
Test Coverage and Post-Verification Defects: A Multiple Case Study

Audris Mockus

Avaya Labs Research

233 Mt Airy Rd

Basking Ridge, NJ

audris@avaya.com

Nachiappan Nagappan

Microsoft Research

One Microsoft Way

Redmond, WA

nachin@microsoft.com

Trung T. Dinh-Trong

Avaya Labs Research

233 Mt Airy Rd

Basking Ridge, NJ

ttdinhtrong@avaya.com

Abstract

Test coverage is a promising measure of test effective-

ness and development organizations are interested in cost-

effective levels of coverage that provide sufficient fault re-

moval with contained testing effort. We have conducted a

multiple-case study on two dissimilar industrial software

projects to investigate if test coverage reflects test effective-

ness and to find the relationship between test effort and the

level of test coverage. We find that in both projects the in-

crease in test coverage is associated with decrease in field

reported problems when adjusted for the number of pre-

release changes. A qualitative investigation revealed sev-

eral potential explanations, including code complexity, de-

veloper experience, the type of functionality, and remote de-

velopment teams. All these factors were related to the level

of coverage and quality, with coverage having an effect even

after these adjustments. We also find that the test effort in-

creases exponentially with test coverage, but the reduction

in field problems increases linearly with test coverage. This

suggests that for most projects the optimal levels of cover-

age are likely to be well short of 100%.

1. Introduction

Among software quality improvement activities testing

is arguably the most important [9]. It is, therefore, of par-

ticular interest to evaluate and understand how good is a

particular set of tests with respect to its ability to detect the

most disruptive (post-release) defects.

Clearly, skilled testers are more likely to produce more

effective tests, but it is preferable to assess the test effec-

tiveness using quantitative and easy-to-obtain measures of

test performance that are applicable in software develop-

ment practice. Because testing is a pre-release activity, the

measures of test performance can not be based on the most

relevant post-release observations of quality. Apart from a

simple measure of test count or testing effort that does not

distinguish individual tests (or hours spent testing) accord-

ing to their ability to detect defects, a widely used measure

of test effectiveness is test coverage (subsequently we will

simply use the term “Coverage”). There is a variety of cov-

erage metrics from simpler class, function, and statement

coverage and to more sophisticated branch and even path

coverage (see, e.g., [2]). The principal assumption behind

the coverage metric is that if a branch or a statement con-

tains a flaw, it can not be detected unless at least one test

exercises that statement or branch. Therefore, it is argued,

higher Coverage should lead to detection of more flaws in

the code and, if they are fixed, to better release quality.

There are a number of potential flaws with this argu-

ment. First, the coverage measure reflects the percent of

statements covered but does not consider if these statements

are likely to contain a flaw. Therefore, it may be possible

to create two test sets with the same coverage measure but

markedly distinct ability to detect post-release defects. Sec-

ond, the fact that a statement or a branch was executed does

not imply that all possible data values have been exercised

by the test [17]. This is of particular concern for systems

with a simple control flow that can be easily covered with a

few test cases. Third, even if a statement is executed and a

failure has occurred, the test may not be able to detect it if

the appropriate assert statements were not inserted or if the

output was not recognized as being erroneous.

Despite these flaws, Coverage appears to be a promis-

ing measure due to its wide use in practice and prevalence

of practical recommendations or requirements that we gath-

ered through informal survey of various software practition-

ers in our organizations and professional contacts. They

could be referred to as software “folklore”:

1. The 70% coverage is needed prior to acceptance for a

system test or a release.

2. It is often not effective to get Coverage above 70% be-

cause it requires a lot more work than achieving Cov-

erage of 70% or less.

3. Going above 70% coverage leads into exception han-

dling code.

291

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

4. By introducing Coverage we have observed that devel-

opers who did not write unit tests have started doing

so.

The 70% threshold is used for illustration purpose only.

In different contexts the actual number might be higher or

lower. Nevertheless, these requirements and recommenda-

tions beg the following questions:

1. What is defect detection effectiveness curve for X%

coverage.

2. What is the effort needed to obtain X% coverage.

3. What is the cost effective coverage measure for a par-

ticular set of quality requirements?

Unfortunately, there appear to be no empirical studies of

industrial software (see Section 6 for more details) that shed

light on these questions. Therefore, we set out to conduct an

empirical study to observe the relationship between the test

coverage measure, the number of post-system verification

(post-SV) defects, and the effort to produce tests. We have

looked at industrial systems in order to observe common

practices of testing and coverage, and, therefore, we could

not observe what would happen for different level of cover-

age for the same code. Instead we looked at the variations

in coverage among components of the system and related

them to the probability that a defect affecting a component

would be observed after system verification (SV).

While it would be also interesting to know which tests

have detected defects, a significant part of the correction

activity often occurs at the unit test level where the devel-

oper corrects issues prior to code submission and no defects

are reported in the problem tracking system.

