeed éem the dialog.
3. Thelabels of dialog components are the names of object components.
4

. Theverb or verb phrase on a menu item or function button is the name of the operatia érem the
menu item or button.

5. Spacesind other alphanumeric punctuation must be consistentlyweehto form legd object name iden-
tifiers; otherwise, retain full spelling and capitalization in dketrinames, except for the \lm onvention
to start method and data field names with a lower case letter.

B. Inheritance.

1. Derve inheritance relations based oxpkcit narratve in the requirements. The objegtiis to cefine
inheritance in the model if it is perceptible in some form to the user.

2. Inheritanceshould not be used in a requirements model for the purposes of representdtmeatyefs
it is often used in programs.

3. Theprime directve d modeling is "If the user perosss it, model it". Otherwise, lae it out.

4. Inkeeping with the prime direat®, inheritance is generally best ded "bottom up”, i.e.,
a. Defineall objects first without inheritance.

CSC308-W15-L5

b. Examine object definitions to see if there are common components.

o

Defineparent object classes based on common components.

d. Confirmthe use of inheritance in the model by finding justification for it in the requirementsvearrati
(or adding such justification if the inheritancasvdiscoered while modeling and is dé@imately
deemed "user perceptible").

V. Details of object devetion.

A. Wheninterface screens are well laid out and clearly defined, objeutiileni is generally straight forward.

B. Thefollowing table summarizes the deiion of model types from common interface forms.

Common Ul Form

Model Object Type

One-line Bxt box

Multi-line Text Area

Fixed-length
selection list

Variable-length list

Check-box

Radio-button(s)

Dialog window

Tabbing or
Multi-Panel dialog

Specialized "widgets"

Typically a string. If the requirements narvatidefines specific constraints on what can
be entered in thetebox, then the model structure should reflect these constr&rgs.

if the narratve limits what can be typed to an integer value, then tktebtex is modeled

as an intger. If the narratte defines what can be typed as a two-part value of some form,
then the model is a two-tuple (e.g., Time and Date).

A string, list of strings, ore more complebject. Asingle string model is appropriate if
the entire text area is entered as ongeldnlock of text the system does not decompose in
ary way. A list of strings is the appropriate model if the line-by-line contents of ite te
area are handled separatdiyt each line is not further decomposed.more compl&
object model is necessary if the system perfornysdetailed parsing of the text to ana-
lyze its contents.

An enumobject, with each element being one of the items in the selection list.

A Collection object, with elements corresponding to the type of the selections.

A boolean object. When check boxes are grouped together in the Ul, model the group as
a tuple of boolean objects.

A boolean object or enumA single on/of radio kutton is modeled as a boolean, e.g., a
single radio button labeled &¢/No" or "On/Of'. When radio buttons are grouped to-
gether as a set of alternass, the model is an enum with one component for each alterna-
tive. For example, with a group of radio buttons label®drige"”, with button labels

"Hi gh", "Medi uni, and 'Low", the model is

enum {H gh, Medium Low}

A class of objects that model the dialog components.

A class with data fields for each tab panel, with each component class defining one of the
tabs or panels.

Graphical interfaces may contain an assortment of pvierltivel forms, such as onfof
toggles, numeric slider bars, and small icons representing sialgiesv Agood rule for

the use of such forms is if the corresponding model object is not readibglderirom

the widget, then the widget is probably not that easy to understand for the user and should
be replaced with a simpler form.

CSC308-W15-L5 Boe 4

VI. Detailsof operation devition.

A. The"..." suffix in a menu item generally leads tmtierms of dialog:

1. Adata input dialog, with aBK button (or a button synonymous with OK).

a. Inthis case, there is only one operation to model.

b. Its name is derid from the menu item.

c. TheOK button itself is not a separate operation.

d. Ratherthere is three-phase GUI sequence voka a éngle underlying model operation:
i. Selectit from the menu (or function button).
ii. Fill inthe required values in the input dialog.
iii. Confirm the operation

2. Thealternatve © a sngle-operation input dialog leading from "..." is agkar multi-operation dialog of
some form.
a. Inthis case, there are multiple operations to model, one each fanttbasor sub-menus in the dia-
log.

b. The menu item itself does not derian operation hame, but rather a module name, in which the mul-
tiple dialog operations are defined.

B. No"..." in a menu item means that the input(s) required for the operation are collecteau#tsvdfes from
the surrounding environment.

VII. Objectand operation dergtion examples from the Calendar Tool.
A. Event (introduced in Notes Week 4).

Schedul e a Eve@ O El

Title'| |

Start Date:| | |
V] Qocation)| |

Lo)\ Coear)\ (cancel)
N\

{title ;. startDate ; ;

1. This annotated screen illustrates clearly the traceability betweeHeuskerequirements screens and
underlying abstract model.

2. Thisis an admittedly simple example viever such traceability can be achil throughout the require-
ments dexiation process with some diligence.

CSC308-W15-L5 Bge 5

B. Appointment

Schedul e an Appoi nt ment O E1

Title:| |
Dat e: | | Start Ti rre:|:|
hr nmn

buration:[_ |[]

Recurring?]

