CSC309-S15-L4 Slidé

CSC 309 Lectue Notes Week 4

Formal Specs In Testing
Intr o to Testing Techniques

CSC309-S15-L4 Slidg

|. Deriving and refining method specs.

A. Testing requires that we kmoexactly what
constitutes valid versusvaid inputs.

1. Pre- and postconds answer this guestion.

2. Used to inform unit test gelopment.

CSC309-S15-L4 Slida

Overview, cont’d

B. Recap of what pre/postconds mean.

1. Preconditionis one boolean expression
that Is true before methodaeeutes.

2. Postconditionis one boolean expression
that Is true after method completes.

CSC309-S15-L4 Slidé

Il. Formal specs used in testing

A. Formal method test consists of:
1. Inputs within l@d ranges, expected output
2. Inputs outside lgd ranges, expected output

3. Inputs on boundaries, expected output

CSC309-S15-L4 Slids

Formal specs in testing, cont'd

B. Preconds used to determine inputs.

C. Postconds used to determine expected output

CSC309-S15-L4 Slidé

Ill. Formal specs in formal verification

A. To verify formally, two gpecs needed:

1. formal spec of gien program

2. formal spec of programming language

CSC309-S15-L4 Slidé

Formal specs in verification, cont’d

B. Program spec is "entry ticket" to verification.

C. Detalls In later lectures.

CSC309-S15-L4 Slids

I\VV. Precondition enforcement -- "by contract”
versus "defensve programming"

A. Precond failure means an op is "undefined".
1. For abstract spec, this is enough.

2. At imple’n level, precond must be dealt
with more concretely.

3. Two basic approaches.

CSC309-S15-L4 Slidé

Precond enforcement, cont’d

B. Approach 1: Precond iIs guaranteed true,
before method call.

1. This is"programming by contract".
2. Precond enforced by callers.
3. Verified or checked atalling site.

4. Bottom line -- called method assumes Its
precond Is alays true.

CSC309-S15-L4 Slid&0

Precond enforcement, cont’d

C. Approach 2: Precond is checked by
method being called.

1. This is"Defensive programming".

2. Method includes logic to enforce its own
precondition.

3. Enforcement can:

CSC309-S15-L4 Slidé1

Precond enforcement, cont’d

a. Assert unconditional failure.
b. Return "null" value.
c. Output error report.

d. Throw an eception.

CSC309-S15-L4 Slid&2

Precond enforcement, cont’d

D. In Model/View comm’n, we use exception
handling approach.

E. We will discuss exception handling further in
upcoming lectures.

CSC309-S15-L4 Slid&3

V. Detalls of deriving method specs.

A. Start with Spest specs for 308.

B. Update and expand based on design refine-
ments done in 309.

C. For some detalls, see M3 example.

CSC309-S15-L4 Slidé4

Now on to General
System Testing Techniques

CSC309-S15-L4 Slid&é5

VI. General Concepts

CSC309-S15-L4 Slid&6

VI. General Concepts

A. Components are independently testable.

CSC309-S15-L4 Slid&7

VI. General Concepts
A. Components are independently testable.

B. Testing Is thorough and systematic.

CSC309-S15-L4 Slid&8

VI. General Concepts
A. Components are independently testable.

B. Testing Is thorough and systematic.

C. Testing Is repeatable.

CSC309-S15-L4 Slid&9

VII. Overall system testing styles

CSC309-S15-L4 Slid20o

VII. Overall system testing styles

A. Top-down

CSC309-S15-L4 Slidg1

VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

CSC309-S15-L4 Slida2

VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

2. "Stubs" written for lower-heel methods.

CSC309-S15-L4 Slida3

Testing styles, cont'd

B. Bottom-up

CSC309-S15-L4 Slidg4

Testing styles, cont'd

B. Bottom-up

1. Lower-level methods tested first.

CSC309-S15-L4 Slidgs

Testing styles, cont'd

B. Bottom-up
1. Lower-level methods tested first.

2. Function "drvers" written for upper-leel
methods.

CSC309-S15-L4 Slid26

Testing styles, cont'd

C. Object-oriented

CSC309-S15-L4 Slida7

Testing styles, cont'd

C. Object-oriented

1. Methods for particular class are tested.

CSC309-S15-L4 Slida8

Testing styles, cont'd

C. Object-oriented
1. Methods for particular class are tested.

2. Stubs and dvers written as necessary.

CSC309-S15-L4 Slid29

Testing styles, cont'd

D. Hybrid

CSC309-S15-L4 Slidd0

Testing styles, cont'd

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.