Table 1. Summary of project context

Area Avaya Microsoft

Language Java C/C++
Size 1 MLOC 40+ MLOC

Domain Application System

Team size ≈ 100 1000+
Users ≈ 1000 ≈ 100M

Testing phase Unit System

Tools JUnit In-house

Types of coverage Statement, branch Block, Arc

Granularity Files Binaries

The primary hypothesis of our study is that test coverage

affects post-SV defect rate. Drawing general conclusions

from empirical studies is difficult because there are many

context variables that are often difficult to quantify in soft-

ware engineering. For this reason, we can not assume that

the results of a study generalize beyond the specific envi-

ronment where it was conducted. Finding similar results in

a different context provides more confidence that the the-

ory applies more generally [3]. Therefore, to strengthen the

external validity of the results we decided to conduct a mul-

tiple case study in two radically different industrial contexts

compared in Table 1. Not only the projects come from two

unrelated companies, the application domain, the program-

ming language, the size of software product, development

team, and user base were vastly different. One of the initial

challenges involved defining and operationalizing measures

that were comparable across projects. In particular, the cov-

erage could be measured at the class (file) and method level

in the first project, but it was only available at the level of

binaries (executables and libraries) in the second project.

Furthermore, due to different technical and confidentiality

requirements we cannot report all the results in exactly the

same fashion.

A significant contribution of this paper is the analysis of

empirical data from a multiple case study on two different

industrial contexts. The results indicate that the increase in

test coverage is correlatedwith the decrease in field reported

problems (when controlling for number of edits), support-

ing the use of code coverage measurement as a quality con-

trol criteria. The data, however, indicate that the test effort

increases exponentially with test coverage, suggesting that

for many projects, 100% code coverage is not always the

most cost-effective criteria. Further, our analysis suggested

that factors such as code complexity, application domain,

developer expertise, and remote development location also

affect both fault potential and coverage, implying that user

interface functionality, less experience developers, and re-

mote development locations might benefit from utilizing in-

creased coverage.

2. Method and Measures

First, we take into account business needs and published

work to pose precise hypotheses about the relationship be-

tween test coverage and the software quality. Our study

then uses semi-structured interviews and data from soft-

ware repositories of change, defect, and coverage informa-

tion to evaluate the plausibility of each proposition. Data

collected from version control, problem tracking, and test

coverage were used to fit regression models that quantify

these observed relationships. Interviews were used to vali-

date repository data attributes and analysis results.

We reformulate our initial hypotheses based on the find-

ings of this multiple case study to refine the theory of how

coverage affects software quality and to conduct further

replication studies on the subject.

2.1. Avaya project context

The Avaya project under study is a call center reporting

system. The project uses SQL, C, CPP in addition to the

bulk of code in Java language that is studied here. It is a

292

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

completely new release (unlike prior reporting systems that

were written entirely in C language) that has been released

for approximately one year at the time of the writing.

The project under study used ClearCase to track changes

to the code and a proprietary system later replaced by Clear-

Quest to track software defects. Code coverage was mea-

sured using the Cobertura tool. We have obtained the

change history of the code using the “lsh” command of

the ClearCase. Except for changes done on the private

branches, all code commits had modification request (MR)

identifier that we automatically extracted from the change

comments. That MR identifier was used to obtain more in-

formation about the change. In particular, we used infor-

mation from ClearQuest and a proprietary tracking system

to identify the phase an MR was reported. In particular we

identified post-SV MRs that were found during alpha and

beta trials and from customers of the final release. We also

identified MRs found in system integration and testing. Fi-

nally we counted the number of MRs associated with each

file (we had to map MR IDs transferred from an older sys-

tem to MR IDs in the new system to avoid double-counting

of these MRs. To track code coverage we have used daily

(obtained over the span of two years) and final snapshots of

Cobertura coverage reports. We used two numbers from

these reports: the number of statements ns(f, t) and the

number of covered statements nc(f, t), where f represents

the file and t represents the snapshot in time when the cov-

erage was obtained. The coverage numbers we use in our

models are obtained by dividing the maxima of the ratio of

covered and total statements: C(f) = maxt
nc(f)
ns(f) . Ob-

viously, other measures, including cyclomatic complexity,

non-commentary lines of code (NCSL), and FanOut varied

over time. For each one we have selected the maximumover

the observation period. We have selected the changes, MRs,

and coverage for the interval prior to the release date of the

software as the observation period. The only exceptionwere

customer reported MRs: the entire interval including eight

months after the release date was used to identify files with

field defects. We looked at the alternative measures of cov-

erage, cyclomatic complexity, FanOut, and NCSL by calcu-

lating at averages or minima instead of maxima over time,

but the regression results were similar to the ones obtained

using C(f).

2.2. Microsoft project context

We investigated the Microsoft Windows Vista system.

The size of the code base analyzed was 40+ Million LOC.

Code coverage in Windows takes places at the level of bi-

naries (.lib, .exe, .dll etc.). We also collect and map post-

release failures obtained for Windows Vista that were found

in the field six months after the public release of Windows

Vista. Code size and complexity metrics were selected to

be similar to the ones in the Avaya case study and were col-

lected on a per-binary basis at the release point of the system

to the field. Code coverage measures were slightly different

and are described below.