Cat egor y:| V| Security:[public v]
Locat i on:| | Priority{must V|
Reni nd?[]
Detail s:
A
]
v

K ' [a ear) Cancel |

cl ass Appoi ntnent {
String title;
Dat e start Dat e;
Dat e endDat e;
Time startTine;
Duration duration;
Recurringlnfo recurringlnfo;
Cat egory cat egory;
Location | ocati on;
Appoi nt nent Security neetingSecurity;
AppointnentPriority priority;
Rem ndl nf o rem ndl nf o;
Text Details;

1. Thisillustrates a more irolved dialog and its deréd object.

2. Notethe grouping of related Ul components into the Recurringinfo and Remindinfo objects.
a. Thisgrouping in the model is a good cue that the Ul itself cowe hetter visual cues of horelated
components go together.
b. Eg., the recurring and reminder areas could be surrounded by a box.
3. Also,the number of components violates the 7+/-2 rule.
a. Thisis a cue that the dialog itself may be too compte a single windw.

b. Some form of better ergonomic ganization could be used, such as toggles tavsimore or less
detail.

CSC308-W15-L5

C. Meeting

Confirm a Meeting

O H

Titl e:| |
Dat e: | | start Time:[]
hr mn
Dur ati on:
Recurring?[]
Cat egory:| V| Security:|public v]
Locat i on:| | Priority]must V]
Reni nd?[]
At t endees:
A
[|
v
Detail s:
A
[|
v
M nut es: |

Cancel |

class Meeting {
String title;
Date start Dat e;
Dat e endDat €;
Time startTine;
Durati on duration;
Recurringlnfo recurringlnfo;
Cat egory category;
Location | ocation;
Appoi nt nent Security neetingSecurity;
AppointnentPriority priority;
Rem ndl nf o rem ndl nf o;
At t endees attendees;
Text Details;
Text M nutes;

CSC308-W15-L5 Bge 7

D. Task

Schedul e a Task O F

TitIe:| |

Due Date:|

Recurring?]

Cat egory:| V| sSecurity:|public v|

Reni nd?[]

Detail s:

[>

4

cl ass Task {

String title;

Dat a dueDat e;

Dat e endDat e;

Cat egory category;
Security security;

int Priority;

Rem ndl nf o rem ndl nf o;
Text details;

bool ean carryOver Fl ag;
bool ean conpl et edFl ag;

1. Notethat there is &onpl et edFl ag in the model object that does not appear in the task scheduling
dialog.

2. Thereis a to-do item in the Milestone 6 task-scheduling scenario that describdhehcompleted flag
should appear once a task is scheduled.

3. Thisis an example of where the model is temporarily furtheeldped than the requirements scenarios.

CSC308-W15-L5 Bge 8

E. Derving theschedul eEvent operation.

Schedul e an Event O [
Titl e:| |
Start Date:] | End Date:] |
Cat egor y:| V] Location:] |
[T] W) Cancel '
/

Confirms operation Clearsinput dialog. Cancels operation
scheduleEvent. (GUI only; thereis scheduleEvent
(Thereis no operation no operation (Thereis no operation
named "ok".) named "clear".) named "cancel".)

cl ass Cal endar {

voi d schedul eEvent (Event);

1. Asdiscussed in Lecture Notes 4, a major collection object has been identifie€Cal #nedar .

2. Eachof the four scheduling operationsadditive in that it takes a form of scheduled item and adds it to
the Calendar.

3. Anadditive eration takes a collection component as input In an object-oriented langeagedik

Hence, the functional form of the operation signature ha€ahendar as both an input and output.

F. Refining the scheduling objects and operations.
1. Initial refinement of scheduled items using inheritance.

cl ass Schedul edl t em {
title; startOrDueDate; endDate; category; }

cl ass Appoi ntment extends Schedul edltem {...}
cl ass Meeting extends Schedul edltem{...}
cl ass Task extends Schedul edltem {...}

cl ass Event extends Scheduledltem {...}

2. Secondefinement pass, which adds component details, further refines inheritance, and refines operation
signatures.

CSC308-W15-L5 Bge 9

This file defines objects and operations related to cal endar scheduling.
See Sections 2.2, 2.4, and 2.5 of the Ml estone 6 requirements.

L I R

/

nport java.util.Collection;

/**

* The Cal endar object is derived froman overall view of Sections 2.1 through
* 2.5 of the requirenments. The functionality described in those sections

* makes it clear that a Calendar is the primarily data object of the Cal endar
* Tool .

*

* The data component of a Calendar is a collection of scheduled itenms. The

* operations are those that schedul e each of the four types of schedul ed

* item In the case of meetings, there are two operations involved -- one to
* conpute a list of possible times, and another to confirma specific selected
* meeting tine.