CSC309-S15-L4 Slida1

Testing styles, cont'd

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.

2. This Is a good practical approach.

CSC309-S15-L4 Slida2

Testing styles, cont'd

E. Big-bang

CSC309-S15-L4 Slida3

Testing styles, cont'd

E. Big-bang

1. All compiled in one hugexecutable.

CSC309-S15-L4 Slida4

Testing styles, cont'd

E. Big-bang
1. All compiled in one hugexecutable.

2. Cross fingers and run it.

CSC309-S15-L4 Slida5

Testing styles, cont'd

E. Big-bang
1. All compiled in one hugexecutable.
2. Cross fingers and run it.

3. When big bang fizzles,
enter debugger and hack.

CSC309-S15-L4 Slidd6

VIII. Independently testable designs

A. Modular interfaces designed thoroughly.

1. Don’t fudge on method signatures,
pre/post logic.

2. Be clear on public and protected.

CSC309-S15-L4 Slida7

Independently testable designs, cont’d

B. Write stubs anddrivers as necessatry.

CSC309-S15-L4 Slida8

Independently testable designs, cont’d

B. Write stubs anddrivers as necessatry.

1. A stub is also known as mnock.

CSC309-S15-L4 Slida9

Independently testable designs, cont’d

B. Write stubs anddrivers as necessatry.
1. A stubis also known as @nock.

2. Driversgenerally supplied by testing
framework, as part of its typical use.

CSC309-S15-L4 Slidé0

IX. General approaches to testing

CSC309-S15-L4 Slidé1

IX. General approaches to testing

A. Black box testing

CSC309-S15-L4 Slidé2

IX. General approaches to testing

A. Black box testing

1. Each method viewed as black box.

CSC309-S15-L4 Slidé3

IX. General approaches to testing

A. Black box testing
1. Each method viewed as black box.

2. Function tested using spec only.

CSC309-S15-L4 Slidé4

General approaches, cont’d

B. White-box testing

CSC309-S15-L4 Slidé5

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

CSC309-S15-L4 Slidé6

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully &ercise code logic.

CSC309-S15-L4 Slidé7

General approaches, cont’d

B. White-box testing

1. Testing based on method code.
2. Inputs that fully &ercise code logic.

3. Each control path isxercised at least
once by some test.

CSC309-S15-L4 Slidé8

General approaches, cont’d

C. Runtime pre/postcond enforcement

CSC309-S15-L4 Slidé9

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

CSC309-S15-L4 Slids0

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., Input range checking.

CSC309-S15-L4 Slids1

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., Input range checking.

3. Function returns (or throws) error if con-
dition Is not met.

CSC309-S15-L4 Slidg2

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., Input range checking.

3. Function returns (or throws) error if con-
dition Is not met.

4. Crudely function could usassert.

CSC309-S15-L4 Slidg3

General approaches, cont’d

D. Formal verification

CSC309-S15-L4 Slide4

General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as mbthéorems.

CSC309-S15-L4 Slidg5

General approaches, cont’d

D. Formal verification
1. Pre/post conds treated as mbthéorems.

2. Function body treated as mdthormula.

CSC309-S15-L4 Slide6

General approaches, cont’d

D. Formal verification
1. Pre/post conds treated as mbthéorems.
2. Function body treated as mdthormula.

3. Verification entails proving precond
implies postcondthrough method body.

CSC309-S15-L4 Slidg7

X. Functional unit test detalls

CSC309-S15-L4 Slidé8

X. Functional unit test detalls

A. List of test cases produced for each method.

CSC309-S15-L4 Slidg9

X. Functional unit test details
A. List of test cases produced for each method.

B. This constitutes thenit test plan.

CSC309-S15-L4

Slidé0

Case No. Inputs ExpectedOutput Remarks

1 parm 1= ... refparm 1 = ...
parmm = ... ref parmn = ...
data fielda=..., datafielda=...
data field z=..., datafieldz=...

return = ...
throw = ...

n parm 1= ... refparm 1 = ...
parmm = ... ref parmn = ...
data fielda=..., datafielda=...
data field z=..., datafieldz=...

return = ...

throw = ...