For the code coverage measures in the binaries we use

arc and block coverage analogous to statement and branch

coverage. Figure 1 represents a simple example where

the arcs are shaded lightly (yellow) and blocks are shaded

darkly (grey). The code coverage tools are based on the

Vulcan binary analysis framework at Microsoft [19].

Figure 1. Example of block measurement

Block coverage: A (basic) block is a set of contiguous

instructions (code) in the physical layout of a binary that has

exactly one entry point and one exit point. Calls, jumps, and

branchesmark the end of a block. A block typically consists

of multiple machine-code instructions. The percentage of

blocks covered during testing constitutes the block coverage

measure. It is most similar to the “Coverage”measure in the

Avaya project shown in Table 2.

Arc coverage: Arcs between blocks represent the trans-

fer of control between basic blocks (due to conditional and

unconditional jumps, as well as control falling through from

one block to another). Similar to block coverage the propor-

tion of arcs covered in a binary constitute the arc coverage.

Code complexity: McCabe’s Cyclomatic Complexity

metric [12] measures the number of linearly-independent

paths through a programmodule. It is used to measure code

293

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

complexity in a binary and is similar to the code complexity

measure in the Avaya project shown in Table 2.

Frequency of Churn: is defined as the number of times a

binary is worked upon (check-ins) during the development

process. Unstable binaries often churn repeatedly due to

multiple fixes thereby causing a “tail of check-ins” to be

observed. It is identical to the “Delta” and similar to “MR”

predictor in the Avaya project.

3. Theory

Our theoretical premise is based on the intuition that de-

fects localized in the parts of the code that are not covered

by the test execution can not be discovered by that test set.

The fundamental weaknesses of this assumption is that it is

not clear to what extent the defects are localized. In other

words, it may be the case that most important defects can

be discovered by test sets that do not achieve a complete or

even high levels of coverage. A practical weakness of the

approach is that even if a particular part of the code is cov-

ered by a test set, there is no guarantee that all or any flaws

embedded within that part of the code would be exposed by

the test. Despite these weaknesses, it is reasonable to ex-

pect that, given all other conditions being similar, increase

in code coverage should reduce the defects observed post-

SV.

Given that the individual files/binaries have different

functionality, are written and tested by different develop-

ers and testers, are of different size, and have different his-

tory it is unreasonable to expect that “all other conditions

are equal”. To deal with these variations we have attempted

to adjust for the factors that are known to affect post-SV

defects. There are a number of studies in this area that

use a variety of factors to predict post-release defects (see,

e.g., [4, 7, 16, 20]). However, it appears that a single pre-

dictor of the total number of changes made to the file is the

most important predictor that is almost impossible to im-

prove upon (see, for example, [7]) Furthermore, predictors

such as modified lines of code and number of changes to the

module are often highly correlated. Therefore, our primary

hypothesis is that an increase in module coverage adjusted

for the changes made to the module should reduce post-SV

defects.

Our fundamental hypothesis is as follows:

Hypothesis 1 Increasing the level of coverage would de-

crease the defect rate.

To respond to more practical questions from develop-

ment organizations we also pose a second hypothesis:

Hypothesis 2 Progressively more effort is needed to in-

crease the coverage by the same amount for higher levels of

coverage.

4. Results

All measures for the Avaya study are presented for Java

code only at the granularity of a file (class). Because our re-

sponsemeasure is post-SV defects, we have excluded all the

code that is not executed by customers and, therefore, can

not be related to such defects. In particular, all test cases and

stubs as well as build, test, and other development support

tool code is excluded from our reports.

The notation in the subsequent tables is described below.

• GMR— number of post-SV MRs.

• MR— number of MRs excluding post-SV MRs.

• NCSL—non-commentary lines of code in all methods

of a class.

• CC — cyclomatic complexity added over all methods

in a class.

• FanOut — number methods/functions called added

over all methods in a class.

• Delta— number of changes to a file in the version con-

trol system (added over all branches).

• Coverage— percent of statements that are covered.

• Files — number of files in a group with the coverage

level shown in the table header.

4.1. Coverage and postSV defects

First we investigate if the level of coverage is corre-

lated with the defect rate. Figure 2 shows the number of

field MRs (GMR) in a file normalized by the variables MR,

NCSL, CC, and FanOut for files with different levels of

coverage1. Each measure is scaled to fit on the same dis-

play. Both averages and standard errors are shown to in-

dicate variability of the estimates. There appears to be a

consistent decrease in the file field MR rate with increase

in coverage that is independent of normalization (we used a

variety of adjustment measures ranging fromMR to FanOut

to check if the result is sensitive to such choice). While the

standard errors are fairly large, there is a statistically signifi-

cant difference between the rates for the largest and smallest

coverage. As in Table 2, such level of detail could be pub-

lished only for the Avaya project.

Table 3 shows Spearman correlations 2 among the vari-

ables for the Avaya project. Coverage is negatively corre-

lated only to post-SV defects (GMR), but the correlation is

very small (though significant at p − val < 0.0001 as are

all other correlations).