*/

abstract class Cal endar ({

Col | ecti on<Schedul edl t en> dat a;

/**
* Schedul eAppoi nt ment adds the given Appointnent to this.data, if an
* appoi ntment of the sane tinme, duration, and title is not already
* schedul ed.
*/
abstract void schedul eAppoi nt ment (Appoi nt nent appoi nt ment);
/ *
Schedul eMeeti ng uses the given MeetingRequest to determn ne possible
times that the requested neeting mght be held, within the existing set
of scheduled itens in the this.data. The Possi bl eMeetingTines output is
a list of zero or nore possible tines and dates that the meeting can be
* hel d.
*/
abstract Possi bl eMeeti ngTi mes schedul eMeet i ng(

Meet i ngRequest neeti ngRequest);

L I

/**
* Confirmveeting takes a MeetingRequest, |ist of PossibleMeetingTines, and
* a Selected tine fromthe list. 1t adds a neeting to this.data,

* conprised of the given request, scheduled at the selected tine. Further
* details of output constraints are forthcom ng.
*/
abstract void confirmveeting(
Meet i ngRequest request,
Possi bl eMeet i ngTi mes ti nmes,
int sel ectedTine);

/**

* Schedul eTask adds the given Task to this.data, if a task of the sane
* time, duration, and title is not already schedul ed.

*/

abstract void schedul eTask(Task task);

/**

CSC308-W15-L5 Bge 10

L S T R R R S S I S R I T B I B]

*

*

* Schedul eEvent adds the given Event to this.data, if an event of the sane
* time, duration, and title is not already schedul ed.

*/

abstract void schedul eEvent (Event event);

*

A Schedul edltemis the generic definition for the types of itenms stored in a
calendar. The Title conponent is a brief description of what the itemis
for. The startODueDate and endDate conponents indicate when the itemis
schedul ed. The category conponent is used to organize itens into rel ated
col or-coded categori es.

<p>
There are four extensions of Schedul edltem They are Appointnment, Meeting,
Task, and Event. A Schedul edltemis derived from exam ning the conmon data
fields of these four types of item and the requirenments narrative that
descri bes these itens.

<p>
The startOrDueDate is a multi-purpose conponent of Scheduledltem Its
pur pose depends on whether an itemis a Task and whether it is recurring
(Events cannot recur). For non-recurring appointnents and neetings,
Start OrDueDate is used as the single date on which the itemis schedul ed.
If the itemis recurring, StartOrDueDate is the first date on which it
occurs. For a non-recurring Task, StartOrDueDate is the single date the
task is due. |If the task is recurring, StartODueDate is the first date it
i s due.

<p>
In recurring appointments, meetings, and tasks, the endDate defines the |ast
date on which the itemw !l recur. |In events, the end date defines the | ast

date of a nulti-day event. Wen the value of end date is enpty, the

start OrDueDat e conmponent is interpreted as the single date on which the item
occurs.

/

abstract class Schedul edltem {

L S T R S T B

*

*

String title;

Dat e start OrDueDat e;
Dat e endDat €;

Cat egory cat egory;

*

An Appoi nt ment adds a nunmber of conponents to a generic Schedul ediltem The
StartTime and Duration indicate when the appointment starts and how long it
lasts. The Location is where it is held. The Security indicates who can
see that the appointnment is scheduled. AppointmentPriority is how inportant
the appointment is. Remindinfo indicates if and how the user is remni nded of
the appointment. Details are free formtext describing any specific

appoi nt ment details.

<p>

This object is derived from Section 2.2 of the Ml estone 6 requirenents, in
particul ar Figure 6.
/

abstract class Appointment extends Schedul edltem {

Time startTi ne;

Dur ati on duration;

Recurringl nfo recurringl nfo;
Location | ocati on;

Security security;
AppointmentPriority priority;

CSC308-W15-L5 Bge 11

Rem ndl nfo remni nd;
Text details;

}
/**
* A Meeting adds two conponents to an Appointnment. The Attendees conponent
* reflects the fact that a neeting is scheduled for nore than one person,
* whereas an appointnment is for a single user. The MeetingM nutes conponent
* is a URL for the mnutes of a nmeeting, once it has been hel d.
* <p>
*

This object is derived from Section 2.4.1 of the Mlestone 6 requirenents, in
* particular Figure 46.

*/

abstract class Meeting extends Appointnent {

Att endees attendees;

Meet i ngM nut es mi nut es;

*

A nmeeting request has all the conponents of a neeting plus three additional
conponents to specify the latest dates and tine at which the nmeeting can be
schedul ed. A neeting request is used to specify a range of possible neeting
times, to allow scheduling alternatives to be considered. In the neeting
request, the inherited fields for startDate, endDate, and tine are used for
the earliest dates and time at which the neeting can be held, i.e., for the
begi nni ng val ues of each range. The description of the Schedul eMeeting
operation has further details on how neeting requests are handl ed.

<p>
This object is derived fromSection 2.4.1 of the Mlestone 6 requirenents,
in particular Figure 45.

L T R T R

*

*/
abstract class MeetingRequest extends Meeting {
Date | atest Start Dat e;
Dat e | at est EndDat e;
Time | atestStartTi ne;

}
/**
* The Possi bl eMeeti ngTi nes object is a collection of (start tine, start date)
* pairs at which a neeting could be held.
*/
abstract cl ass Possi bl eMeetingTi mes {
Col | ecti on<Ti neAndDat e> ti nesAndDat es;
}

/**
* A Ti meAndDat e object is an element of a possible neeting tine list.
*/
cl ass Ti meAndDat e {
Time startTi ne;
Dat e start Date;

}

/**
* Like an Appointment, a Task adds a nunmber of components to a generic
* Schedul edltem A Task differs froman Appointnent as follows: (1)
* Appoi ntnments have StartTinme, Duration, and Location; Tasks do not. (2) For
* Appointnments, the priority is either "Must’ or 'Optional’; for Tasks,
* priority is a positive integer indicating the relative priority of a task
*

conpared to other tasks. (3) For appointnents, remi nders can be set to

CSC308-W15-L5 Bge 12

occur at hour or minute granularity; for tasks, the smallest granularity of
rem nder is a day. (4) Tasks have a conpl et edFl ag, and conpl eti onDate
conponents; appoi ntments do not.