CSC309-S15-L4 Slidé1

Unit test detalls, cont’'d

C. Note that

CSC309-S15-L4 Slidé2

Unit test detalls, cont’'d

C. Note that

1. Must specify all input parameters and
data fields.

CSC309-S15-L4 Slidé3

Unit test detalls, cont’'d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.

CSC309-S15-L4 Slidé4

Unit test detalls, cont’'d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.

3. Not mentioned assumed "dogare".

CSC309-S15-L4 Slidé5

Unit test detalls, cont’'d

D. One test plan for each method.

CSC309-S15-L4 Slidé6

Unit test detalls, cont'd
D. One test plan for each method.

E. Unit test plans included ayadoc comments.

CSC309-S15-L4 Slidé7

Xl. Module, I.e., class testing

CSC309-S15-L4 Slidés

Xl. Module, I.e., class testing

A. Write unit test plans for each method.

CSC309-S15-L4 Slidé9

Xl. Module, I.e., class testing
A. Write unit test plans for each method.

B. For class as whole, writelass test plan.

CSC309-S15-L4 Slidé0o

Xl. Module, I.e., class testing
A. Write unit test plans for each method.
B. For class as whole, writelass test plan.

C. Guidelines:

CSC309-S15-L4 Slidél

Class testing, cont’d

1. Start with unit tests for constructors.

CSC309-S15-L4 Slidé2

Class testing, cont’d
1. Start with unit tests for constructors.

2. Next, unit test other construedi nethods.

CSC309-S15-L4 Slidé3

Class testing, cont’d
1. Start with unit tests for constructors.
2. Next, unit test other construedi nethods.

3. Unit test selector methods.

CSC309-S15-L4 Slidé4

Class testing, cont’d
1. Start with unit tests for constructors.
2. Next, unit test other construedi nethods.

3. Unit test selector methods.

4. Test certain method interleavings.

CSC309-S15-L4 Slidés

Class testing, cont’d
1. Start with unit tests for constructors.
2. Next, unit test other construedi nethods.

3. Unit test selector methods.

4. Test certain method interleavings.

5. Stress test.

CSC309-S15-L4 Slidé6

Class testing, cont’d

D. Use/write a test dver that:

CSC309-S15-L4 Slidé7

Class testing, cont’d

D. Use/write a test dver that:

1. executes each method test plan,

CSC309-S15-L4 Slidé8

Class testing, cont’d

D. Use/write a test dver that:
1. executes each method test plan,

2. compares actual with expected output,

CSC309-S15-L4 Slidé9

Class testing, cont’d

D. Use/write a test dver that:
1. executes each method test plan,
2. compares actual with expected output,

3. reports the differences, if g@n

CSC309-S15-L4 Slidso

Class testing, cont’d

D. Use/write a test dver that:
1. executes each method test plan,
2. compares actual with expected output,
3. reports the differences, if g@n

4. optionally records output results.

CSC309-S15-L4 Slidsl

Class testing, cont’d

E. Concrete examples:

proj ect s/ wor k/ cal endar/testing/
| npl enent at1 on/ source/ | aval
cal t ool / schedul e/
Schedul eTest . | ava

proj ect s/ wor k/ cal endar/testing/
| npl enent at1 on/ source/ | aval
cal t ool / cal db/
User Cal endar Test . | ava

CSC309-S15-L4 Slids2

Class testing, cont’d

F. Java cetalls

CSC309-S15-L4 Slide3

Class testing, cont’d

F. Java cetalls

1. Each clasX has companion testing class
namedXTest.

CSC309-S15-L4 Slide4

Class testing, cont’d

F. Java cetalls

1. Each clasX has companion testing class
namedXTest.

2. Test class may extend class it tests.

CSC309-S15-L4 Slide5

Class testing, cont’d

F. Java cetalls

1. Each clasX has companion testing class
namedXTest.

2. Test class may extend class it tests.

3. Each metho&.f has a companion unit test
method namedXTest.testF.

CSC309-S15-L4 Slid86

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

CSC309-S15-L4 Slide7

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.