1The values in Figure 2 can not be obtained from the values in Table 2

because Figure 2 uses ratios averaged over files
2insensitive to the skewed distributions of these quantities

294

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

Table 2. Counts added over all files for the five levels of coverage for the Avaya project
None (0%, 30%] (30%, 60%] (60%, 80%] > 80%

GMR 273 128 23 29 30

MR 6551 4188 915 1389 2754

NCSL 278071 127823 32136 41061 78487

CC 11641 12956 3620 4517 8241

FanOut 4470 4193 949 1425 3378

Files 994 773 115 160 430

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Coverage

R
a

tio

None 0−30% 30−60% 60−80% 80+%

GMR/MR
GMR/NCSL*5
GMR/CC*2/3
GMR/FanOut*1/3

Figure 2. The averages and standard errors of field MR rates for the Avaya project

For comparison, Table 4 shows Spearman correlations

among the variables in the Microsoft project. Note that

here the increase in coverage is positively correlated with

the number of failures (again, all correlations are small and

highly significant). This may be due to the fact that fre-

quently changed (and, therefore, more likely to have a fail-

ure) binaries are also more likely to be more extensively

tested. This phenomenamay explain such low negative cor-

relation in the Avaya study as well. It is, therefore, impor-

tant to adjust for the differences in the propensity for failure

among files or binaries.

To accomplish that and to have better understanding of

the factors affecting the failures we fit a regression mod-

els to Avaya and Microsoft data. Because of the small user

base, very few files have more than one post-SV defect in

the Avaya project. Therefore, a logistic regression with the

response being an indicator of the file containing such fault

is a suitable model. To adjust for the different propensity

of the files to have post-SV defects we include the num-

ber of pre-release MRs (MR) as a predictor in addition to

the extent of coverage. We included MRs as a base pre-

dictor because they have been shown to be the best predic-

tor of faultiness in, for example, [7]. The number of deltas

was strongly correlated to MRs and was not added to avoid

collinearity problems. Of the remaining predictors FanOut

was the least correlated to theMR predictor and after adding

it to the model the remaining predictors were strongly cor-

related to one of the predictors in the model and, therefore,

were not included. Results in Table 5 show that increased

coverage is associated with a lower probability of a post-SV

defect.

In the Microsoft data the system has a sufficient number

of users to provide ample counts of failure reports for many

binaries so that a simpler liner regression approach may be

used. However, the response variable is highly skewed and

needs to be transformed using logarithms. Because the MR

295

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

Table 3. Correlations among the variables in the Avaya study.
GMR > 0 MR NCSL CC FanOut Delta Coverage

GMR > 0 1.00 0.35 0.14 0.18 0.16 0.15 −0.07

MR 0.35 1.00 0.48 0.25 0.25 0.77 0.13

NCSL 0.14 0.48 1.00 0.53 0.54 0.59 0.09

CC 0.18 0.25 0.53 1.00 0.82 0.26 0.21

FanOut 0.16 0.25 0.54 0.82 1.00 0.29 0.18

Delta 0.15 0.77 0.59 0.26 0.29 1.00 0.24

Coverage −0.07 0.13 0.09 0.21 0.18 0.24 1.00

Table 4. Correlations among the variables in the Microsoft study.
Failures LOC Delta FanOut CC Block Coverage Arc Coverage

Failures 1 .699 .804 .529 .531 .100 .116

Size .699 1 .848 .813 .820 .049* .067

Delta .804 .848 1 .663 .665 .128 .140

Fan Out .529 .813 .663 1 .977 .121 .143

CC .531 .820 .665 .977 1 .142 .155

Block Coverage .100 .049* .128 .121 .142 1 .990

Arc Coverage .116 .067 .140 .143 .155 .990 1

Table 5. Logistic regression for Avaya project

with response indicating postSV MR. There
are 2472 observations and the three predic

tors explain 20% of the deviance. AIC is 1249

Estimate Stderr z val Pr(>|z|)
(Intercept) −4.72 0.205 −23 0.00

log(MR) 1.18 0.084 14 0.00

log(FanOut) 0.34 0.067 5 0.00

Coverage −1.51 0.252 −6 0.00

variable was not available in this study, we used the Delta

variable, which is most similar, to adjust for the differences

among binaries. As in the Avaya study, the predictor least

correlated to Delta and Block Coverage is FanOut, which

we also include in the model to adjust for the possible dif-

ferences in failures among binaries. Results in Table 6 show

that increased coverage is associated with a lower number

of customer reported failures. The only difference is that

the FanOut has an opposite sign. We further investigate the

validity of this result using structured and semi-structured

interviews in section 5.

Both studies are consistent with Hypothesis 1 indicat-

ing that higher levels of coverage are associated with better

quality. We further investigate the validity of this result in

Section 5.

Table 6. Linear regression for Microsoft

project with the response of number of cus
tomer reported failures. The number of ob

servations is confidential the adjusted R2 =
0.66, i.e., the model explains 66% of the vari

ance.