<p>
The completedFlag is true if a Task has been conpleted, false if not. The
system does not enforce any specific constraints on the setting of a task’s
Conpl etedFl ag. That is, the user may set or clear it at will. Hence the
neani ng of the conpletedFlag is up to user interpretation, particularly for
recurring tasks.

<p>
The completionDate is the date on which as task is conpleted. The system
does not enforce any specific constraints on the setting of a task’s
conpl etionDate (other than it being a |legal Date value). As with the
conpl et edFl ag, the meaning of the conpletionDate value is up to user
interpretation, particularly for recurring tasks.

<p>
This object is derived fromSection 2.4.2 of the Mlestone 6 requirenents,
in particular Figure 47.

P T R R T S R R S R R N

*

*/

abstract class Task extends Schedul edltem {
Recurringl nfo recurringl nfo;
Security security;
TaskPriority priority;
TaskRem ndl nf o rem nd;
Text details;
bool ean conpl et edFl ag;
Dat e conpl eti onDat e;

*

An Event is the sinplest type of Scheduledltem The only conponent it adds
to is Location.
<p>
This object is derived from Section 2.4.3 of the Mlestone 6 requirenents,
* in particular Figure 48.
*/
abstract class Event extends Schedul edltem {
Location | ocati on;

* Ok kX F

}
/**
* An AppointnentPriority indicates whether an appointment is a nust or if it
* is optional. This information is used to indicate the general inportance of
* an appointnent to the user. The operational use of AppointmentPriority is
* in the Schedul eMeeting operation, where the neeting scheduler can elect to
* consider optional appointnments as allowable tinmes for a neeting.
*/
enum AppointnentPriority {

Must ,

Opt i onal
}
/**
* A TaskPriority is a positive integer that defines the priority of one
* task relative to others. 1It’s defined as a separate class in case we want
* to enforce the value range restriction within the class constructor.
*/
abstract class TaskPriority {

int val ue;

CSC308-W15-L5 Bge 13

/**
* For now, a Date is just as string. This definition will expand soon.
*/
abstract class Date {
String val ue;

/**
* Aux function used in schedul eEvent specs.
*/
abstract bool ean isValid();
}
/**
* Duration is the time length of a scheduled item in hours and m nutes.
*/
abstract class Duration {
int Hours;
int Mnutes;
}
/**
* As with Date, Time is for now just as string. This definition will expand
* soon.
*/

abstract class Time {
String val ue;

}
/**
* Recurringlnfo has conponents to specify the nature of a recurring item The
* isRecurring conponent is an on/off flag that indicates whether an item
* recurs. The interval is one of Wekly, Biweekly, Mnthly, or Yearly. The
*

Interval Details conponent defines the precise neans to define recurrence for
* the different interval |evels.
*/

abstract class Recurringlnfo {

bool ean i sRecurring;

Interval interval;

Interval Detail s details;

*

Interval specifies the granularity at which recurring itens are defined.

The Weekly and Biweekly settings allow the user to specify recurrence on one
or nore days of the week. The Monthly setting allows the user to specify
recurrence on one or nmore days in one or nore weeks of each nmonth. The
Yearly setting allows the user to specify recurrence on one or nore specific
dates in the year.

* 0% kX F Sk k¥

~

enum I nterval {
Weekl y, Biweekly, Mnthly, Yearly

}

/**

* Interval Details are either weekly or nmonthly. This parent class is used
* generically for either kind of details.
*/

abstract class Interval Details {}

/**

CSC308-W15-L5 Bge 14

* Weekl yDetails has an on/off setting for each day of the week on which
* an itemrecurs. These details are also used for the Bi Wekly setting
* of the recurrence interval.

*/

abstract class WeklyDetails extends Interval Details {

int onSun;
int onMon;
int onTue;
i nt onW\ed;
int onThu;
int onFri;
int onSat;

}

/**

* Monthl yDetails can be specified on a day-of-the-week basis or on specific

* date(s) basis. The two extending classes have the specific details for these
* two types of settings. This parent class is used generically for either

* kind of details.

*/

abstract class MnthlyDetails {}

/*

* Mont hl yDayDetail s contains a weekly details conponent for each possible week
* of a month. The First- through ThirdWekDetails are distinct for all

* possible months. Depending on the configuration of a particular nmonth in a
* particular year, there is potential conflict in specifying recurrence in the
* fourth, fifth, or last weeks. The conflicts are resolved as foll ows:

* <p>
* For months with 4 weeks only, the settings in FifthWekDetails do not apply,
* and the settings in LastWekDetails, if present, override any settings in

* FourthWekDetails. For nonths with 5 weeks only, the settings in

* Last WeekDetails, if present, override any settings in FifthWekDetails.

