
CSC308-W15-L6-7 Page 1

CSC 308 Lecture Notes Weeks 6 and 7
Introduction to Fully Formal Specification

I. Somepractical benefits of formal specification.

A. Betterunderstanding of software.

B. Precisecommunication among developers.

C. Basisfor thorough testing.

D. Basisfor formal verification (when appropriate).

E. Basisfor automatic programming (dream on).

F. Here’s a motivational bottom line:

1. Supposeyour boss says:

I want you to do whatever it takes to build me software of the best possible quality, that has the small-
est possible likelihood of failing.

2. For some academics and software professionals, formal specification is a key part of addressing a man-
date like this.

II. Formal specification with preconditions and postconditions.

A. As model object and operation definitions take shape, we are ready to formalize the definitions fully.

B. Theformal technique we will use in 308 is based on operationpreconditionsandpostconditions.

1. A precondition is a predicate (i.e., boolean-valued expression) that is true before an operation executes.

2. A postcondition is a predicate that is true upon completion of an operation.

3. Sincepre- and postconditions are predicates, this style of formal specification calledpredicative.

C. Thepre- and postconditions are used to specify fully what the system does, including all user-level require-
ments for the system.

D. Thisformal specification is part of the overall requirements specification process we’re following, with these
steps:

1. gather user-level requirements via usage scenarios

2. identifyobjects and operations

3. formalizeoperations with pre- and postconditions

4. refineuser-level requirements based on formal specs

5. refineformal specs based on user-level refinements

6. iteratesteps 1-5 until done

E. The"until done" step involves two lev els of validation.

1. First,we must validate that the specified system is complete and consistent from the end user’s perspec-
tive.
a. Thatis, the system meets all end-user needs and does so in a way that is wholly satisfactory to the end

user.
b. This is accomplished by continued consultation with the end user.

2. Thesecond level of validation involves completeness and consistency from a formal perspective.
a. Thiscan be accomplished in a number of ways.
b. In the case of mechanized specification languages, such as Spest, some completeness and consistency

checking is done using a computer-based analyzer.
c. Anothervaluable validation technique is peer review via formal walk-throughs.
d. Also, there are techniques for formal specification testing, including the postulation and proof of

CSC308-W15-L6-7 Page 2

putative theorems.
i. Suchtheorems define properties of the system that we expect to be true, and which can be proved

true formally with respect to the pre- and postconditions.
ii. We will discuss putative theorems briefly in 308, but not use them.

III. Formal specification maxims.

A. In developing any formal software specification, it is useful to observe the following two maxims:

1. Nothing is obvious.

2. Never trust the programmer.

B. Thefirst maxim relates primarily to user-level requirements.

1. It is often easy to think that a requirement is sufficiently obvious that it need not be stated formally.

2. Theproblem with this thinking is that one person’s obvious is not always the same as another’s.

3. To ensure that a specification is sufficiently precise, stating the "obvious" is necessary.

C. Thesecond maxim is necessary to avoid nasty surprises in an implementation.

1. In many cases, we might consider an application to be sufficiently simple that we can trust the program-
mer to get a user-level requirement right if we forget to specify it.

2. Ingeneral, such trust is a bad idea.

3. It is better for the specifier to maintain a respectfully and cordially adversarial relationship with the imple-
mentor.

IV. Overview of Spest predicate notation.

A. Predicatesin Spest use standard Java notation for Boolean expressions, augmented with additional predicate
logic operators.

B. In addition to Java Boolean expressions, we’ll use standard Java arithmetic, and methods available on Java
Collections andStrings.

C. Theseoperations are summarized in Table 1.

1. Thepredicate logic operators are used in boolean-valued expressions.

a. Logicaland, or, and not have the same meaning as their equivalents in a programming language, e.g.,
"&&", "||", and "!" in C and C++.

b. Logical implication and equivalence have their standard logical meanings, per the following truth
tables

p q p=> q p q p<=> q

0 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

c. Theconditional choice operator has the truth table:

p x y p? x : y

0 x y y
1 x y x

where expressionsx andy must have the same type.

CSC308-W15-L6-7 Page 3

Predicate Logic: Relational:
Operator Description Operator Description

&& logical and == primitive equality
|| logical or !- primitive inequality
! logical not < primitive less than
if (...) logical implication > primitive greater than
iff logical equivalence <= primitive less than or equal to
if (...) else conditional choice >= primitive grtr than or equal to
forall universal quantification .equals object equality
exists existential quantification .compareTo object comparison

Logical Extensions: Arithmetic:
Operator Description Operator Description

x’ value after execution + addition
return return value of method - subtraction

* multiplication
/ division

Collections, Lists, Strings:
Operator Description

.size() size of collection

.contains(Object o) collection membership

.get(int i) get ith list element

.length(String s) length of s
other collection ops seeCollection docs
other list ops seeList docs
other string ops seeString docs

Table 1: Spest Expression Operators.

d. Theuniversal and existential quantifiers have their standard logical meanings, but will be applied in
specific ways, as upcoming examples illustrate.

2. Thearithmetic operators are used in numeric-valued expressions.
a. Addition,subtraction, division, and multiplication have their standard mathematical meanings.
b. Remember that preconditions and postconditions are always boolean valued, so arithmetic must

always be performed in the context of a boolean expression.
c. E.g.,a + b is not a legal postcondition, but\result == a + b is.
d. Notealso that in specifications, we are assuming idealized mathematical arithmetic, without overflow

or underflow
e. If the precision of numeric expressions is an issue in a specification, then it must be dealt with explicit

logic.

3. Thecollection operators are used with values ofjava.util.Collection or java.util.List,
the latter used to model collections in which order must be specified.

4. All other standard Java operators and library methods can be used in predicate expressions.

5. Asalways in Java programs, we must be aware of when to use.equals versus==.
a. For Spest specifications,== should only be used for primitive typesint, double, andboolean.

CSC308-W15-L6-7 Page 4

b. For all other class-defined types, includingString, .equals is used for testing equality.
c. For inequality of class types, use.compareTo.

D. Furtherdetails of the notation are covered in the Java and Spest reference manuals, available in the 308 doc
directory.

E. Thelogic of Spest is comparable to other formal specification languages.

1. A difference between our use of Spest and a number of contemporary languages is collections of instead
of mathematical sets.

2. Formally, both collections and sets can be fully axiomatized (i.e., mathematically defined), so there is no
lack of formality in the use of collections.

3. In fact, Spest provides definitions ofpure Java collections, which are defined with fully side-effect-free
methods.

4. Overall, the use of collections instead of sets results in little difference in a specification.
a. Setnotation makes certain low-level specification easier than with lists, such as operations that can be

modeled with set union and difference.
b. On the other hand, collection and list notation makes other forms of specification easier than with sets,

such as specification of ordering constraints.