Estimate Stder t-val Pr(>|z|)
(Intercept) NA NA 12.3 <0.0005

log(Delta) NA NA 58.5 <0.0005

log(FanOut) NA NA -5.8 <0.0005

Block Coverage NA NA −3.5 0.001

4.2. Practical Implications

We converted the regression coefficients of Table 5 into

more interpretable terms of probability that a class will have

a post-SV defect. The result, presented in Figure 2, shows

the ratio of roughly three between the highest levels of cov-

erage and no coverage. To refine these estimates we have

fitted a model with predictors indicating five levels of cover-

age as in Figure 2. For illustration we present the predicted

values of post-SV MR for classes that had three and six

MRs prior to release date with the median value of FanOut

in Table 7 (in this illustration MR and FanOut are fixed and,

therefore, do not affect the post-SV MR). Surprisingly, the

largest decrease in failure probability occurs with the high-

296

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

Table 7. The predicted probability that a class will have a postSV MR for classes with three and six
preSV MRs.

None [0, 30%) [30, 60%) [60 − 80%) [80, 100%]
MR = 3 0.07 0.056 0.050 0.040 0.018

MR = 6 0.13 0.108 0.097 0.077 0.035

est levels of coverage where the probability halves by going

from 60−80% coverage to 80−100% coverage and changes

less for the lower levels of coverage. This fact makes it diffi-

cult to determine a cost-effective level of coverage because

it takes a lot of effort to reach the highest levels of coverage

(see Section 4.3).

4.3. Coverage and Test Effort

Observing that higher levels of coverage are associated

with better quality, raises an important practical question of

how hard it may be to increase coverage. To find such a re-

lationship we have selected JUnit test case classes and their

corresponding classes in the executable code and looked at

the relationship between the coverage and the amount of ef-

fort spent in creating the test case classes. We noticed that

developers ussually name the test case classes by adding the

prefix ”Test” into the name of the classes under test (e.g.,

the test cases for a class, Utility, are ussually included in the

class, TestUtility). Only classes that have such namematch-

ing mechanism with the test case class name are included in

the analysis. We used the number of changes to the test case

classes as the proxy of effort. The use of changes to measure

effort has been successfully done before, see, e.g., [1, 13].

It is worth noting that a test case for a particular class

may affect coverage for other classes as well. It appears

that this effect is likely to be fairly small given the relatively

low coupling among the classes that have test cases. In this

project the estimated number of changes per month for the

developers that were involved in modifying this particular

set of test cases was 58 with a 95% confidence interval3

between 48 and 71.
To obtain the relationship between the number of

changes to the test cases and the level of coverage of the

associated class, we fit a linear model with the level of cov-

erage as the response. Apart from the number of changes to

the test cases, only FanOut4 has a coefficient that is signif-

icantly different from zero. Perhaps for classes that make a

large number of calls it is more difficult to achieve high lev-

els of coverage. Table 8 shows the results of the regression

3We used random effects model (with developers representing random

effects) and observations being the logarithm of the number of changes per

month to estimate the number of changes and the confidence interval.
4Cyclomatic complexity and even the number of lines did not have a

significant effect after adjusting for the number of changes to the test case.

Table 8. Linear regression with response√
arcsinCoverage and numbers of changes to

test class and average fanout of the tested

class. The number of observations is 215 and

adjusted R2 is 0.13.

Estimate Stderr t-val p-val

(Intercept) 0.36 0.10 3.5 0.00

log(Changes + 1) 0.21 0.04 5.6 0.00

log(FanOut + 1) −0.06 0.03 −1.7 0.08

model. The response was transformed using a transforma-

tion commonly used to make a proportion distributed more

like a Normal distribution. The predictors were transformed

using logarithmic transformation. While R2 is fairly low

(the model does not explain a lot of variance in the cov-

erage levels), the number of changes to the test case is a

significant predictor of test coverage.

Table 9. Predicted levels of coverage for dif
ferent numbers of changes to the test class

and median FanOut of 7.

Changes Predicted Coverage 95% CI

1 0.15 [0.07, 0.26]

7 0.45 [0.38, 0.53]

14 0.62 [0.53, 0.72]

50 0.92 [0.76, 1.00]

Table 9 shows the predicted relationship between the

amount of effort put in the test case (50 changes represent

slightly less that one person-month of effort) and the level

of coverage. We also include the prediction for test cases

with seven (the median number of changes to a test case),

14, and 50 changes. Table 9 shows that it is increasingly dif-

ficult to attain higher levels of coverage (the maximum ob-

served changes to a test case was 134 and the corresponding

297

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

class had 80% coverage, FanOut of 26, and NCSL of 729.

The results indicate that while it may be relatively easy

to reach 50% coverage, getting levels above 90% may not

be feasible except in special circumstances. Unlike with

JUnit, the test cases in the Microsoft project could not be

mapped and hence we could not investigate Hypothesis 2

in the second study. Consequently, the external validity of

this result is not as high. Nevertheless, it is consistent with

our Hypothesis 2 that reaching higher levels of coverage

requires disproportionally more effort.

5. Validity

The observational nature of our study implies that we

can not show evidence for the causal effects. In particular,

it is likely that the variations we observed among classes

and binaries were partially influenced by factors other than

the amount of coverage.