* (For months with 6 weeks, the LastWekDetails conponent applies to the 6th

* week, and there are no conflicts.)

*/

abstract class MonthlyDayDetails extends MnthlyDetails {
Weekl yDetail s firstWekDetails;
Weekl yDet ai | s secondWeekDet ai | s;
Weekl yDet ai | s t hi rdWeekDet ai | s;
Weekl yDet ai | s fourt hWekDet ai | s;
Weekl yDet ai |l s fifthWekDetails;
Weekl yDet ai | s | ast WeekDet ai | s;

}

/**
* Mont hl yDateDetails is a collection of zero or nore specific dates in a nonth
* on which an itemrecurs.
*/
abstract class MonthlyDateDetails extends MnthlyDetails {
Col | ecti on<Dat eNunber > dat es;

}

/**

* A DateNunber is a positive integer between 1 and 31. It’'s defined as a

* gseparate class in case we want to enforce the value range restriction within
* the class constructor.

*/

abstract class Dat eNunmber {

CSC308-W15-L5 Bge 15

int val ue;

}

/**
* A Category has a name and StandardCol or, which serve distinguish it from
* other categories. Colored-coded categories serve visual cues to the user
* when viewing lists of scheduled itens in sone form Categories can also be
* used in filtered view ng.
*/
abstract class Category {
String nane;
St andar dCol or col or;

}

/**

* A StandardColor is one of a fixed set of possibilities, per the requirenents
* scenari o0s.
*/
enum St andar dCol or {
Bl ack, Brown, Red, Orange, Yellow, Geen, Blue, Purple

}

/**

* For now a Location is a free-formstring indicating i n what physi cal

* |ocation an itemis scheduled. It nmay be refined to sonmething |ike
* (building, room pair.
*/

abstract class Location {
String val ue;

}
/**
* Security is one of four possible levels, each of which is described
* individually in the body of the enum The selected | evel specifies the
* degree of visibility a scheduled itemhas to other users. For an
* appoi ntnment, task, or event, "other users" are defined as all users other
* than the user on whose cal endar the schedul ed item appears. For a neeting,
* "other users" are defined as all users not on the Attendee list of the
* meeting.
*

~

enum Security {

/**

* Public security means other users can see the scheduled itemand all the
* information about the item

*/

Publi c,

/*
* PublicTitle security neans other users can see the title of the
* schedul ed item but none of the other information about the item

*/

PublicTitle,

/**

* Confidential security means other users can only see that a user is
* unavailable for the time period of a scheduled item no other

* informati on about the scheduled itemis visible. Since confidential
* security applies to a specific time period, it is meaningful only for
*

appoi nt ments and neetings, not for tasks or events; tasks and events do

CSC308-W15-L5 Bge 16

* not have specific time conponents.

*/
Confidential,
/**
* Private security neans other users see no information at all about a
* scheduled item not even that the itemis scheduled. Note that private
* security hides a scheduled itemfromthe Schedul eMeeting operation,
* g.v., so that a neeting may be scheduled at the same time as a private
* appointnment. It is up to the user to handle this situation by
* accepting or refusing the scheduled neeting. G ven the nature of
* private security, it does not apply to neetings. 1l.e., only
* appoi ntments can have private security.
*/
Private
}
/**
* Remindlnfo has a flag that indicates if a scheduled itemw |l have a
* rem nder sent and defines one of three ways that the user is alerted when a
* schedul ed event is to occur. OnScreen neans the user is reminded with a
* pop-up alert on her conmputer screen. BeepOnly nmeans the user is rem nded
*

with a sinple audible tone on the conputer. Email neans the user is sent an
* electronic mail message remni nder.
*/

abstract class Rem ndlnfo {

bool ean i sRem nded;

HowRen nded howReni nded;

}

enum HowRem nded {
OnScr een,
BeepOnl vy,
Emai |

}

/**
* Appoi nt ment Reni ndl nf o extends Renindl nfo by adding information for how
* soon before a scheduled itemthe remnder is to be sent. For appointnments,
* the tine units are minutes, hours, or days (cf. TaskRem ndl nfo).
*/
abstract class Appoi nt ment Rem ndl nfo extends Remi ndlnfo {
doubl e howSoonBef or e;
Appoi nt ment Rermi nderUnits units;

}

/**
* TaskRemi ndl nfo extends Renindlnfo by adding information for how soon before
* a task the reminder is to be sent. For tasks, the tine unit is days. A
* fractional day can be used for smaller granularity if desired.
*/
abstract class TaskRem ndl nfo extends Reni ndlnfo {
doubl e howSoonBef or e;

}

/**

* Appoi ntment reninders can cone mnutes, hours, or days before an
* appointnment. The units for these can be fractional, for nmaxinmum
* flexibility.

*/

CSC308-W15-L5 Bge 17

enum Appoi nt nent Rermi nderUnits {
M nut esBef ore, HoursBefore, DaysBefore

}

/**
* Attendees is a collection of nanes of those who attend a neeting.
*/
abstract class Attendees {
Col | ecti on<String> nanes;

}

/**
* MeetingMnutes is current defined as the URL for the location of the minutes

* of a meeting. This definition may be refined in upcom ng versions of the
* requirenents.