V. "Programming" with predicates.

A. The language of predicates used in pre- and postconditions can be thought of asnon-proceduralprogram-
ming.

B. Therules for this style of "programming" are different than the procedural kind.
1. We define data, but only in abstract terms and from an end-users "real world" perspective, not from a

computer efficiency perspective.
2. We define functions, but only in abstract terms of what the functions do, not how they work.
3. Hence,the only "code" we have are boolean expressions at the beginning and ending of functions, no

code bodies.
4. Theclosest thing we have to traditional control constructs are the two quantifiersforall andexists.

a. However, these quantifiers are fundamentally different than normal programming language controls.
b. Namely, they only return boolean values, and they don’t make anything "happen".

5. Insteadof procedural descriptions of how functions work (i.e., what happensinsidea function), we have
only true/false descriptions of what functions do (i.e., what’s truebeforeandafter the function happens).
a. Time does not pass within pre- or postconditions, even ones with quantifiers.
b. Rather, pre- and postconditions are simply statements of mathematical fact, that are instantaneously

true or false.
c. Hence,ev en though aforall may seem somewhat like a for-loop, it is just a boolean expression that

is only true or false.
d. It may be a big boolean expression that is true in a lot of cases, but it’s still just a boolean expression.

C. In some cases, it may be necessary to specify certain procedural aspects of a system, specifically the order in
which operations occur.

1. However when we do this we need to be careful not to lapse into conventional programming.

2. Therefore,we will specify ordering constraints non-procedurally by writing the precondition of a succes-
sor operation to be dependent on the postcondition of a predecessor operation.
a. E.g.,if operationB must follow operationA, we write the postcondition ofA such that the only way

the precondition ofB can be true is ifA’s postcondition is true.
b. In general, this is accomplished by having A’s postcondition require some unique value for one or

more outputs, and then having B’s precondition state that its inputs must have the values required by
A.

c. In this way, we require thatA must execute beforeB, if B is ever to happen.

3. Asalways, we will specify procedural (i.e., step-by-step) behavior only when it isfundamentalto the way

CSC308-W15-L6-7 Page 5

the user operates.

4. In particular, we need to be careful not to specify procedural details of a particular GUI, when it is only
one particular way to access the abstract operations.

5. Here’s the way to think about it -- if the usermustperform a series of operations in a particular order, then
we’ll specify the order.

VI. An initial example of fully formal specification.

A. For starters with pre- and postconditions, we’ll begin with some Calendar tool operations that are simpler
than the scheduling and viewing operations we’ve examined in recent weeks.

B. Specifically, we’ll look at operations for adding and finding registered Calendar Tool users and groups.

C. Theseoperations have useful but relatively straightforward specifications.

D. Next week we’ll return to the specification of the more involved scheduling a viewing operations.

VII. Synopsisof requirements for user database admin functions.

A. Whenthe user selects the ’Users ...’ i tem in the ’Admin’ menu, the system displays the screen shown in
Figure 1.

1. UserName is a free-form string;Id is a unique system id of eight characters or less;Email address is
free-form string; phoneArea code is three digits,Number is seven digits;

2. TheAdd command adds a new user;Id field must be unique.

3. TheFind command finds byName or Id or both.
a. If find is by name and the name is not unique, the system displays list of ids for users of that name.
b. The user clicks on an item in the list to see the full record for that id.
c. If no user of the given name or id is found, the system displays a "no users found" pop-up dialog.

4. Change works after the user changes the most recently displayed record.
a. Typically, the user runsFind command first, then changes.
b. The original record is removed, new record is added.

5. Delete removes the most recently displayed record, typically located with aFind command; the

Manintain User Database

Clear Close

Name:

Id: Phone:
area number

Email:

Add Find Change Delete

Figure 1: User database maintenance dialog.

CSC308-W15-L6-7 Page 6

system displays an "are you sure" pop-up dialog for confirmation.

B. Whenthe user selects the ’Groups ...’ i tem in the ’Admin’ menu, the system displays the screen in
shown Figure 2.

1. GroupName is a free-form string that is unique for all groups;leaders andGroups are lists of user
Ids for the group leaders and members, respectively; all leaders must be listed as members.

2. TheAdd command adds a new group; theName must be unique.

3. TheFind command finds a group by name.

4. Change works after the user changes the most recently displayed group record.
a. Typically, the user runs theFind command first, then changes.
b. The original record is removed, the new record is added.

5. Delete removes the most recently displayed record, typically located with aFind command; the sys-
tem displays an "are you sure" pop-up dialog for confirmation.

VIII. Basic definitions for user database objects and operations.

A. Hereare the relevant object and operation definitions:

Maintain Group Database

Name:

Clear Cancel

Add Find Change Delete

Leaders: Members:

Figure 2: Group database maintenance dialog.

CSC308-W15-L6-7 Page 7

import java.util.Collection;

/**
* UserDB is the repository of registered user information.
*/

abstract class UserDB {

/**
* The collection of user data records.
*/

Collection<UserRecord> data;

/**
* Add the given UserRecord to the given UserDB. The Id of the given user
* record must not be the same as a user record already in the UserDB.
* The Id component is required and must be eight characters or less. The
* email address is required. The phone number is optional; if given, the
* area code and number must be 3 and 7 digits respectively.
*/

abstract void add(UserRecord ur);

/**
* Find a user by unique id.
*/

abstract UserRecord findById(String id);

/**
* Find a user or users by real-world name. If more than one is found,
* the output list is sorted by id.
*/

abstract Collection<UserRecord> findByName(String name);

/**
* Change the given old UserRecord to the given new record. The old and
* new records must not be the same. The old record must already be in
* the input db. The new record must meet the same conditions as for the
* input to the AddUser operation. Typically the user runs the FindUser
* operation prior to Change to locate an existing record to be changed.
*/

abstract void change(UserRecord old_ur, UserRecord new_ur);

/**
* Delete the given user record from the given UserDB. The given record
* must already be in the input db. Typically the user runs the FindUser
* operation prior to Delete to locate an existing record to delete.
*/

abstract void delete(UserRecord ur);

}

/**
* A UserRecord is the information stored about a registered user of the
* Calendar Tool. The Name component is the user‘s real-world name. The
* Id is the unique identifier by which the user is known to the Calendar
* Tool. The EmailAddress is the electronic mail address used by the
* Calendar Tool to contact the user when necessary. The PhoneNumber is
* for information purposes; it is not used by the Calendar Tool for
* contacting the user.
*/

abstract class UserRecord {
String name;
String id;
String email;
PhoneNumber phone;

}

CSC308-W15-L6-7 Page 8

abstract class PhoneNumber {
int area;
int number;

}

B. For a little practice with UML, Figure 3 shows diagrams for these definitions, in two equivalent formats.

C. Theobjects and operations were derived from the user-level requirements, per the model derivation process
discussed in Lecture Notes 5 last week.