CSC309-S15-L4 Slides

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.

5. Each tested class implemedisnp
method for dumping test values as String.

CSC309-S15-L4 Slide9

Xl. Integration testing

CSC309-S15-L4 Slidéo

Xl. Integration testing

A. Once tested, modules are integrated.

CSC309-S15-L4 Slide1

Xl. Integration testing
A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

CSC309-S15-L4 Slide2

XI.

Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C.

est plan for top-most method(s) rerun with
iIntegrated modules.

CSC309-S15-L4 Slidé3

Xl. Integration testing
A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
iIntegrated modules.

D. Continues until entire system Is integrated.

CSC309-S15-L4 Slide4

D. Integration testing
A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
iIntegrated modules.

D. Continues until entire system Is integrated.

CSC309-S15-L4 Slidé5

Integration testing, cont'd

E. Concrete example:

proj ect s/ wor k/ cal endar/testing/
| npl enent at1 on/
| nt egration-test-plan. htmn

CSC309-S15-L4 Slidéé

1. Integrateschedul e + cal db

CSC309-S15-L4 Slide7

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

CSC309-S15-L4 Slidés

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

3. Addadm ntoschedul e+vi ew+cal db

CSC309-S15-L4 Slidé9g

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

3. Addadm n toschedul e+vi ew#+cal db

4. Integratecal db + cal db. server

CSC309-S15-L4 Slid&00

1. Integrateschedul e + cal db

. Addvi ewtoschedul e+cal db

. Addadm n toschedul e+vi ew+cal db

2
3
4. Integratecal db + cal db. server
5

. Addcal db. server toschedule + ...

CSC309-S15-L4 Slid&01

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

3. Addadm n toschedul e+vi ew#+cal db

4. Integratecal db + cal db. server

5. Addcal db. server toschedul e + ...

6. Addoptionstoschedule + ...

CSC309-S15-L4 Slid&02

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

3. Addadm n toschedul e+vi ew#+cal db

4. Integratecal db + cal db. server
5. Addcal db. server toschedule + ...

6. Addoptionstoschedule + ...

7. Addfil etoschedul e + ...

CSC309-S15-L4 Slid&03

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

. Addadm n toschedul e+vi ew+cal db

. Integratecal db + cal db. server
. Addcal db. server toschedule + ...
. Addoptionstoschedule + ...

.Addfil etoschedul e + ...

0O N OO 01 &~ W

. Addedit schedule + ...

CSC309-S15-L4 Slid&04

1. Integrateschedul e + cal db

2. Addvi ewtoschedul e+cal db

. Addadm n toschedul e+vi ew+cal db

. Integratecal db + cal db. server
. Addcal db. server toschedule + ...
. Addoptionstoschedule + ...

.Addfil etoschedul e + ...

. Addedit schedule + ...

© 00 N O O &~ W

. Add top-level cal t ool classes

CSC309-S15-L4 Slid&05

XlIl. Black box testing heuristics

CSC309-S15-L4 Slid&06

XlIl. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to gercise precond logic.

CSC309-S15-L4 Slid&07

XlIl. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to gercise precond logic.

B. Provide inputs where the precond is false,
If not a by-contract method.

CSC309-S15-L4 Slid&08

Black box heuristics, cont’'d

B. For data ranges:

CSC309-S15-L4 Slid&09

Black box heuristics, cont’'d

B. For data ranges:

1. Provide inputs bels, within, aboe each
precond range.

CSC309-S15-L4 Slid&10

Black box heuristics, cont’'d

B. For data ranges:

1. Provide inputs bels, within, aboe each
precond range.

2. Provide inputs that produce outputs at bot-
tom, within, at top of each postcond range.

CSC309-S15-L4 Slid&@11

Black box heuristics, cont’'d

CSC309-S15-L4 Slid&12

Black box heuristics, cont’'d

C. With and/or logic, provide test cases that
fully exercise logic.

CSC309-S15-L4 Slid&13

Black box heuristics, cont’'d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

CSC309-S15-L4 Slidé14

Black box heuristics, cont’'d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