*/
abstract class MeetingM nutes {
String url;
}
/**
* The details of the Text object are TBD. It may just turn out to be a
* plain string. O it my a limted formof HIM, so we can include |inkable
* URLs init.
*/

abstract class Text {}

G. Obseruations.
1. Inheritances generally easier to dee ottom up, than top down.
2. Remembet- "what the user thinks" is the driving factor in determining model acgaratcorrectness.

VIII. Another example -- viewing objects and operations from the Calendar Tool.

A. Basedon the Milestone 6 excerpt from Lecture Notes 3, the following shows some initial objeeticleri
/

This file defines the objects and operations related to the different
cal endar views available to the user. See Section 2.3 of the MIestone 6
requi renents.

The structural viewing levels are item day week, nonth, and year. There
are operations to go to the previous and next views at any level, as well as
an operation to go to a specific date. Lists of scheduled itens can be
viewed in a variety of ways. A general view filter operation can be applied
to both structural and list views. Operations are available to view other
users’ calendars and to view a list of active view ng w ndows.

NOTE: this is work in progress. A good deal of objects are yet to be
defi ned.

E I I S S I I R I I

~

import java.util.Collection;

*

A Dail yAgenda has a full day nane and a list of tine-slot descriptors. The
Ful | DayNane consists of the day nane itself (e.g., Wdnesday), the nonth,

the date, and the year. Each itemin the TineSlotDescriptor |ist consists
of a starting tine (e.g., 8 AM and a list of zero or nore scheduled itens.

/

* % % Xk

CSC308-W15-L5 Bge 18

*/
abstract class Dail yAgenda {
Ful | DayName nane;
Col | ecti on<Ti neS| ot Descri ptor> tinmes;

}

/**
* A Ful | DayNanme has the conpl ete and uni que designation of a cal endar day.
*/
abstract class Ful |l DayNane {
DayNane day;
Mont hName nont h;
Dat eNunber dat e;
Year Nunber year;

}

enum DayName {
Sunday, Mbonday, Tuesday, Wednesday, Thursday, Friday, Saturday

}

enum Mont hName {
January, February, March, April, My, June,
July, August, Septenber, Cctober, Novenber, Decenber

}

/**
* Atime slot descriptor represents one slot (physically, arow) in a daily
* agenda. The Ti neSl ot Name conponent is the start time for the slot. The
list of BriefltemDescriptors contains the itens that begin within the slot,
where "within" is defined as the start time plus the current time increment.
The overl aps conponent is a list of items with start tines that overlap with
* an itemin the BriefltemDescriptor I|ist.
*/
abstract class TineSlotDescriptor {

Ti meSl ot Nane sl ot Nane;

Col | ection<BriefltenDescriptor> itenDescriptors;

Overl aps overl aps;

* * *

}

/**
* A Ti meSl ot Name consists of a nuneric TinmeValue and an AmOr Pm i ndi cat or.
* TODO this definition should be reconciled as appropriate with the
* definition of Tine in schedul e.java.
*/
abstract class TineSl ot Nanme {
int tineVal ue;
AMbr PM anOsr Pm

}

/**
* A brief itemdescriptor contains a subset of the information for a full
* scheduled item The information is a Title, StartTine, Duration, and
* Category.
*/
abstract class BriefltenDescriptor {

String title;

Tinme startTine;

Dur ati on duration;

Cat egory category;

CSC308-W15-L5 Bge 19

Overl aps contain zero or nore BriefltenDescriptors that overlap with with
the nmaster itemin a given tine slot. An overlapping itemis one with a
start time within the same time slot as other itens. The "master"” itemin a
time slot is the itemthat is first in a sorted order based on start tine,
duration, and al phabetic title as the prinmary, secondary, and tertiary sort
* keys, respectively.

*/

abstract class Overlaps {

Col | ecti on<BriefltenDescriptor> descriptors;

L I

}

abstract class Dail yFormat Options {
Nor mal Ti meRangeOpti on nor nal Ti mreRangeOpti on;
Ti mel ncrement Opti on tinel ncrenent Option;
int increnentHei ghtOption;
ShowOr H de showHi de24Hour sOpt i on;
ShowOr H de showHi deExact Ti meOpt i on;
ShowOr H de showHi deDashedLi nesOpti on;
ShowOr H de showHi deExt ensi onArrowsOpti on;
OnOr O f proportional Spaci ngOnOf f Opt i on;
Di spl ayOver| apsOption di spl ayOverl apsOpti on;
Def aul t Hei ght AndW dt hOpt i on def aul t Hei ght AndW dt hOpt i on;
}

abstract class Normal Ti neRangeOption {Tinme startTinme; Tine endTine;}
abstract class TinelncrenentOption {int hours; int mnutes;}

enum ShowOr Hi de {Show, Hi de}

enum ONOr o f {On, Of}

enum Di spl ayOver | apsOpti on {Horizontal, Vertical}

abstract class Defaul t Hei ght AndW dt hOption {int height; int Wdth;}

abstract class Hour {
int val ue; /1 Must be | egal hour val ue

}

abstract class Mnute {
int val ue; /1 Must be |egal mnute value

}

enum AMorPM { AM PM }

abstract class Weekl yAgendaTabl e {
Ful | WeekNane nane;
Col | ecti on<Weekl yTi meSl ot > sl ot s;