D. Theoperation signatures are quite representative of those defined for a collection object.
1. UserDB.add is aconstructiveoperation, with a signature of the general form

class ACollection {
Collection<AnElement> data;

UserDB

 Phone
Number

Strring

String

add

change

* User
Record

Stringfind

delete

UserRecord

String name
String id
String email
PhoneNumber

PhoneNumber

int area
int number

One-part box format:

Equivalent three-part box format (with operation signature details):

UserDB

UserRecord*

void add(UserRecord ur)
void delete(UserRecord ur)
void change(UserRecord old_ur, UserRecord new_ur)
UserRecord findById(String id)
Collection<UserRecord>findByName(String name)

int
int

Figure 3: UML diagrams for UserDB objects and operations.

CSC308-W15-L6-7 Page 9

void constructiveOp(AnElement);
}

with the effect of adding an element to the data collection.
2. Theversions ofUserDB.find areselectiveoperations, with signatures of the general form

class ACollection {
AnElement selectiveOp(UniqueElementSelector);
Collection<AnElement> selectiveOp(NonUniqueElementSelector);

}

with the effect of finding zero or more elements in a collection.
a. Inboth forms, the input is a component ofAnElement used as a search key.
b. In the first form,UniqueElementSelector is a component whose value is required to be unique

among all elements of the collection.
c. In the second form,NonUniqueElementSelector is a component whose value is not required to

be unique among all elements of the collection.

3. UserDB.delete is adestructiveoperation, with the same signature form as a constructive operation,
but with the effect of removing rather than adding an element.

4. UserDB.change is amodifyingoperation (combined constructive and destructive), with a general sig-
nature of the form

class ACollection {
void modifyingOp(AnElement oldElement, AnElement newElement);

}

with the effect of removing theOldElement and adding theNewElement.

E. Inmodeling, it can be useful to overload operation names, for better traceability to the UI.

1. In terms of model accuracy, overloading works well in a case where the same operational widget (e.g.,
button) can be used with different input values.

2. Hence,we might overload thefind operation thusly:

abstract UserRecord find(String id);
abstract Collection<UserRecord> find(String name);

3. Theproblem is, this form of overloading is not supported in Java, since Java requires input signatures to
differ.

4. Hence,where necessary, operations need to be disambiguated by name, as infindById andfindBy-
Name.

IX. An initial formal definition ofUserDB.add.
A. For operation pre- and postconditions, we will start by stating a predicate in English, and then refine it into

formal logic.
B. As we refine the logic, the English version will be retained as a comment, to aid in the human understanding

of the specification.
C. So,here is an initial version of the formal spec for theUserDB.add operation:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Add the given UserRecord ur to this.data. The UserId of the given user
* record must not be the same as a user record already in this.data. The
* UserId component is required and must be eight characters or less. The
* email address is required. The phone number is optional; if given, the
* area code and number must be 3 and 7 digits respectively.

CSC308-W15-L6-7 Page 10

* <pre>
pre:

//
// The id of the given user record must be unique and less than or
// equal to 8 characters; the email address must be non-empty; the
// phone area code and number must be 3 and 7 digits, respectively.
//

post:
//
// The given user record is in this.data.
//

*
*/

abstract void add(UserRecord ur);

}

D. Now let’s formalize the Spest logic.

1. TheEnglish comment for theadd postcondition specifies the most fundamental property of an additive
collection operation -- upon completion of the operation, the given element to be added is in the output
collection.

2. Formally,

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Add the given UserRecord ur to this.data. The UserId of the given user
* record must not be the same as a user record already in this.data. The
* UserId component is required and must be eight characters or less. The
* email address is required. The phone number is optional; if given, the
* area code and number must be 3 and 7 digits respectively.
* <pre>
pre:

//
// The id of the given user record must be unique and less than or
// equal to 8 characters; the email address must be non-empty; the
// phone area code and number must be 3 and 7 digits, respectively.
//
// *** Coming soon *** ;

post:
//
// The given user record is in this.data.
//
data’.contains(ur);

*
*/

abstract void add(UserRecord ur);

}

3. Thesimple expression "data.contains(ur)’" is all there is to it.
a. contains is a method defined injava.util.Collection.
b. Its operand is a value of the element type contained in the collection.
c. I.e.,in this case the operand is aUserRecord.

E. Asit stands,UserDB.add still has no precondition formally defined, only a comment indicating what needs
to be defined.

1. Having no explicit precondition is equivalent to a precondition of true.

CSC308-W15-L6-7 Page 11

2. In many cases, true preconditions are fine, given that there is no specific condition that must be met before
the operation begins.

3. In the case of theUserDB.add operation, a default true precondition definitely won’t do, since we can
see from the requirements that a number of conditions must be met beforeUserDB.add can proceed.

4. We will address these requirements step by step, as we refine the formal definition ofUserDB.add.

X. RefiningtheUserDB.add postcondition.

A. Oneof the fundamental questions that must be asked of pre- and postconditions is if they arestrong enough.

1. Ingeneral, adding additional predicate clauses strengthens the conditions.

2. For example, the true precondition forUserDB.add is relatively weaker than one that specifies that
there is noUserRecord of the same id already in the input database.

B. In general, there are two aims to strengthening a specification.

1. Ensuringthat all user-level requirements are met (cf. Maxim 1 above).

2. Ensuringthat a system implementation works properly (cf. Maxim 2).

C. Theformer is accomplished via continued consultation with the end user; the latter requires an experienced
analyst, who understands the kinds of problems that may arise in a system implementation.

D. In the case of the user and group databases, as well as similar database applications, an area of potential
implementation error is the introduction of spurious entries into the database and/or the spurious deletion of
entries.

E. To avoid such spurious effects, the specification ofUserDB.add is strengthened as follows:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/*
post:

//
// The given user record is in this.data.
//
data’.contains(ur)

&&

//
// All the other records in the output db are those from the input db,
// and only those.
//
forall (UserRecord ur_other ; !ur_other.equals(ur) ;

if (data.contains(ur_other))
data’.contains(ur_other)

else
!data’.contains(ur_other));

*/
abstract void add(UserRecord ur);

}

F. This specification introduces the use of the universal quantification operator,forall.

1. Universal quantification in Spest has the same meaning as in standard typed predicate logic.

2. Thegeneral format is the following:

forall (T x ; constraint ; predicate)

CSC308-W15-L6-7 Page 12

a. Thisis read "for all valuesx of typet, such thatconstraintholds,predicateis true."
b. Theconstraintexpression is optional.
c. Thequantified variablex must appear inconstraint(if present) andpredicate.