We investigated the different groups of files (with and

without coverage) via interviews with Avaya project mem-

bers to verify that:

1. the presence or absence of coverage is, indeed, accu-

rately established;

2. the post-SV defects are accurately recorded;

3. there are no latent factors (apart from presence of cov-

erage) that explain the different defect rates.

To accomplish this we have selected a subset of files

from the two groups and selected developers that made the

most changes on these files for the interview. Our inter-

views were semi-structured with open-ended questions ask-

ing about the functionality of the set of files in question and

the possible hypotheses developers might have about the

differences in the defect rates. The more structured part in-

volved verifying the absence of coverage and the existence

of post-SV defects.

5.1. Interview procedure

We interviewed a set of 6 Avaya developers that made

the most changes in the code base within the last year prior

to the date of the interviews. For each developer we used

the following documents during the interview session:

• four MRs that the developer had recently solved.

These included two GMR and two test MR.

• four deltas that the developer had committed recently.

The set included two deltas that associate with MRs

and two that do not associate with any MR.

• three groups of Java files that the developers changed

recently. These groups have high, medium, and low

code coverage, respectively. Each group includes two

files – one with low bug rate and another with high bug

rate. Thus, we selected six files per developer.

We interviewed the developers using a set of predefined

questions (as shown in Table 10). The first three are yes/no

questions, while the rest are open-ended. The first four at-

tempt to address Validity Concern 2 and the last four aim at

addressing Validity Concern 3.

In order to address the validity concern number 1, we re-

viewed all official code coverage reports generated by the

project team. We compared these reports with the coverage

data that we gathered using the method described in Sec-

tion 2.1. Because one of our interviewees is the person in

charge of measuring code coverage in the project, we also

asked him to verify the code coverage data on six Java files

that we used during the interview (as described above).

5.2. Interview Results

The results of comparing the official code coverage re-

port and the conversation with the person in charge of code

coverage measurement indicated that the code coverage

data that we gathered is accurate.

Although we tried to select the most recently changed

MR, not all of them were easily recalled by the intervie-

wees. However, every MR that the interviewees remem-

bered correctly recorded the phase it was reported, i.e., MRs

that were recorded as post-SV were indeed found after SV

test and MRs that were recorded as test MR were indeed

found during SV or development test.

When being asked Question 3, most developers noted

cases when they deliver changes relating to more than one

MR at the same times, but associate the delta to only one

MR. However, no example of such a case was identified

among the discussed deltas.

Answers to Question 4 reveal that all the questioned

deltas were committed to personal repositories. Developers

further indicated that their code versioning system forces

them to associate code changes to MR whenever they de-

liver code to the common code based. As such, all deltas

committed to the common repository were associated with

a certain MR.

The following is the list of reasons given for the differ-

ences of coverage between Java files:

1. “When I develop files from scratch, I tend to write

more test cases for it. If I just maintain the files, I

would rarely write test cases for it.”

2. “The files that are complex and are used by many other

files tend to be tested more.”

3. “The files that are easier to test tend to be tested more.

When we first deployed code coverage measurement

practice, we first write test cases for these files to

quickly increase the overall coverage.”

4. “The files that provide a service class tend to be called

by many different classes. Hence it is executed more

298

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

during testing even though we might not intend to test

them.”

5. “Some areas, such as UI, are harder to test and hence

tend to be tested less than the other.”

6. “Code that interacts with database might not be well-

tested because it may take a lot of effort to write stubs

representing database behavior.”

7. “Remote development locations may not be using test

coverage as extensively.”

To obtain similar qualitative opinions in the Microsoft

study meetings were held with senior engineers with signif-

icant (> 10 years experience) at Microsoft. In summary,

the main reason for the existences of low (but positive) di-

rect correlation as shown in Table 4 was attributed to the

following reasons:

1. Code covered is not correct code (as was pointed out

in the introduction)

2. Code with high coverage might still have defects be-

cause a usage scenario leading to a bug could have

been missed.

3. Developers inherently know that certain binaries are

complex and will tend to get very high coverage in

those binaries (see Item 2 in the Avaya summary). But

these binaries may be the most used ones in the system

that can lead to more failures being found in them, i.e.

code coverage and usage profiles might not match

4. Complexity should tie into code coverage, i.e. obtain-

ing a code coverage of 80% on a binary with cyclo-

matic complexity 1000 is more difficult than getting

a coverage of 80% on a binary with cyclomatic com-

plexity 10. The complexity values tied into the code

coverage helps exploit the efficacy of the code cover-

age measures.

The above answers suggest that the following hypotheses

about factors that might predict code coverage (and quality):

• Code functionality: Java files that provide different

functionalities tend to have different code coverage

during testing. Especially, we expect that UI code has

less coverage than the average.

• Code ownership transition: Java files created by one

developer and then significantly changed by the others

tend to have less coverage than Java files that are cre-

ated and changed by the same person. We expect that

the off-shoring process might make the difference even

more significant.

• Code that is easier to cover during testing tends to be

tested more than code that is harder to cover.