}

abstract class Ful | WekNane {
Mont hName nont h;
Dat eNumber Range dat eRange;
Year Nunber year;

}

abstract cl ass Dat eNunmber Range {
Dat eNunber start;
Dat eNunber end;

}

abstract class Wekl yTi neSl ot {

CSC308-W15-L5 Bge 20

Col | ecti on<Weekl ylt enDescription> itemns;
}

abstract class WeklyltenDescription {
DayNane day;
Ti meRange range;
String truncatedTitle;

}

abstract class Ti neRange {
Tinme start;
Ti me end;

}

abstract class Wekl yAgendalLi st {
Ful | WeekNane nane;
Col | ecti on<Dail yltenList> itenmns;
}

abstract class Dailylteniist {
DayName nane;
Dat eNunber dat e;
Col | ecti on<Dai l yl t emDescri pti on> itens;

}

abstract class Mnthl yAgenda {
Ful | Mont hName nane;
DayName firstDay;
Nurrber OfF DaysPer Mont h nunber O Days;
Col | ecti on<Dai l yl t emDescri pti on> itens;

}

abstract class DailyltenmDescription {
String val ue; // to be refined

}

abstract class Ful |l Mont hName {
Mont hNarme nont h;
Year Nunber year;

}
cl ass Number O DaysPer Mont h {

int val ue; /1 Must be between 28 and 31, inclusive
}

abstract class YearlyCal endar {
Year Nunber year;
Col | ecti on<Smal | Mbnt hVi ew> nont hs;

}
abstract class Small Monthview { /* ... */ }
/**
* A YearNunmber is a positive integer between 0 and 9999. |It’'s defined as a

* separate class in case we want to enforce the value range restriction within
* the class constructor.
*/
abstract class Year Nunmber {
int val ue;

}

CSC308-W15-L5 Bge 21

/*
* Model operations to place in the appropriate class:

Dai | yAgenda vi ewbDay(Cal endar) ;
Weekl yAgendaTabl e vi ewWéekTabl e(Cal endar) ;
Weekl yAgendali st vi ewéekLi st (Cal endar) ;
Mont hl yAgenda vi ewibnt h(Cal endar) ;
Year | yCal endar vi ewYear (Cal endar) ;

*

*/

B. Obserations.

1.

Modelsof the agenda at differentves have all necessary info, some of which may be filtered out from
view based on option settings.

. To get a complete model picture, all of the examples in the scenarios need to be examined.

a. E.g.consider the components of obj@ctneS| ot Descri pt or:

String tineSl ot Nane;
Col | ecti on<briefltenmDescriptor> itens;
Col | ecti on<briefltenmDescri ptor> overl aps;

b. FHgure 10 (in the Milestone 6 requirements excerpt) shows the fgiomvponents.
c. Figurel3 clarifies that the third componef¥/r | aps) is necessary.

C. Questions:

1.

2.

ShouldtheDai | yAgenda object hae aDai | yFor nat Opt i ons component?
a. Why or why not?
b. If not, what object does ti@Dai | yFor nat Opt i ons as a component?

Isthere ag reason to consider a parent class from which the differegitdgenda objects inherit?

IX. Summaryobservations about the analysis and specification phases of the software.

A. Thegoal of requirements modeling is to buildabstract model of the user-&l requirements.

1.
2.

Abstractmeans that certain details of the useelléescription are left out.

Whatis obviously left out is much of the Engliskerbiage that is used to describe the system clearly in
end-user terms.

. Theother very important aspect of the abstraction is leaving octradtete Ul details, such as

a. Buttonssuch a<X, Cl ear, and Cancel that are strictly GUI careniences, not fundamental to the
underlying model.

b. Rurely decoratie aspects of the interface that neak "easy on the user eyes" but that do not represent
fundamental properties of model objects or operations.

B. Thereis very beneficial feedback between the requirements analysis and specification phases ofattee softw
development process.

1.

2.

3.

Suchfeedback is a natural part ofvdopment since the uséavel requirements, written in English prose

and pictures, describe precisely the same system as the formal model, written in the formal specification
language and graphical notations.

a. TheEnglish requirements are understandable to human users and domain experts.

b. The requirements model is understandable to the software analysts.

c. Itis very important that these dvdifferent representations are consistent with one another.

Thisconsisteng is achieved by deriving the formal model from the uskwe requirements, refining the
model, and then transferring the refinements back to the wskEtglish and pictures.

The"feedback loop" between English requirements and SpecL model specification continues until the

CSC308-W15-L5 Bge 22

user says the requirements are complete and the specification passes cleanly through the SpecL checker.

X. Modelingthe concrete GUI?

A. Are things like menus and dialog windows objects?

1.
2.

3.

TheCSC 308 answer to these questions is "no".

Thereason is that we are definiapstract model specifications in which only data that are directly
manipulatable by the user are modeled.

Thetool's concrete interface is not modeled as an object.

B. Thismodeling decision relates to the nature of the tool Uls we are specifying in 308, wmimeetlynani pu-
lation user interfaces.

1.