2. This means 2test cases, whereis number
of logical terms.

CSC309-S15-L4 Slid&15

Black box heuristics, cont’'d

D. Provide selected combinations of inputs.

CSC309-S15-L4 Slid&16

Black box heuristics, cont’'d

D. Provide selected combinations of inputs.

1. Combinatorially exploske in general.

CSC309-S15-L4 Slidaé17

Black box heuristics, cont’'d

D. Provide selected combinations of inputs.
1. Combinatorially exploske in general.

2. Parwise combination is practical approach.

CSC309-S15-L4 Slid&18

Black box heuristics, cont’'d

D. Provide selected combinations of inputs.
1. Combinatorially exploske in general.
2. Parwise combination is practical approach.

3. Used by Spest generator.

CSC309-S15-L4 Slid&19

Black box heuristics, cont’'d

D. Provide selected combinations of inputs.
1. Combinatorially exploske in general.
2. Parwise combination is practical approach.
3. Used by Spest generator.

4. See pairwise.org

CSC309-S15-L4 Slid&20

Black box heuristics, cont’'d

E. For collection classes:

CSC309-S15-L4 Slidé21

Black box heuristics, cont’'d

E. For collection classes:

1. Test empty collection.

CSC309-S15-L4 Slid&22

Black box heuristics, cont’'d

E. For collection classes:

1. Test empty collection.

2. Test with one, two dements.

CSC309-S15-L4 Slid&23

Black box heuristics, cont’'d

E. For collection classes:

1. Test empty collection.

2. Test with one, two dements.

3. Add substantial number of elements.

CSC309-S15-L4 Slidé24

Black box heuristics, cont’'d

E. For collection classes:

1. Test empty collection.

2. Test with one, two dements.
3. Add substantial number of elements.

4. Delete each element.

CSC309-S15-L4 Slid&25

Black box heuristics, cont’'d

E. For collection classes:

1. Test empty collection.

2. Test with one, two dements.
3. Add substantial number of elements.
4. Delete each element.

5. Repeat add/del sequence.

CSC309-S15-L4 Slid&26

Black box heuristics, cont’'d

E. For collection classes:

. Test empty collection.

est with one, tw dements.

. Add substantial number of elements.

1
2
3
4. Delete each element.
5. Repeat add/del sequence.
6

. Stress test with order of magnitude greater
than expected size.

CSC309-S15-L4 Slid&27

XIlI. Function paths
A. Control flov through method body.
B. Branching defines path separation point.
C. An old-schoolflow chart shawv paths clearly.

D. Each path is labeled with a number.

CSC309-S15-L4

XIV. White box testing heuristics

A. EXxercise each path at least once.

B. For loops:

o H~ W N -

. zero times (if appropriate),

. one time

. two times

. a dbstantial number of times

. max number times (if appro)

Slid&28

CSC309-S15-L4 Slid&29

White box heuristics, cont’d

C. Provide inputs to re=al imple’n flaws:
1. particular operation sequences
2. Inputs of particular size or range

3. Inputs that may cause@flow, underflow,
other abnormal behavior

4. Inputs that test well-known problems in
algorithm

CSC309-S15-L4 Slid&30

XV. Reconciling path cowerage
A. Write purely black box tests.

B. To ensure cwerage, &ecute under path cov-
erage analyzer.

C. If analyzer reports paths not beingread,
strengthen black box tests.

CSC309-S15-L4 Slid&31

Reconciling path cowerage

1. Uncovered paths may contain useless or
dead code.

2. When legitimate code, addwédlack box
test cases.

D. Complete "grg box" test plan can va path
column:

CSC309-S15-L4 Slid&32

Reconciling path cowerage

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= ref parm 1 = P

parmm=| refparmn=

CSC309-S15-L4 Slid&33

XVI. Large inputs and outputs
A. For collections classes, i/o can grdarge.
B. Can be specified as file data.

C. Referred to In test plans.

CSC309-S15-L4 Slid&34

XVII. Test drivers
A. Once defined, test must beceuted.

B. Test driver written as stand-alone program.
1. Executes all tests.
2. Records results.

3. Providesresult differencer.

CSC309-S15-L4 Slid&35

Test drivers, con’td

C. Automated In

proj ect s/ wor k/ cal endar/testing/
| npl enent ati on/ source/ | aval/ Makefil e

Template In

cl asses/ 309/ 11 b/ csl - Makefi | es/
testi ng- Makefil e

D. Perform tests initially using debugger.

CSC309-S15-L4 Slid&36

XVIII. Testing concrete Uls
A. Performed in the same basic manner.
B. User input Is simulated.
C. Output screens validated initially by human.

D. Machine-readable form of screen to compare
results mechanically.

CSC309-S15-L4 Slid&37

Testing concrete Uls, cont’d

E. Well look at mechanized GUI testing
In a couple weeks.

CSC309-S15-L4 Slid&38

XIX. Unit test is "dress rehearsal"
for I ntegration testing ...

A. Integration"should not" reveal further errors.
B. From experience, it often does.

C. In so doing, individual tests become stronger.

CSC309-S15-L4 Slid&39

XX. Testing with large data.

A. Suppose we va

cl ass SoneMbdest Model {

}

cl ass HunongousDat abase {

}

CSC309-S15-L4 Slid&40

Large-data requirements, cont’d

B. Modest amount of test data can be built pro-

grammaticallyi.e., by calling constructe
methods

C. Large amount of (persistent) data can be
stored external from program, built by exter-
nal means if appropriate.

D. The latter are externgst fixtures

CSC309-S15-L4 Slidg@41

XXI. Other testing terminology

A. The testing oracle.

1. Someone(thing) who knows correct
answers.

2. Used to define expected results.
3. Also used to analyze incorrect test results.

4. In CSC 309, oracle is defined by implemen-
tation of Spest postcondition.

CSC309-S15-L4 Slid&42

Terminology, cont’d

5. When building truly experimental code,
spec-based oracle may not be possible.

a. E.g., Al systems.

b. Need initial prototype deslopment.

CSC309-S15-L4 Slid&43

Terminology, cont’d

B. Regression testing
1. Runall tests whener any change is made.
2. Must happen before release.

3. Ideally happens much more often.

4. Ongoing research on "smart" regression.

CSC309-S15-L4 Slidé44

Terminology, cont’d
C. Mutation testing
1. It's a way to test the tests.

2. Strategy -mutateprogram, then rerun
tests.

3. E.g., "If (X <y)"Is mutated to "Iif (x >=y)".

CSC309-S15-L4 Slid&45

Terminology, cont’d

4. With such mutation, tests should fail where
the mutated code produces bad result.

5. If previously successful tests dot fail, ...
?

CSC309-S15-L4 Slid&46

Terminology, cont’d

a. The tests are too weak and need to be
strengthened

b. The mutated section of code was "dead"
andshould be remwoead.

CSC309-S15-L4 Slidg47

Terminology, cont’d

6. Generallythe first of these is the case.

/. Mutation can be used systematically to:

CSC309-S15-L4 Slid&48

Terminology, cont’d

a. Provide measure of testing effeemness.

b. Compare different testing strategies.

CSC309-S15-L4 Slid&49

XXIl. Testing directory structure

A. Figure 1 in notes ...

CSC309-S15-L4 Slid&50

design i mpl enent ati on
* htm j avadoc i mges Makefil e source execut abl es Makefil e i nput out put - good
] ava c++)T‘EL\
project-specific *.{h, G out put d| ffs . output diffs

package directories
with .java files
proj ect-specific
package directories
iwth .classfiles

CSC309-S15-L4 Slid&é51

Test dir structure, cont’d

B. Contents of testing subdirs:

CSC309-S15-L4

Directory or File

Slid&52

Description

*Test .| ava
| nput
out put - good

out put - prev-good

$PLATFORM/ out put
SPLATFORM/ di ffs
SPLATFORM/ Makefil e

$PLATFORM/ . nake*

$PLATFORM/
.../l *.class

Implementation of class testing plans.
Test data input files used by test classes.
Output results from last good run of the tests.

Previous good results, in case current results
were erroneously confirmed to be good.

Current platform-specific output results.
Differences between current and good results.

Makefile to compile testsxecute tests, and
difference current results with good results.

Shell scripts called from the Makefile to per-
form specific testing tasks.

Test implementation object files.

CSC309-S15-L4 Slid&53