From our experience, we have found that experienced

developers who are trying to write high-quality, reliable

code will include many error handling branches, attempt-

ing to account for different error cases. Generally, many of

the error handling branches are very hard to cover during

testing. Thus, we come up with additional hypothesis:

• Code with many error handling branches is hard to

cover during testing, though it tends to have lower fail-

ure rate.

5.3. Investigating latent factors

In this section we investigate how to adjust for possi-

ble latent variables that may affect the level of coverage

and the number of defects. In addition to the confound-

ing factors that were obtained in interviews, we also used

factors used to predict failures from the literature. In par-

ticular, as demonstrated in [14], developer expertise (mea-

sured in number of changes made to the code) decreases

the failure. The best predictor of defects is the number of

past changes [7]. Lines of code, FanOut, and cyclomatic

complexity tend to have different effects in different stud-

ies but we included them here as well. The correlations

between the lines of code and cyclomatic complexity was

above 0.53, and between FanOut and cyclomatic complex-

ity was above 0.82, therefore we selected only cyclomatic

complexity in the validation model. The results were very

similar if an alternative of FanOut or NCSL were chosen.

To adjust for the potential latent variables discovered

during the interviews we have also included user interface

subsystem indicator and an indicator of a subsystem that

was developed in another (offshore location) as two predic-

tors that may affect both coverage and defects. Table 11

shows the results. Cyclomatic complexity, UI subsystem,

and remote development location all increase the faultiness

as suggested by the interviews. Increased developer exper-

tise (measured by the changes made to the system by a de-

veloper) is associated with the decrease in fault potential.

The very high levels of coverage (above 80%) are associ-

ated with decreased fault potential.

As shown in Table 11, much of the variation in class fault

potential can be explained by the differences in functional-

ity and developer expertise. However, even after adjusting

for the differences the impact of coverage remains, albeit

at a smaller level. From a point of view of the code cov-

erage effect on faultiness, the earlier model in Table 5 is

perhaps more relevant. It may well be that increasing cov-

erage for classes in UI subsystems and for less experienced

developers may lead to similar (or even better) quality in-

creases as observed in Table 5. However, the regression in

299

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

Table 10. Interview questions.
Question Accompanied items Type of question

1 For the given MR, is it GMR? All MRs

2 For the given MR, is it feature-request or bug? All MRs

3
Are the associated MRs recorded correctly in

these deltas?
Deltas with MR Yes/No

4 Why do these deltas not associate with any MR? Deltas without MR

5 Why do these files have high coverage? Files with high coverage

6 Why do these files have low coverage? Files with low coverage

7 Why do these files have average coverage? Files with medium coverage Open ended

8

MR and code coverage data indicate that code

with less than 30% coverage and code with more

than 70% coverage are more likely to be buggy

than code with 30% - 70% coverage. How would

you explain it?

N/A

Table 11. Logistic regression for class faultinesswith 2472 observations explains 31%of the observed
variance with AIC of 1086.

Estimate Std. Error z value Pr(>|z|)
Intercept 3.2 1.7 2 0.053

log MR 1.4 0.1 1E+01 1.8E−40

log CC 0.15 0.055 3 0.0056

log(Experience) −4.1 0.79 −5 2E−07

UI Subsystem 1 0.22 5 3.9E−06

Remote Location 2.6 0.39 6 8.4E−11

Coverage > 0.8 −0.7 0.29 −2 0.015

Table 11 suggests that some of the reasons why the faulti-

ness for some types of code and less experienced developers

is higher, may be at least partially explained by the less ef-

fective test cases.

6. Related Work

Based on a literature survey of prior related work, it is

surprising to note that the fundamental relationship between

code coverage and quality (measured in terms of failures,

defects etc.) has been rarely studied. For large projects

done in industry there has been little empirical evidence

presented on the relationship between coverage and quality.

There does exist a significant body of work related to re-

gression test coverage, coverage for test prioritization, fault

detection, mutation testing etc. We highlight a few most

closely related studies in this section. A variety of tech-

niques attempt to prioritize test sets based on the specific

changes to the code. Here we are assuming that all exist-

ing tests are executed because we look at the post-release

failures.

All-edges and all-uses coverage criteria using an exper-

iment with 130 fault seeded versions of seven programs is

evaluated in [11]. The study observed that test sets achiev-

ing coverage levels over 90% usually showed significantly

better fault detection than randomly chosen test sets of the

same size. In addition, significant improvements in the ef-

fectiveness of coverage-based tests usually occurred as cov-

erage increased from 90% to 100%. The size of the pro-

grams ranged from 141 LOC to 512 LOC and was many

orders of magnitude lower than in our studies. All-edges

and all-uses coverage using nine subject programs is in-

vestigated in [6]. Error-exposing ability was shown to be

positive and strongly correlated to percentage of covered

definition-use associations in four of the nine subjects. Er-

ror exposing ability was also shown to be positively corre-

lated with the percentage of covered edges in four (differ-

ent) subjects, but the relationship was weaker. The size of

the subject programs used in this study were even smaller

and ranged from 22 LOC to 78 LOC. In [5], five programs

are analyzed, four of which were Unix utilities that ranged

in size from 121 to 8857 LOC each of which were seeded

with defects. Test cases were generated randomly based

300

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

on the operational profile of the system [15] and the re-

sults indicated that with an increased coverage there was

an increased reliability. However they observed that this in-

creased coverage was independent of code complexity mea-

sures.