Theterm "direct-manipulation” describes the style of interface thassdhe human user direct control
over the functions performed by a software system.

ModernWIMP interfaces (Whdows, Icons, Menus, Pointing) are almosvajs direct manipulation in
style.

. Directmanipulation Uls are in contrast to older style Uls in which the system had more coatnwhen

commands could be performed by the user.

With a direct manipulation interface, we wi¢he user as being in control of the operations that are per

formed, not the system.

a. Theend user may iroke any command directly via menus, with napticit prompting from the sys-
tem.

b. The user may generally cancel commands at will.

c. Conceptuallythe system is an invisible part of what is going on.

. Whenmodeling a system with a direct manipulation Ul, we can abstract out objects that the user does not

change.

C. TheUl structure of the tool does provideganizational guidance.

1.

2.

In particular the hierarchical structure of the Ul pides a good basis for the modulaganization of
objects and operations.

Hencewe definemodules based on hae the tool Ul is oganized.

D. Someobservations about concrete Ul modeling.

1.

Itis notwrong to model a GUI itself as an object.

2. Inour case, we're following a caention to model only those objects that the user can change.
3.
4. Thereare cases where modeling a tedJI is necessary.

Hencdor us, it is nonecessary to model the unchangeable parts of the tool as objects.

a. For example, some systems allthe user to do things kkdange the format of a toolbar define
entirely nev toolbars.

b. In our 308 projects, we're not generally considering such tool features; if a 308 project does GUI
building features, theneed not be modeled formally.

XI. Modelingthe tool itself.

A. Isthe Calendar Tool itself an object?, an operation?, a module?

B. Thereare a variety of ways to model theemall system itself.

C. Oneapproach is not to model it at all.

1.
2.

3.

Inthis approach, we completely abstract out the tool structure from the model.

Thishighly abstract vie of the tool is consistent with the al®monvention to abstract out objects that
the user does not change.

l.e.,if the user cannot change the tool itself, it need not be modeled.

CSC308-W15-L5 Bge 23

D.

If we do choose to model theepall tool, it can be modeled as either an object or an operation, depending on
the kind of processing that it performs.

1. Thereare two high-level models for an information processing tool such as we ailditg in 308 --
transform-oriented andtransaction-oriented.

2. Ina transform-oriented system, processing isvei@ as transforming a single large piece of data from one

form into anotherusing a single large operation.

a. Ina transform-oriented system, the inputs and outputs are typically large pieces of data that are widely
different in structure.

b. The transform operation takes the input, with some additional operational parameters, and transforms
it into the output.

c. A report-generation system is a good example of transform-oriented; it takes as irgatétde
database plus some format parameters, and produces a large report.

d. Atransform-oriented systems is best modeled at the vepds an @eration.

3. Atransaction-oriented system performs its work with gdanumber of smaller operations, each one per
forming some form of incremental action.
a. Intransaction system, the difference between operation inputs and outputs is a typically small, incre-
mental change.
b. A database management system is an example of a transaction-oriented system, where operations to
add, delete, and change database recorde rakatively small changes to theverall database.
c. Atransaction-oriented system is best modeled at thetelpaiean dject.

In practice, most information processing systems are a hybrid of theystem types, comprised of both
transformational and transactional components.

1. Atthe top-leel, the CSC 308 projects are transaction-oriented.
2. Theremay be major operations within the systems that are transform-oriented.

F. As an aample of top-leel tool modeling, here is the outline for the Calendar Tool teg-faodule.

/****

*

* Class Cal endarTool defines the top-level tool object that contains the
* currently active cal endar db, systemstate information, and an abstract file
* space.
*
*/
cl ass Cal endar Tool {
Cal endar DB cal endar DB;
Fi | eSpace fil eSpace;
Systenfst at e systenft at e;

}

class CalendarDB { /* ... */ }
class FileSpace { /* ... */ }
cl ass Systenttate { /* ... */ }

G. We'll discuss top-leel tool modeling further in upcoming lectures.

XIl. Compiling an abstract Ja nodel.

A.
B.

Usethe standarglavac compiler to check a model.

Theexamples shown alve ae uncomentional in that thg havemultiple top-level classes in one file.
1. Thej avac compiler is OK with this.
2. Aswe refine the model, we will me 1 the typical Jaa convention of one class pelj ava file.

Whenwe use Jaa's Col | ect i on interface, we must import at the top of the file with

CSC308-W15-L5 Bge 24

import java.util.Collection
This is the only import you'll need at the current abstraa l&f modeling.

D. A common error in early model eégopment is to leae djects undefined.
1. Thecorventions in the 308 examples is to use this style for yet-to-be-defined objects
class Whatever { /* ... */ }

2. Thecomment with ellipses is a place holder indicating that thenefe work to do.

3. Includingthe ellipses comment is a good practice, because the model will compile fine withoutuhem, b
an undefined definition may be easiertertmok without some indication of its unfinished state.

E. You can use the standgrdvadoc documentation generator to produce a browsable version of the model.

1. It's a good idea to put avadoc output is a separate sub-directory of the model, so all of the generated
files do not crowd the specification directory.

2. Thecorvention used for the 308 examples is todaj avadoc sub-directory under the projespec-
i fication directory.

