CSC308-W15-L9-10 &e 1

CSC 308 Lectue Notes Weeks 9 and 10
Modeling Idioms
Requirements for File and Edit Commands
Non-Functional Requirements

I. Milestone 8 --REVISED.
A. Duell1:59PM Wednesday 11 March

B. Thedeliverables are:
1. Prototypethree prototype GUIs per team member
2. Modelupdates, including Spest checking
3. NO Requirements updates for Milestone 8, to be completed for Milestone 10

II. Milestones 9 and 10 -- see the handout.

A. Requirementanodel, and prototype updates.

B. Addsection on data storage and copy/paste requirements.
C. Addsection on error conditions.
D

. Add section on Non-Functional Requirements, specifically Sections 3.1 and 3.2 as described in the milestone
10 writeup.

m

If necessaryadd Appendix A: Late Updates.

m

If necessaryandadmi ni st rati on/ proj ect - sunmary. ht n

[ll. Modeling idioms.
A. Thenext seeral items in the notes discuss common modeling forms, of use in one or more 308 projects.

B. Thesddioms can be used as appropriate to a particular 308 project, as the JML is refined.

IV. Authenticated access to stored data.

A. Generaldea:

1. Userswith IDs and passwords on a particular data server are allowed access to the datayihéngi-
cate their identity properly.

2. Alogin operation performs the authentication, and if successfukdethe shared data, otherwise not.

3. Thislogin is defined as the only access to the data, i.e., the only operation trextdleé data from that
server as an output.

B. Usagdn 308 could includes Grader access to SIS datst]dol access to shared question bank, guest access
to an EClass lecture or CSTutor tutorial.

C. Abasic example:
inmport java.util.Collection;

/**
* A server has a list of authentic users and sone data.
*/
abstract class Server {
Col | ecti on<User Recor d> users;
Dat a dat a;

CSC308-W15-L9-10 &ye 2

/**
* Login to this server to access its data.
*
pre:
exi sts (UserRecord user ;
users. contains(user) ;
user.id.equal s(id) &&
user . passwor d. equal s(password));

post :
return. equal s(data);
*/
abstract Data login(String id, String password);
}
/**

* A UserRecord is an | D/ Password pair. A nore elaborate
*/
abstract class UserRecord {

String id;

String password;

/**

* Data is a purely abstract class that represents the
* data stored on a server that's accessible via |ogin.
*/

abstract class Data {}

V. Serial navigation through ordered collections.

A. Generaidea:
1. Asequence of items is modeled as a list, and a current position in the list.
2. Net/previous navigation is modeled as increment/decrement of the current position value.

B. Usagein 308 includes CSTutor pagevigation, EClass slide m@ation and ay place where the user can
traverse with Next/Pre commands through a list of items.

C. Asimplified example:
inmport java.util.List;

/**
* A sequence of itenms index from1l to itens.size(). The
*/
abstract class Sequence {
List<lten» itens;
int cur_item

| **

* Move to the next itemin the sequence if not at the
* last item

pre: cur_item< itens.size();
post: cur_item == cur_item+ 1;

CSC308-W15-L9-10 &ye 3

*/
abstract void next();

/**

* Move to the previous itemin the sequence if not at
* the first item

pre: cur_item> 1;
post: cur_item == cur_item- 1;

*/
abstract void prev();

/**

* An itemin a sequence.
*/
abstract class Item{}

VI. HTML Content

A. Generaidea:
1. HTML markup is modeled as tags and text interspersed.
2. Onlyas maw tags as are needed by a particular tool are modeled.
3. Thefull specification of HTML is referred to at a defiméiurce, in this case3. or g.

B. Usageof this kind of object model in 308 includes the HTML content in an EClass presentatestTaol
test question, a CSTutor page.

C. Heres a smplified model of HTML content:
inmport java.util.List;

/**
* HTM. content consists of command tags and text.
*/
abstract class Htn Content {
Li st <TagAndVal ue> content;

Render this into the format displayed to a user.
See the <a href=
"http://ww. w3.org/ TR/ ht m 5/ semantics. htm "> WBC
 the for the full specification of howthis
* rendering is perforned.

*/

abstract RenderedHTML.Content display();

* ok ok ok %

CSC308-W15-L9-10 &e 4

/**
* O ass TagAndVal ue has an enunerated tag val ue and
* string val ue.
*/
cl ass TagAndVal ue {
Tag tag;
String val ue;

/**
* The Tag enumeration consists of the tags that need to
* be nodeled for a particular tool’'s use of HTM.
*/
enum Tag {
TEXT, TAGL, TAR, /* ... */
}

/**

* As defined by WVBC at <a href=

* "http://ww. w3.org/ TR htm 5/ semantics. htm". >
*/

abstract class RenderedHTM.Content {}

VII. Recursive dject definitions.

A. Generaldea:
1. We havea rested structure that goes to an indefinite depth.
2. Thisis well modeled with a recuka cefinition.

B. Usagdn 308 includes the graded item hiergratnthe Grader project, the lecture topic hiergrchEClass.

C. Hereis a simplified example of a spreadsheet, with indefinitely nested columns:
inmport java.util.Collection;

/**
* A generic spreadsheet consists of rows.
*
/
abstract class SpreadSheet {
Col | ecti on<Spr eadSheet Row> rows;

}

/**
* A row has a nunber and a collection of col ums.
*/
abstract class SpreadSheet Row {
int nunber;
Col | ecti on <Col umm> col umms;

CSC308-W15-L9-10 &e 5

/**
* A colum has a heading, sone data, and possibly
* subcol ums. Wen subcolumms are non-nil, the data is

* typically sone conbination of the subcolumm data
* val ues, such as the sumif data val ues are nuneric.
*/
abstract class Colum {
String heading;
Dat a dat a;
Col I ecti on<Col unm> subCol ums;

}

/**

* \What ever kind of data can appear in spreadsheet cells.
*/

abstract class Data { /* ... */ }

VIIl. Wizards, and other strictly-ordered operation sequences.

A. Generaidea:
1. Theoperational model for a wizard-style interface is to require sequex¢@iteon of the wizard steps.

2. Thiscan be modeled by having each step of the wizard be an operation that produces a unique output, that
is the required input to the next step.

B. Usagdn 308 is anywhere that a wizard-style Ul is presented to the user.
C. Heres a generic example:

*

/
Class Wzard has operations that nust be perforned in
sequential steps. To enforce this sequential behavior,
each wi zard step takes a uni que type of input and
produces a uni que type of output.

* ok ok Ok % F

When the types of the i/o objects are unique, then the
requirement that wizard step N nust follow step NN1 is
enforced by operation stepN being the only operation
that accepts an input of type StepM nuslQuput

E R

If output types thenselves are not unique type, a
postcondi tion on stepNM nusl can set a conponent to a
uni que value that a precondition on stepN checks, to
ensure the data in fact conme fromstep 1.

* %k ok ok %

*
*/
abstract class Wzard {

CSC308-W15-L9-10 &je 6

/**

* Performw zard step N, producing output to be given
* to Wi zard step 2.

*/

abstract SteplCutput stepl(Stepllnput in);

/**
* Li ke stepl.
*/
abstract Step2CQutput step2(SteplQutput in);

/**

* Like steps 1 through N-1.

*/

abstract StepNQutput stepN(StepNm nuslQutput in);
}
abstract class Stepllnput { /* ... */ }
abstract class Step2lnput { /* ... */ }
abstract class StepNlnput { /* ... */ }
abstract class SteplQutput { /* ... */ }
abstract class Step2Qutput { /* ... */ }
abstract class StepNm nuslQutput { /* ... */ }
abstract class StepNoutput { /* ... */ }

IX. Summing.

A. Generaidea:
1. Itis sometimes necessary in an operational model to specify a specific arithmetic computation, such as a
sum of values from a list.
2. Inthe functional modeling language we are using, such computations are defined usingeracdlisiry
functions.

B. Usageof a summing function is necessary in the 308 Grader tool, in specifying the operation that displays
the pie chart or histogram of grades. Summing may also be necessary éstfloel For computing a sum
of student scores on tests.

C. Hereis the definition of an auxiliary functioBunLi st , that can be used in a postcondition that specifies
that the output of an operation is based on the sum of elements in a list.
inmport java.util.List;

*

The recursive definition of the Suniist function uses the follow ng
strat egy:

/

E R

(a) If the list contains no elenents, then the sumis 0
(b) Oherwi se, recursively conpute the sumof the first list el enent

CSC308-W15-L9-10 &e 7

with the sumof the rest of the elenents
The "rest of" a list is denoted by the expression
I[2:#]

The col on-separ at ed expression between the square brackets denotes a
sublist of the form

start:end

where "start’ and 'end’ are the index positions of the sublist. The '#
operator is list length. Hence, the sublist [2:#] extends fromthe second
position of the list to the last position. 1l.e., it’s the "rest of" a list
beyond position 1.

E R I T R U T T R R

/

class IntList {
Li st <I nt eger > dat a;

int sum(List<lnteger> data) {
if (data.size() == 0) return O;
el se return data.get(0) +
sun(dat a. subLi st (2, data.size() - 1));

X. Undo/redo.

A. Generaidea:
1. Almostall user-oriented software these days has undo/redo commands.

2. Asimple abstract model of undo/redo can be defined by saving a fulb€apy changed data whener
a data-changing operation is performed.

3. Theundo operation then restores theeskdata.

4. Thiskind of model is almost alays too inefficient to implement directlgince it involves copying poten-
tially large amounts of data.

5. Themodel does hwever precisely define the meaning of undo/redo, and as such is anotherxgooole
of where a model need not address algorithnficieficy issues, as long as it accurately defines opera-
tional behavior.

B. Hereis an example of a simple onesdtundo/redo model, defined in terms of a generic tool workspace and
a generic operation that changes tool data.

/**
* Sinplified data nodel for a tool workspace.
*
/
abstract class Tool Workspace {
Tool Dat a dat a;
Tool Dat a undo_dat a;
Tool Dat a redo_dat a;

To perform sone tool operation, set the data of the
out put workspace to the new data, and the undo data
of the output to the original data in the input

wor kspace.

* ok ok ok %

post :
undo_data’ . equal s(data) &&

CSC308-W15-L9-10 &ye 8

data’ . equal s(new_data) &&
redo_data’ == null;
*/
abstract void sone_operation(Tool Data new _data);

*

/
If sone tool operation has been perforned that sets
undo data in the workspace, then the effect of undo
is to set workspace data to that undo data,

ot herwi se undo has no effect.

£k Ok Ok F

pre: undo_data != null;
post: data’.equal s(undo_data) &&
undo_data’ == null &&

redo_data’ . equal s(data);
*/
abstract void undo();

/**

* \What ever data for which operations are undoabl e.
*/

abstract class ToolData { /* ... */ }

Xl. Specifyinga "good" computed result, or the "best" result.

A.
B.
C.

At times in user requirements, an output needs to be measured as good or the hestssftda result.
Interms of the operational model, such a result is most typically stated as a postcondition.

Thepostcondition can be stated inavwajor parts:
1. Theoutput meets a basic set of requirements.
2. Theoutput is also minimal or maximal in some sense.

In 308, such postconditions can be specified for the generated schedule in the Scheduler tool, or a generated
test in the TestTool.

A detailed of example "best result" specification from the Calendar Tool, appears later in the notes.

XIl. Requirements for file and edit commands.

A.

B.
C.
D.

Following the requirements scenarios for the major commands of your systemamp remaining details
of file and edit commands.

Putthese details in one or twgections following the other functional requirements sections.
For file commands, consider clearly what objects areds and opened from disk.
For edit commands, consider clearly what objects are operated on by the gushdggaste commands.

XIll. Requirements for error conditions

A.

Following the file and edit command section, include a section thetscerror conditions.

B. You need only summarize the error conditions yewbvered already in earlier scenarios.

C.
D.

For error conditions that kia ot yet been ogered, shav and describe the error display screens.
You need only she one version of each generic error screen, listing the different error message texts.

XIV. Specification of error conditions.

A.
B.

In the 308 specification methodology we do this with preconditions.

Fromthe users perspectie, each clause of a precondition corresponds to an error if the clause is not true.

C. Theerror conditions described in the requirements correspond directly to violation of precondition clauses.

CSC308-W15-L9-10 &e 9

D. We'll discuss the formalization of this further next week.

XV. Other requirements.

A. Help-- not required for 308.

B.

OtherGUI details -- not required for 308.

C. Dataentry details -- if necessanyut not required.

XVI.

End of I diom Discussion; on now to Non-Functional Requirements

Non-functional requirements.

A. Sofarin CSC 308 weve focused on functional requirements specification.

1. We ae answering the questiokvhat does the system do?"
2. Thisgoes in Section 2 of the 308 requirements specification document.

. Thereare alsaon-functional requirements to be specified.

1. For these we answering such questions as'iwell”, "How much?", and "Hw soon?" the system will
perform, cost, and be dedred.

2. Theseequirements go in Section 3 of the 308 requirements specification document.

. Thenon-functional requirements address aspects of the system other than the specific functions it performs.

. Theseaspects include system performance, costs, and such general system characteristics assstiability

rity, and portability.

E. Thenon-functional requirements also address aspects of the systelopdeent process and personnel.

m

XVILI.

Formally, a ron-functional requirement is one that is not part of the program model.

Thereare three broad categories of non-functional requirements, elaborated on Bedem-related,
Process-related, and Personnel-related.

Non-functional requirements by category.

System-relatedon-functional requirements.

1. performance
a. time
b. gace

2. operationaénvironment
a. hardvare platform
b. oftware platform
c. eternal software interoperability

3. standardsonformance

4. generatharacteristics
a. reliability

b. robustness

c. accurag of data

d. correctness

e. security

f. privacy

g. safety

h. portability

i. modifiability and extensibility

j- simplicity versus power

. Process-relatedgon-functional requirements.

1. development time
2. development cost
3. software life cycle constraints

CSC308-W15-L9-10 &ye 10

XVIII.

C.

4. systendelivery
a. «tent of delverables
b. deliverable formats
5. installation
a. dereloper access to installed environment
b. phase-in procedures to replace existing system
6. standardsonformance
7. reporting
8. marleting
a. pricing
b. target customer base
9. contractuatequirements and othergia i ssues

Personnel-relateabn-functional requirements
1. fordevelopers:

a. credentials

b. gplicable licensing, certification
2. forusers:

a. skilllevels

b. gecial accessibility needs

c. training

The spectrum of preciseness and quantifiability in non-functional requirements.

Someconstraints are easy to state quantifiably -- e.g., "The system will respond within 10 seconds to a user
request for local data, and within 60 seconds for a remote data request."

Someconstraints and objewts ae much harder to quantify -- e.g., the system will be "robust" and "user
friendly”

In308, we are formalizing only the functional, not the non-functional requirements.

XIX. Cost/benefit/risk analysis.

A.

B.

C.

After a requirements specification is defined, it can be analyzed in terms of the costs, benefits, and risks
involved in proceeding to delop the software.

Computersystem analysts are not necessarily qualified to produce cost/benefit analyses aldygictily
need to consult with finance experts as well as the potential software design/implementation team.

Thecost/benefit analysis can be included as a part of the requirements specification document or it can be a
separate document.

In 308, we do not hee ime to address cost/benefit analysis.