3. In general, universal quantification is used frequently when specifying predicates on collection objects, as
upcoming examples illustrate.

G. While this example is a good illustration of specification strengthening, there are easier ways to specify the
same meaning logically.

1. For example, the postcondition logic can be simplified to the following:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/* <pre>
//
// A user record is in the output data if and only if it is the new
// record to be added or it is in the input data.
//
post:
forall (UserRecord ur_other ;

(data’.contains(ur_other)) <==>
ur_other.equals(ur) || data.contains(ur_other));

*/
abstract void add(UserRecord ur);

}

2. Ingeneral, predicate simplification is beneficial when it helps clarify the specification.

3. Simplificationis not necessary, as long as the logic is clear and accurate.

H. Anotherway to simplify this specification is to use a constructive list operator, as follows:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Add the given UserRecord ur to this.data. The UserId of the given user
* record must not be the same as a user record already in this.data. The
* UserId component is required and must be eight characters or less. The
* email address is required. The phone number is optional; if given, the
* area code and number must be 3 and 7 digits respectively.
*/

/*@
ensures

//
// The given user record is in this.data, per the semantics of
// Collection.add.
//
data’.equals(data.add(ur));

@*/
abstract void add(UserRecord ur);

}

whereadd in this context is thejava.util.Collection.add method.

1. A constructivespecification such as this describes the output of an operation using a constructive opera-
tion on the inputs.

CSC308-W15-L6-7 Page 13

2. In contrast, ananalytic specification (such as the previous spec using the boolean-valuedcontains
method) describes output without using constructive operations.

3. In308, we will defineanalyticspecifications whenever possible.
a. Specifically, we won’t used methodsthat construct or modify collections.
b. There is debate among software engineers as to the relative merits of constructive versus non-con-

structive specification; we will discuss the issues a bit later.

XI. Refiningthe postconditions for the otherUserDB operations.

A. Basedon the development of theUserDB.add specs so far, we can provide a comparable level of formal
specification for the other threeUserDB operations.

B. For example, here is the idea for formalizing thefindById postcondition:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Find a user by unique id.
*
* <pre>
post:

//
// If there is a record with the given id in the input db, then the
// output record is equal to that record, otherwise the output record
// is empty.

*
*/

UserRecord findById(String id);

}

C. Hereare the initial formal specifications for thefindById, findByName, ChangeUser, and Dele-
teUser operations, with the "no spurious data" requirements.

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/*
* Find a user by unique id.
* <pre>
pre: // None yet. ;

post:
//
// If there is a record with the given id in the input data, then the
// output record is equal to that record, otherwise the output record
// is null.
//
exists (UserRecord ur_found ; data.contains(ur_found) ;

ur_found.id.equals(id) && ur_found.equals(return))
||

!exists (UserRecord ur_found ; data.contains(ur_found) ;
ur_found.id.equals(id)) && return == null;

*

CSC308-W15-L6-7 Page 14

*/
abstract UserRecord findById(String id);

/*
* Find a user or users by real-world name. If more than one is found,
* list is sorted by id.
* <pre>
pre: // None yet. ;

post:
//
// A record is in the output list if and only it is in the input UserDB
// and the record name equals the name being searched for.
//
forall (UserRecord ur ;

return.contains(ur) iff
data.contains(ur) && ur.name.equals(name));

*
*/

abstract Collection<UserRecord> findByName(String name);

/**
* Change the given old UserRecord to the given new record. The old and
* new records must not be the same. The old record must already be in
* the input db. The new record must meet the same conditions as for the
* input to the AddUser operation. Typically the user runs the FindUser
* operation prior to Change to locate an existing record to be changed.
*/

/* <pre>
pre: // None yet. ;

post:
//
// A user record is in the output data if and only if it is the new
// record to be added or it is in the input data, and it is not the old
// record.
//
forall (UserRecord ur_other ;

data’.contains(ur_other) iff
ur_other.equals(new_ur) ||

(data.contains(ur_other) &&
!ur_other.equals(old_ur)));

*
*/

abstract void change(UserRecord old_ur, UserRecord new_ur);

/**
* Delete the given user record from the given UserDB. The given record
* must already be in the input db. Typically the user runs the FindUser
* operation prior to Delete to locate an existing record to delete.
* <pre>
pre: // None yet. ;

post:
//
// A user record is in the output data if and only if it is not the
// existing record to be deleted and it is in the input data.
//
forall (UserRecord ur_other ;

data’.contains(ur_other) iff
!ur_other.equals(ur) && data.contains(ur_other));

*
*/

abstract void delete(UserRecord ur);

}

CSC308-W15-L6-7 Page 15

D. Observations.

1. All of the preconditions are commented "(* None yet. *)"; we will refine preconditions shortly.

2. Thepostcondition forfindById uses the existential quantifierexists; Table 2 summarizes the Spest
formats.

3. Thepostcondition forfindByName is missing an important piece of logic vis a vis user-level require-
ments. Whatis it? (Hint: see the method’s comment.)

4. The postcondition logic forchange and delete are adaptations of the postcondition logic for
UserDB.add.
a. Thiskind of logic is sometimes called the "no junk, no confusion" rule for collection classes.
b. Namely, when we put something into or take something out of a collection,

i. wedon’t put in or take out anything superfluous (no junk),
ii. we do put in or take out exactly what we intend to (no confusion).

c. You should study the logic closely to clarify your understanding of it.

XII. On the use of quantifiers.
A. Universal and existential quantification are two ways to state multiple conditions in a single expression.

1. With universal quantification (forall), the quantifier expression is true ifall cases considered are true.

2. With existential quantification (exists), the quantifier expression is true ifat least oneof the cases is
true.

3. Logically, you can think offorall andexists as forms of repeated logicaland andor, respectively.

4. Thereis even a generalized DeMorgan’s law that makes the two forms of quantifier interchangeable:

forall (T x ; p) <==> !exists (T x ; !p)
and

!forall (T x ; !p) <==> exists (T x ; p)

B. In the software modeling task upon which we’re focused, the use of logical quantifiers is focused on two spe-
cific objectives:

1. Statinga requirement about all values of a particular type, e.g.,

forall (UserRecord ur ; requirement-predicate)

2. Statinga requirement that must be true for at least one value of a particular type, e.g.,

exists (UserRecord ur ; requirement-predicate)

Form Reading

exists (T x ; predicate) There exists x of type T such that
predicate is true.

exists (T x ; constraint ; predicate) There exists x of type T, such that
constraint is true, and then
predicate is true.

Table 2: Forms of existential quantification..

CSC308-W15-L6-7 Page 16

C. Constrainedforms of qualification provide further focus.

1. Statinga requirement about all values (or at least one value) in a particular data collection, e.g.,

forall (UserRecord ur ; data.contains(ur) ; requirement-predicate)

exists (UserRecord ur ; data.contains(ur) ; requirement-predicate)

2. Statinga requirement about all values (or at least one value) of a particular type, with some further restric-
tions on the values. E.g.,

forall (int i ; i > 0 ; requirement-predicate)

exists (int i ; i > 0 ; requirement-predicate)

D. Keeping these specific focuses in mind will help narrow down when and how to use quantifiers.

XIII. Formally specifying user-level requirements.

A. To this point, we have formalized some basic requirements for our database operations.

B. Specifically, we hav efocused on postconditions related to the second of our formal specification maxims --
not trusting the programmer.

C. It is now time to consider the formal definition of user-level requirements per the first maxim --nothing is
obvious.

D. To start, there are a number of "obvious" user-level requirements, including the following:

1. Duplicateentries are not allowed in theUserDB.

2. Inputvalues are checked for validity.

3. If thefindByName operation outputs more than one record, the output should be sorted in some appro-
priate order.

E. We hav econsidered these requirements to some extent in the requirements narrative.

1. However, the process of fully formalizing the specification can reveal important details we may have over-
looked in the requirements scenarios.

2. For example, in the Milestone 6 scenarios we initially overlooked the sorting requirement for multiple
outputs fromfindByName.

3. Suchoversights are common, and one of the main reasons we’re doing the fully formal level of the spec.

F. An historical note is of interest with regards to such requirements.

1. In software engineering methodologies less formal than what we’re using, the process of formalizing a
specification can take the form of "firming up" the English prose in which the requirements are stated.

2. For example, the first of the above requirements could be stated "formally" as follows:

A UserDB shall not contain duplicate entries.

3. While this may not seem to be a substantial improvement to the original statement of the requirement, it
represents a seriously-proposed approach to formalization.
a. With this approach, a number of possible forms of natural language are standardized with a restricted

vocabulary.
b. For example, all formal requirements are expressed using "shall" instead of other comparable English

words such as "should", "ought to", or "allowed to".

4. Thisidea of formalizing English is noteworthy because it has been widely used in practice, and significant
documents have been "formalized" in this manner.

5. While such rules can indeed help with the formalization process, they fall well short of a fully formal
basis for requirements specification.

CSC308-W15-L6-7 Page 17

XIV. No Duplicates

A. Analysisof the no duplicates requirement provides fine support for the "nothing-is-obvious" maxim.

B. While we may expect reasonable people to understand what "no duplicates" means, there are in fact a num-
ber of plausible interpretations here.

C. Threesuch interpretations are the following:

1. Notwo UserRecords in aUserDB have exactly the same values for allUserRecord components.

2. Notwo UserRecords in aUserDB have the same name.

3. Notwo UserRecords in aUserDB have the same id.

D. Whichof these interpretations to choose is categoricallynota matter for a programmer to decide.

1. Rather, it should be decided at the user specification level, by the analyst in consultation with the end
users.

2. We could even grant that most programmers are reasonably smart, so in this case we might safely assume
that a programmer could make the correct decision, or know enough to consult with the user to resolve
the ambiguity.

3. Suppose,however, we were specifying data records in a much more complicated application domain, such
as aeronautics.

4. In this domain we might have a data object such as an anomaly list, with record fields likePreFlight,
TaxiOut, InFlight, Approach, andLanding.
a. Whatdoes it mean to disallow duplicates in an anomalies database?
b. Which field, if any, could be used as a unique key?

5. Thepoint is that such questions need to be answered by end users and/or application domain experts.

6. Suchquestions should most certainly not be left unanswered when the programmer begins work, since the
programmer may well not know how to answer them, or even that they need to be asked.

E. In our UserDB case, we have already determined with the customer that theId component of aUser-
Record is the unique key.

1. Thismeans thatUserRecords in theUserDB need only differ in the Id value.

2. Inparticular, there may be multipleUserRecords with the same name.

F. The basic strategy for disallowing duplicates is to define a precondition onUserDB.add that checks for an
element of the same Id as theUserRecord being added.

G. Hereis the refined specification forUserDB.add; for brevity, the postcondition is omitted:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Same comment as above
* <pre>
pre:

//
// There is no user record in the input UserDB with the same id as the
// record to be added.
//
!exists (UserRecord ur_input ; data.contains(ur_input) ;

ur_input.id.equals(ur.id));

post:
// Same postcondition as above ... ;

*

CSC308-W15-L6-7 Page 18

*/
abstract void add(UserRecord ur);

}

H. A discussion of the exact nature of a precondition is in order here.

1. Bydefinition, failure of a precondition means that the operation is prevented from executing.

2. Moreprecisely, precondition failure means that the operation fails.

3. Thisabstract meaning of precondition failure does not define how operation failure is perceived by the
end user.
a. Generally, the end-user should see an appropriate error message when an operation fails.
b. The details of such error messages are typically abstracted out of the formal specification.

XV. Input value checking.

A. Input value constraints for a user record are described in the requirements scenarios as follows:

1. theId of a user record is a unique system id of eight characters or less;

2. theemail address is a free-form string;

3. thephone area code is three digits, the number is seven digits.

B. Theseconstraints are defined formally as follows, with accompanying commentary:

import java.util.Collection;

abstract class UserDB {

Collection<UserRecord> data;

/* <pre>
pre:

//
// There is no user record in the input UserDB with the same id as the
// record to be added.
//
!exists (UserRecord ur_other ;

data.contains(ur_other) ;
ur_other.id.equals(ur.id))

&&

//
// The id of the given user record is not empty and 8 characters or
// less.
//
(ur.id != null) && (ur.id.length() > 0) && (ur.id.length() <= 8)

&&

//
// The email address is not empty.
//
(ur.email != null) && (ur.email.length() > 0)

&&

//
// If the phone area code and number are present, they must be 3 digits
// and 7 digits respectively.
//
(if (ur.phone.area != 0)

CSC308-W15-L6-7 Page 19

Integer.toString(ur.phone.area).length() == 3) &&
(if (ur.phone.number != 0)

Integer.toString(ur.phone.number).length() == 7);

post: // Same as above ;

*
*/

abstract void add(UserRecord ur);

}

C. Observations

1. Thestandard way to strengthen a precondition is toand on additional clauses.
a. Here,the previous "no duplicates" clause remains.
b. The new requirements are added byanding them on.

2. Theprocess of formally specifying these requirements led to the discovery of one unnoticed requirements
detail, which will be updated in the scenario narrative.

3. Specifically, in considering the formal specification for the constraint on email address, we were alerted to
the question of whether it should be required.
a. Inconsultation with the customer, the answer turns out to be "yes", even though we had not originally

considered the issue explicitly in the scenarios.
b. Hence, there is the precondition clause

(ur.email != null) && (ur.email.length() > 0)

c. Thissays that while the email address can be a free-form string, it cannot be null or of length 0, i.e.,
the user cannot leave it empty in the dialog.
a. Notethat we include a standard Java practice of checking for a null reference value before access-

ing a component of that reference.
b. Predicates should not throw exceptions, unless they are explicitly dealt with in the specification,

which subject we will address next week.
d. Suchare just the kind of details we hope to catch while formalizing.

XVI. Orderingof multi-record output lists.

A. Theversion offindByName input produces a list ofUserRecords, since thename input is not required
to be a unique-valued component of a record.

B. As noted above, the initial requirements scenario overlooked what order the outputs should be in, if there are
two or more.

C. Themost reasonable choice is to sort the output list by Id field.

1. Thescenario narrative will be updated to reflect this decision.

2. As with other such requirements, we should not trust that a programmer will do the right thing in the
absence of a formal statement.

3. In this case, the programmer may not even think there is problem if an output list is displayed in some
internal order, such as the orderUserRecords are stored in a hash table.

4. Suchan order is as good as random to most human users, and as such rarely if ever satisfactory.

D. To specifyUserRecord list ordering, we must strengthen thefindByName postcondition. Hereit is:

import java.util.Collection;
import java.util.List;

abstract class UserDB {

CSC308-W15-L6-7 Page 20

Collection<UserRecord> data;

/**
* Find a user or users by real-world name. If more than one is found,
* the output list is sorted by id.
* <pre>

pre: // Not defined yet. ;

post:
//
// The output list consists of all records of the given name in the
// input data.
//
forall (UserRecord ur ;

return.contains(ur) ;
data.contains(ur) && ur.name.equals(name))

&&

//
// The output list is sorted lexicographically by id, according to the
// semantics of java.lang.String.compareTo().
//
forall (int i ; (i >= 0) && (i < return.size() - 1) ;

return.get(i).id.compareTo(return.get(i+1).id) < 0);
*
*/

abstract List<UserRecord> findByName(String name);

}

E. AnEnglish translation of the sorting logic is the following:

"For each position i in the output list, such that i is between the first and the second to the last positions in the
list, the ith element of the list is less than the i+1st element of the list."

F. You should study this logic to be satisfied that it specifies sorting satisfactorily.

G. Notethat we have used thejava.util.List interface to define our collection object.

1. We’ll useList instead ofCollection in a specification when we need to specify ordering

2. java.util.Collection does not have theget method for selecting theith element.

XVII. Unboundedquantification.

A. What would happen to the meaning of the sorting predicate if the constraint on the range of i were not
present?

B. I.e.,if the sorting logic in the postcondition were changed to the following:

forall (int i ; \result.get(i).id.compareTo(\result.get(i+1).id) < 0)

C. Themeaning here is anunbounded quantification.

1. Thatis, the quantifier operates over the unbounded range of all integers.
a. Inpure mathematical terms, unbounded means infinite.
b. In terms of a Java program, numbers are bounded by the word size of a particular computer architec-

ture, but we are abstracting that out of our specifications at the moment.

2. Inprinciple, there is nothing wrong with unbounded quantification.

3. For example, the original anti-spurious requirements forUserDB.add are expressed using unbounded

CSC308-W15-L6-7 Page 21

quantification
a. I.e.,forall (UserRecord ur ...)
b. The range of theUserRecord type is unbounded, since it constrains string components, the values

of which are conceptually unbounded, due to their conceptually unbounded length.

4. Onemight argue for range restrictions on the grounds of efficiency, but as noted earlier, efficiency of this
nature is not of concern in an abstract specification.

D. The potential problem with unbounded quantification is that the body of the universal quantifier may not
have the correct value in an unbounded range, and hence the value of the entire quantifier expression may be
false when we expect it to be true, or may throw an exception, which we do not want.

1. Thisis in fact the case in the unbounded quantification used in the sorting predicate forfindByName.

2. Specifically, the evaluation of \result.get(i) throws an exception ifi is outside the bounds of
\result.

E. Theexact outcome of the unbounded quantification depends on the semantics, i.e., formal definition, of a par-
ticular specification language.

1. Ingeneral, however, unbounded quantification is potentially problematic under any logical semantics.

2. Thepoint is that one needs to be careful when using unbounded quantification to ensure that the body of
the quantifier has a well understood value over the entire unbounded range of quantification.

3. Thisis particularly the case when quantifying over the elements of a list.

XVIII. Using auxiliary functions.

A. Thepostcondition in the most recent definition offindByName is a little lengthy.

1. In practice, predicates significantly longer than this can appear in the specification of a complex opera-
tion.

2. Whenpre- or postconditions become unduly long, it is useful to useauxiliary functionsto organize the
logic.

3. In Spest, an auxiliary function is defined as a boolean-valued method in the class where the function is
used in a predicate.

4. Thelogic of the auxiliary function is given as an ensures clause of the form "\result == ...",
where "..." is a boolean expression that appears in one or more predicates.

5. Thepurpose of an auxiliary function is simply to modularize a piece of logic, give it a mnemonic name,
and allow that logic to be invoked in one or more places.

6. I.e.,the purpose is to make predicates more readable and understandable.

B. Asan example, here is the preceding definition offindByName using two auxiliary functions.

import java.util.Collection;
import java.util.List;

abstract class UserDB {

Collection<UserRecord> data;

/**
* Find a user or users by real-world name. If more than one is found,
* the output list is sorted by id.
* <pre>

pre: // Not defined yet. ;

post:
recordsFound(name, return)

&&

CSC308-W15-L6-7 Page 22

sortedById(return);

*
*/

abstract List<UserRecord> findByName(String name);

/**
* Return true if the given list consists of all records of the given name
* in this.data.
* <pre>
post:
return ==

forall (UserRecord ur ;
list.contains(ur) iff

data.contains(ur) && ur.name.equals(name));
*

*/
abstract boolean recordsFound(String name, Collection<UserRecord> list);

/**
* Return true if the given list is sorted lexicographically by id,
* according to the semantics of java.lang.String.compareTo().
* <pre>
post:
return ==

forall (int i ; (i >= 0) && (i < list.size() - 1) ;
list.get(i).id.compareTo(list.get(i+1).id) < 0);

*
*/

abstract boolean sortedById(List<UserRecord> list);

}

XIX. Moving on to the specs for the GroupDB.

A. Figure2 on page 7 shows the UI for the other user-related database in the Calendar Tool -- the database of
user groups.

B. Thespecs for the GroupDB are quite similar to UserDB.

1. Bothdatabases are clear examples of collection objects with typical collection operations.

2. Thespecs for GroupDB are slightly simpler, giv en that there is only one searchable component, the group
name, which must be unique among all groups in the database.

C. A significant specification issue does arise in the area of interaction between user database operations with
the group database.

1. Specifically, what happens to groups that have as a member a user who is deleted from the user database?

2. Possibleways to deal with this problem include the following:
a. Adeleted user is automatically removed from all groups of which she is a member.
b. If a deleted user is in one or more groups, a warning message is output indicating what groups the user

was in, but the users must be manually deleted from the groups; in the meantime, any unknown users
are simply ignored in the group member lists.

c. Thesystem prevents deletion of a user until she has first been deleted from all groups; to assist the
deletion, the system outputs a message indicating the affected groups.

D. This is yet another example of where formalizing the specs has led to the discovery of an important require-
ments issue.

1. In this case, user consultation results in the automatic removal solution.

2. Thisin turn leads to another issue, which is what should be done with groups who have no leader, due to

CSC308-W15-L6-7 Page 23

the automatic deletion of a member or was the only leader of a group.

3. Thisissue is resolved by allowing leaderless groups, but having the system output a warning when the sit-
uation arises.

E. All of the issues having been resolved, the resulting complete spec for the user and group databases is as fol-
lows:

/*
*
* This file defines the objects and operations related to maintaining the
* user, group, and location databases of the calendar system. See Section 2.6
* of the Milestone 8 requirements.
*/

import java.util.Collection;
import java.util.List;

/**
* UserDB is the repository of registered user information.
*/

abstract class UserDB {

/**
* The collection of user data records.
*/

Collection<UserRecord> data;

/**
* Reference to GroupDB needed for change and delete methods.
*/

GroupDB groupDB;

/**
* Add the given UserRecord to the given UserDB. The Id of the given user
* record must not be the same as a user record already in the UserDB.
* The Id component is required and must be eight characters or less. The
* email address is required. The phone number is optional; if given, the
* area code and number must be 3 and 7 digits respectively.
* <pre>
pre:

//
// There is no user record in the input UserDB with the same id as the
// record to be added.
//
!exists (UserRecord ur_other ;

data.contains(ur_other) ;
ur_other.id.equals(ur.id))

&&

//
// The id of the given user record is not empty and 8 characters or
// less.
//
(ur.id != null) && (ur.id.length() > 0) && (ur.id.length() <= 8)

&&

//
// The email address is not empty.
//
(ur.email != null) && (ur.email.length() > 0)

&&

//

CSC308-W15-L6-7 Page 24

// If the phone area code and number are present, they must be 3 digits
// and 7 digits respectively.
//
((ur.phone.area != 0) ==>

Integer.toString(ur.phone.area).length() == 3) &&
((ur.phone.number != 0) ==>

Integer.toString(ur.phone.number).length() == 7);

post:
//
// A user record is in the output data if and only if it is the new
// record to be added or it is in the input data.
//
forall (UserRecord ur_other ;

(data’.contains(ur_other)) iff
ur_other.equals(ur) || data.contains(ur_other));

*
*/

abstract void add(UserRecord ur);

/**
* Find a user by unique id.
* <pre>
post:

//
// If there is a record with the given id in the input data, then the
// output record is equal to that record, otherwise the output record
// is null.
//
exists (UserRecord ur_found ; data.contains(ur_found) ;

ur_found.id.equals(id) && ur_found.equals(return))
||

!exists (UserRecord ur_found ; data.contains(ur_found) ;
ur_found.id.equals(id)) && return == null;

*
*/

abstract UserRecord findById(String id);

/**
* Find a user or users by real-world name. If more than one is found,
* then the output list is sorted by id.
* <pre>
post:

//
// The output list consists of all records of the given name in the
// input data.
//
forall (UserRecord ur ;

return.contains(ur) ;
data.contains(ur) && ur.name.equals(name))

&&

//
// The output list is sorted lexicographically by id, according to the
// string comparison semantics of java.lang.String.compareTo().
//
forall (int i ; (i >= 0) && (i < return.size() - 1) ;

return.get(i).id.compareTo(return.get(i+1).id) < 0);
*

*/
abstract List<UserRecord> findByName(String name);

/**
* Change the given old UserRecord to the given new record. The old and

CSC308-W15-L6-7 Page 25

* new records must not be the same. The old record must already be in
* the input db. The new record must meet the same conditions as for the
* input to the AddUser operation. Typically the user runs the FindUser
* operation prior to Change to locate an existing record to be changed.
*
* If the user record id is changed, then change all occurrences of the
* old id in the group db to the new id.
* <pre>
pre:

//
// The old and new user records are not the same.
//
!old_ur.equals(new_ur)

&&

//
// The old record is in this.data.
//
data.contains(old_ur)

&&

//
// There is no user record in the input UserDB with the same id as the
// new record to be added.
//
! exists (UserRecord ur_other ;

data.contains(ur_other) ;
ur_other.id.equals(new_ur.id))

&&

//
// The id of the new record is not empty and 8 characters or less.
//
(new_ur.id != null) && (new_ur.id.length() > 0) &&

(new_ur.id.length() <= 8)

&&

//
// The email address is not empty.
//
(new_ur.email != null) && (new_ur.email.length() > 0)

&&

//
// If the phone area code and number are present, they must be 3 digits
// and 7 digits respectively.
//
((new_ur.phone.area != 0) ==>

Integer.toString(new_ur.phone.area).length() == 3) &&
((new_ur.phone.number != 0) ==>

Integer.toString(new_ur.phone.number).length() == 7);

post:
//
// A user record is in the output data if and only if it is the new
// record to be added or it is in the input data, and it is not the old
// record.
//
forall (UserRecord ur_other ;

data’.contains(ur_other) iff
ur_other.equals(new_ur) ||

CSC308-W15-L6-7 Page 26

(data.contains(ur_other) &&
!ur_other.equals(old_ur)))

&&

//
// If new id is different than old id, then all occurrences of old id
// in the GroupDB are replaced by new id.
//
!old_ur.id.equals(new_ur.id) ==> true

// Logic left as exercise for the reader
;

*
*/

abstract void change(
UserRecord old_ur, UserRecord new_ur);

/**
* Delete the given user record from the given UserDB. The given record
* must already be in the input db. Typically the user runs the FindUser
* operation prior to Delete to locate an existing record to delete.
*
* In addition, delete the user from all groups of which the user is a
* member. If the deleted user is the only leader of a one more groups,
* output a warning indicating that those groups have become leaderless.
* <pre>
pre:

//
// The given user record is in this.data.
//
data.contains(ur);

post:
//
// A user record is in the output data if and only if it is not the
// existing record to be deleted and it is in the input data.
//
forall (UserRecord ur_other ;

data’.contains(ur_other) iff
!ur_other.equals(ur) && data.contains(ur_other))

&&

//
// The id of the deleted user is not in the leader or member lists of
// any group in the output GroupDB. (NOTE: This clause is not as
// strong as a complete "no junk, no confusion" spec. Why not? Should
// it be?)
//
forall (GroupRecord gr ; groupDB.data.contains(gr) ;

!gr.leaders.contains(ur.id) && !gr.members.contains(ur.id))

&&

//
// The LeaderlessGroupsWarning list contains the ids of all groups
// whose only leader was the user who has just been deleted.
//
forall (GroupRecord gr ; groupDB.data.contains(gr) ;

forall (String id ;
(return.groupNames.contains(id) iff

gr.leaders.size() == 1) &&
(gr.leaders.get(0).equals(ur.id))));

*
*/

abstract LeaderlessGroupsWarning delete(UserRecord ur);

CSC308-W15-L6-7 Page 27

}

/**
* A UserRecord is the information stored about a registered user of the
* Calendar Tool. The Name component is the user‘s real-world name. The
* Id is the unique identifier by which the user is known to the Calendar
* Tool. The EmailAddress is the electronic mail address used by the
* Calendar Tool to contact the user when necessary. The PhoneNumber is
* for information purposes; it is not used by the Calendar Tool for
* contacting the user.
*/

abstract class UserRecord {
String name;
String id;
String email;
PhoneNumber phone;

}

abstract class PhoneNumber {
int area;
int number;

}

/**
* LeaderlessGroupsWarning is a secondary output of the UserDB.change and
* UserDB.delete operations, indicating the names of zero or more groups that
* have become leaderless as the result of a user having been deleted.
*/

abstract class LeaderlessGroupsWarning {
Collection<String> groupNames;

}

/**
* GroupDB is the repository of user group information.
*/

abstract class GroupDB {

/**
* The collection of group data records.
*/

Collection<GroupRecord> data;

/**
* Reference to GroupDB needed for change and delete methods.
*/

UserDB userDB;

/**
* Add the given GroupRecord to the given GroupDB. The name of the given
* group must not be the same as a group already in the GroupDB. All
* group members must be registered users. The leader(s) of the group
* must be members of it.
* <pre>
pre:

//
// All group members are registered users.
//
forall (String id ; gr.members.contains(id) ;

exists (UserRecord ur ; userDB.data.contains(ur) ;
ur.id.equals(id)))

&&

//
// All group leaders are members of the group.

CSC308-W15-L6-7 Page 28

//
forall (String id ; gr.leaders.contains(id) ;

gr.members.contains(id));

post:
//
// A group record is in the output db if and only if it is the new
// record to be added or it is in the input db.
//
forall (GroupRecord gr_other ;

data’.contains(gr_other) iff
gr_other.equals(gr) || data.contains(gr_other));

*
*/

abstract void add(GroupRecord gr);

/**
* Delete the given group record from the given GroupDB. The given record
* must already be in the input db. Typically the user runs the FindGroup
* operation prior to Delete to locate an existing record to delete.
* <pre>
pre:

//
// The given GroupRecord is in the given GroupDB.
//
data.contains(gr);

post:
//
// A group record is in the output db if and only if it is not the
// existing record to be deleted and it is in the input db.
//
forall (GroupRecord gr_other ;

data’.contains(gr_other) iff
!gr_other.equals(gr) && data.contains(gr_other));

*
*/

abstract void delete(GroupRecord gr);

/**
* Change the given old GroupRecord to the given new record. The old and
* new records must not be the same. The old record must already be in
* the input db. The new record must meet the same conditions as for the
* input to the AddGroup operation. Typically the user runs the FindGroup
* operation prior to Change to locate an existing record to be changed.
* <pre>
pre:

//
// The old and new group records are not the same.
//
!old_gr.equals(new_gr)

&&

//
// All group members are registered users.
//
forall (String id ; new_gr.members.contains(id) ;

exists (UserRecord ur ; userDB.data.contains(ur) &&
ur.id.equals(id)))

&&

//
// All group leaders are members of the group.
//

CSC308-W15-L6-7 Page 29

forall (String id ; new_gr.leaders.contains(id) ;
new_gr.members.contains(id));

post:
//
// A group record is in the output db if and only if it is the new
// record to be added or it is in the input db, and it is not the old
// record.
//
forall (GroupRecord gr_other ;

data’.contains(gr_other) iff
gr_other.equals(new_gr) ||

data.contains(gr_other) &&
!gr_other.equals(old_gr));

*
*/

abstract void change(GroupRecord old_gr, GroupRecord new_gr);

/**
* Find a group by unique name.
* <pre>
post:

//
// If there is a record with the given name in the input db, then the
// output record is equal to that record, otherwise the output record
// is empty.
//
exists (GroupRecord gr_found ; data.contains(gr_found) ;

gr_found.name.equals(id) && gr_found.equals(return))
||

!exists (GroupRecord gr_found ; data.contains(gr_found) ;
gr_found.name.equals(id) && return == null);

*
*/

abstract GroupRecord findById(String id);

}

/**
* A GroupRecord is the information stored about a user group. The Name
* component is a unique group name of any length. Leaders is a list of zero
* or more users designated as group leader. Members is the list of group
* members, including the leaders. Both lists consist of user id’s. Normally
* a group is required to have at least one leader. The only case that a
* group becomes leaderless is when its only leader is deleted as a registered
* user.
*/

abstract class GroupRecord {
String name;
List<String> leaders;
List<String> members;

}

/**
* The LocationDB contains the location records that provide information about
* the locations at which items are scheduled.
*/

abstract class LocationDB {
Collection<LocationRecord> data;

}

/**
* A LocationRecord has a name and number which serve to identify where
* the location is. Both fields are free-form strings and the Calendar
* Tool enforces no constraints on their values. The Bookings component
* is a list of the titles of the items that are scheduled in the

CSC308-W15-L6-7 Page 30

* location. The Remarks component is a free-form text that can be used
* to describe any other pertinent information about the room.
*/

abstract class LocationRecord {

String name;
String number;
Bookings bookings;
Remarks remarks;

}

abstract class Bookings { /* ... */ }
abstract class Remarks { /* ... */ }