A point to clarify is that the related work to our study as

noted above concerns the direct relationship between cov-

erage and quality. There is a fair amount of work that have

been done in the context of using coverage for regression

testing (e.g., see [8, 10]). Test prioritization [18] is outside

the context of our study and is hence not discussed here.

7. Summary

Despite dramatic differences between the two industrial

projects under study we found that code coverage was as-

sociated with fewer field failures and a lower probability

of field defects when adjusted for the number of pre-release

changes. This strongly suggests that code coverage is a sen-

sible and practical measure of test effectiveness.

A validation conducted via interviews of project partic-

ipants validated the results and suggested code complexity,

application domain, developer expertise, and remote devel-

opment location as factors that may affect both the fault po-

tential and coverage. The analysis confirmed these effects

leading to a practical suggestion that user interface func-

tionality, less experienced developers, and remote develop-

ment locations might benefit from utilizing increased cov-

erage.

The investigation of how much an increase in code cov-

erage is related to a decrease in fault potential is shown in

Figure 2 is compatible with the assumption that an increase

in coverage leads to a proportional decrease in fault poten-

tial. Disappointingly, there is no indication of diminish-

ing returns (when an additional increase in coverage brings

smaller decrease in fault potential). What appears to be

even more disappointing, is the finding that additional in-

creases in coverage come with exponentially increasing ef-

fort. Therefore, for many projects it may be impractical to

achieve complete coverage.

These are the first results that compare the direct effect

of code coverage and post-release defects in two large sys-

tems drawing conclusions to build up an empirical body of

knowledge. We hope other researchers will replicate this

study and add to this body of knowledge.

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version

control data to evaluate the impact of software tools: A case

study of the version editor. IEEE Transactions on Software

Engineering, 28(7):625–637, July 2002.
[2] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path

profiling: The showdown. In Symposium on Principles of

Programming Languages, 1998.

[3] V. Basili and F. Shull, Lanubile. Building knowledge

through families of experiments. IEEE Transactions on Soft-

ware Engineering, 25(4):456–473, 1999.

[4] D. A. Christenson and S. T. Huang. Estimating the fault

content of software using the fix-on-fix model. Bell Labs

Technical Journal, 1(1):130–137, Summer 1996.

[5] F. Del Frate, P. Garg, A. Mathur, and A. Pasquini. On the

correlation between code coverage and software reliability.

In International Conference on Software Reliability Engi-

neering, pages 124–132, 1995.

[6] P. Frankl and S. Weiss. An experimental comparison of the

effectiveness of branch testing and data flow analysis. IEEE

TSE, 19(8):774–787, 1993.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting

fault incidence using software change history. IEEE Trans-

actions on Software Engineering, 26(2), 2000.

[8] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites

via operational abstraction. In International Conference on

Software Engineering, Portland, OR, USA, 2003.

[9] M. J. Harrold. Testing: a roadmap. In ICSE ’00: Proceed-

ings of the Conference on The Future of Software Engineer-

ing, New York, NY, USA, 2000.

[10] M. J. Harrold, D. Rosenblum, G. Rothermel, and

E. Weyuker. Empirical studies of a prediction model for

regression test selection. IEEE Trans. on Software Engi-

neering, 27(3):248–263, March 2001.

[11] H. M., H. Foster, T. Goardia, and O. T. Experiments of

the effectiveness of dataflow- and controlflow-based test ad-

equacy criteria. In ICSE’94, pages 191–200, 1994.

[12] T. J. McCabe. A complexity measure. IEEE Trans. on Soft-

ware Engineering, 2(4):308–320, Dec. 1976.

[13] A. Mockus and L. G. Votta. Identifying reasons for software

change using historic databases. In International Confer-

ence on Software Maintenance, pages 120–130, San Jose,

California, October 11-14 2000.

[14] A. Mockus and D. M. Weiss. Predicting risk of software

changes. Bell Labs Technical Journal, 5(2):169–180, April–

June 2000.

[15] J. Musa. Operational profiles in software-reliability engi-

neering. IEEE Software, 10(2):14–32, 1993.

[16] N. Ohlsson and H. Alberg. Predicting fault-prone software

modules in telephone switches. IEEE Trans. on Software

Engineering, 22(12):886–894, December 1996.

[17] S. Rapps and E. J. Weyuker. Selecting software test data

using data flow information. IEEE Trans. Softw. Eng.,

11(4):367–375, 1985.

[18] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Pri-

oritizing test cases for regression testing. IEEE Trans. on

Software Engineering, 27(10):929–948, October 2001.

[19] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary

transformation in a distributed environment. Technical Re-

port MSR-TR-2001-50, Microsoft Research Technical Re-

port, 2001.

[20] T. J. Yu, V. Y. Shen, and H. E. Dunsmore. An analysis of

several software defect models. IEEE Trans. on Software

Engineering, 14(9):1261–1270, September 1988.

301

Third International Symposium on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE

