
CSC309-S15-L4 Slide1

CSC 309 Lecture Notes Week 4

Formal Specs in Testing
Intr o to Testing Techniques

CSC309-S15-L4 Slide2

I. Deriving and refining method specs.

A. Testing requires that we know exactly what
constitutes valid versus invalid inputs.

1. Pre- and postconds answer this question.

2. Used to inform unit test development.

CSC309-S15-L4 Slide3

Overview, cont’d

B. Recap of what pre/postconds mean.

1. Preconditionis one boolean expression
that is true before method executes.

2. Postconditionis one boolean expression
that is true after method completes.

CSC309-S15-L4 Slide4

II. Formal specs used in testing

A. Formal method test consists of:

1. Inputs within legal ranges, expected output

2. Inputs outside legal ranges, expected output

3. Inputs on boundaries, expected output

CSC309-S15-L4 Slide5

Formal specs in testing, cont’d

B. Preconds used to determine inputs.

C. Postconds used to determine expected output

CSC309-S15-L4 Slide6

III. Formal specs in formal verification

A. To verify formally, two specs needed:

1. formal spec of given program

2. formal spec of programming language

CSC309-S15-L4 Slide7

Formal specs in verification, cont’d

B. Program spec is "entry ticket" to verification.

C. Details in later lectures.

CSC309-S15-L4 Slide8

IV. Precondition enforcement -- "by contract"
versus "defensive programming"

A. Precond failure means an op is "undefined".

1. For abstract spec, this is enough.

2. At imple’n level, precond must be dealt
with more concretely.

3. Tw o basic approaches.

CSC309-S15-L4 Slide9

Precond enforcement, cont’d

B. Approach 1: Precond is guaranteed true,
before method call.

1. This is"programming by contract".

2. Precond enforced by callers.

3. Verified or checked atcalling site.

4. Bottom line -- called method assumes its
precond is always true.

CSC309-S15-L4 Slide10

Precond enforcement, cont’d

C. Approach 2: Precond is checked by
method being called.

1. This is"Defensive programming".

2. Method includes logic to enforce its own
precondition.

3. Enforcement can:

CSC309-S15-L4 Slide11

Precond enforcement, cont’d

a. Assert unconditional failure.

b. Return "null" value.

c. Output error report.

d. Throw an exception.

CSC309-S15-L4 Slide12

Precond enforcement, cont’d

D. In Model/View comm’n, we use exception
handling approach.

E. We will discuss exception handling further in
upcoming lectures.

CSC309-S15-L4 Slide13

V. Details of deriving method specs.

A. Start with Spest specs for 308.

B. Update and expand based on design refine-
ments done in 309.

C. For some details, see M3 example.

CSC309-S15-L4 Slide14

Now on to General
System Testing Techniques

CSC309-S15-L4 Slide15

VI. General Concepts

CSC309-S15-L4 Slide16

VI. General Concepts

A. Components are independently testable.

CSC309-S15-L4 Slide17

VI. General Concepts

A. Components are independently testable.

B. Testing is thorough and systematic.

CSC309-S15-L4 Slide18

VI. General Concepts

A. Components are independently testable.

B. Testing is thorough and systematic.

C. Testing is repeatable.

CSC309-S15-L4 Slide19

VII. Overall system testing styles

CSC309-S15-L4 Slide20

VII. Overall system testing styles

A. Top-down

CSC309-S15-L4 Slide21

VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

CSC309-S15-L4 Slide22

VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

2. "Stubs" written for lower-level methods.

CSC309-S15-L4 Slide23

Testing styles, cont’d

B. Bottom-up

CSC309-S15-L4 Slide24

Testing styles, cont’d

B. Bottom-up

1. Lower-level methods tested first.

CSC309-S15-L4 Slide25

Testing styles, cont’d

B. Bottom-up

1. Lower-level methods tested first.

2. Function "drivers" written for upper-level
methods.

CSC309-S15-L4 Slide26

Testing styles, cont’d

C. Object-oriented

CSC309-S15-L4 Slide27

Testing styles, cont’d

C. Object-oriented

1. Methods for particular class are tested.

CSC309-S15-L4 Slide28

Testing styles, cont’d

C. Object-oriented

1. Methods for particular class are tested.

2. Stubs and drivers written as necessary.

CSC309-S15-L4 Slide29

Testing styles, cont’d

D. Hybrid

CSC309-S15-L4 Slide30

Testing styles, cont’d

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.

CSC309-S15-L4 Slide31

Testing styles, cont’d

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.

2. This is a good practical approach.

CSC309-S15-L4 Slide32

Testing styles, cont’d

E. Big-bang

CSC309-S15-L4 Slide33

Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

CSC309-S15-L4 Slide34

Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

2. Cross fingers and run it.

CSC309-S15-L4 Slide35

Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

2. Cross fingers and run it.

3. When big bang fizzles,
enter debugger and hack.

CSC309-S15-L4 Slide36

VIII. Independently testable designs

A. Modular interfaces designed thoroughly.

1. Don’t fudge on method signatures,
pre/post logic.

2. Be clear on public and protected.

CSC309-S15-L4 Slide37

Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.

CSC309-S15-L4 Slide38

Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.

1. A stub is also known as amock.

CSC309-S15-L4 Slide39

Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.

1. A stub is also known as amock.

2. Drivers generally supplied by testing
framework, as part of its typical use.

CSC309-S15-L4 Slide40

IX. General approaches to testing

CSC309-S15-L4 Slide41

IX. General approaches to testing

A. Black box testing

CSC309-S15-L4 Slide42

IX. General approaches to testing

A. Black box testing

1. Each method viewed as black box.

CSC309-S15-L4 Slide43

IX. General approaches to testing

A. Black box testing

1. Each method viewed as black box.

2. Function tested using spec only.

CSC309-S15-L4 Slide44

General approaches, cont’d

B. White-box testing

CSC309-S15-L4 Slide45

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

CSC309-S15-L4 Slide46

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully exercise code logic.

CSC309-S15-L4 Slide47

General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully exercise code logic.

3. Each control path is exercised at least
once by some test.

CSC309-S15-L4 Slide48

General approaches, cont’d

C. Runtime pre/postcond enforcement

CSC309-S15-L4 Slide49

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

CSC309-S15-L4 Slide50

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.

CSC309-S15-L4 Slide51

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.

3. Function returns (or throws) error if con-
dition is not met.

CSC309-S15-L4 Slide52

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.

3. Function returns (or throws) error if con-
dition is not met.

4. Crudely, function could useassert.

CSC309-S15-L4 Slide53

General approaches, cont’d

D. Formal verification

CSC309-S15-L4 Slide54

General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

CSC309-S15-L4 Slide55

General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

2. Function body treated as math’l formula.

CSC309-S15-L4 Slide56

General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

2. Function body treated as math’l formula.

3. Verification entails proving precond
implies postcond,through method body.

CSC309-S15-L4 Slide57

X. Functional unit test details

CSC309-S15-L4 Slide58

X. Functional unit test details

A. List of test cases produced for each method.

CSC309-S15-L4 Slide59

X. Functional unit test details

A. List of test cases produced for each method.

B. This constitutes theunit test plan.

CSC309-S15-L4 Slide60

Case No. Inputs ExpectedOutput Remarks

1 parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
data field a = ... data field a = ...

... ...
data field z = ... data field z = ...

return = ...
throw = ...

...

n parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
data field a = ... data field a = ...

... ...
data field z = ... data field z = ...

return = ...
throw = ...

...

CSC309-S15-L4 Slide61

Unit test details, cont’d

C. Note that

CSC309-S15-L4 Slide62

Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.

CSC309-S15-L4 Slide63

Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.

CSC309-S15-L4 Slide64

Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.

3. Not mentioned assumed "don’t care".

CSC309-S15-L4 Slide65

Unit test details, cont’d

D. One test plan for each method.

CSC309-S15-L4 Slide66

Unit test details, cont’d

D. One test plan for each method.

E. Unit test plans included a javadoc comments.

CSC309-S15-L4 Slide67

XI. Module, i.e., class testing

CSC309-S15-L4 Slide68

XI. Module, i.e., class testing

A. Write unit test plans for each method.

CSC309-S15-L4 Slide69

XI. Module, i.e., class testing

A. Write unit test plans for each method.

B. For class as whole, writeclass test plan.

CSC309-S15-L4 Slide70

XI. Module, i.e., class testing

A. Write unit test plans for each method.

B. For class as whole, writeclass test plan.

C. Guidelines:

CSC309-S15-L4 Slide71

Class testing, cont’d

1. Start with unit tests for constructors.

CSC309-S15-L4 Slide72

Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

CSC309-S15-L4 Slide73

Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

CSC309-S15-L4 Slide74

Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

4. Test certain method interleavings.

CSC309-S15-L4 Slide75

Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

4. Test certain method interleavings.

5. Stress test.

CSC309-S15-L4 Slide76

Class testing, cont’d

D. Use/write a test driver that:

CSC309-S15-L4 Slide77

Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

CSC309-S15-L4 Slide78

Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,

CSC309-S15-L4 Slide79

Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,

3. reports the differences, if any,

CSC309-S15-L4 Slide80

Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,

3. reports the differences, if any,

4. optionally records output results.

CSC309-S15-L4 Slide81

Class testing, cont’d

E. Concrete examples:

projects/work/calendar/testing/
implementation/source/java/

caltool/schedule/
ScheduleTest.java

projects/work/calendar/testing/
implementation/source/java/

caltool/caldb/
UserCalendarTest.java

CSC309-S15-L4 Slide82

Class testing, cont’d

F. Java details

CSC309-S15-L4 Slide83

Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

CSC309-S15-L4 Slide84

Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

2. Test class may extend class it tests.

CSC309-S15-L4 Slide85

Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

2. Test class may extend class it tests.

3. Each methodX.f has a companion unit test
method namedXTest.testF.

CSC309-S15-L4 Slide86

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

CSC309-S15-L4 Slide87

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.

CSC309-S15-L4 Slide88

Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.

5. Each tested class implementsdump
method for dumping test values as String.

CSC309-S15-L4 Slide89

XI. Integration testing

CSC309-S15-L4 Slide90

XI. Integration testing

A. Once tested, modules are integrated.

CSC309-S15-L4 Slide91

XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

CSC309-S15-L4 Slide92

XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

CSC309-S15-L4 Slide93

XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

D. Continues until entire system is integrated.

CSC309-S15-L4 Slide94

D. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

D. Continues until entire system is integrated.

CSC309-S15-L4 Slide95

Integration testing, cont’d

E. Concrete example:

projects/work/calendar/testing/
implementation/
integration-test-plan.html

CSC309-S15-L4 Slide96

1. Integrateschedule + caldb

CSC309-S15-L4 Slide97

1. Integrateschedule + caldb

2. Add view to schedule+caldb

CSC309-S15-L4 Slide98

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

CSC309-S15-L4 Slide99

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

CSC309-S15-L4 Slide100

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

CSC309-S15-L4 Slide101

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

CSC309-S15-L4 Slide102

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

CSC309-S15-L4 Slide103

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

8. Add edit schedule + ...

CSC309-S15-L4 Slide104

1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

8. Add edit schedule + ...

9. Add top-level caltool classes

CSC309-S15-L4 Slide105

XII. Black box testing heuristics

CSC309-S15-L4 Slide106

XII. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.

CSC309-S15-L4 Slide107

XII. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.

B. Provide inputs where the precond is false,
if not a by-contract method.

CSC309-S15-L4 Slide108

Black box heuristics, cont’d

B. For data ranges:

CSC309-S15-L4 Slide109

Black box heuristics, cont’d

B. For data ranges:

1. Provide inputs below, within, above each
precond range.

CSC309-S15-L4 Slide110

Black box heuristics, cont’d

B. For data ranges:

1. Provide inputs below, within, above each
precond range.

2. Provide inputs that produce outputs at bot-
tom, within, at top of each postcond range.

CSC309-S15-L4 Slide111

Black box heuristics, cont’d

CSC309-S15-L4 Slide112

Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.

CSC309-S15-L4 Slide113

Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

CSC309-S15-L4 Slide114

Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

2. This means 2n test cases, wheren is number
of logical terms.

CSC309-S15-L4 Slide115

Black box heuristics, cont’d

D. Provide selected combinations of inputs.

CSC309-S15-L4 Slide116

Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

CSC309-S15-L4 Slide117

Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.

CSC309-S15-L4 Slide118

Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.

3. Used by Spest generator.

CSC309-S15-L4 Slide119

Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.

3. Used by Spest generator.

4. See pairwise.org

CSC309-S15-L4 Slide120

Black box heuristics, cont’d

E. For collection classes:

CSC309-S15-L4 Slide121

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

CSC309-S15-L4 Slide122

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

CSC309-S15-L4 Slide123

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

CSC309-S15-L4 Slide124

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

CSC309-S15-L4 Slide125

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.

CSC309-S15-L4 Slide126

Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.

6. Stress test with order of magnitude greater
than expected size.

CSC309-S15-L4 Slide127

XIII. Function paths

A. Control flow through method body.

B. Branching defines path separation point.

C. An old-schoolflow chart show paths clearly.

D. Each path is labeled with a number.

CSC309-S15-L4 Slide128

XIV. White box testing heuristics

A. Exercise each path at least once.

B. For loops:

1. zero times (if appropriate),

2. one time

3. two times

4. a substantial number of times

5. max number times (if appro)

CSC309-S15-L4 Slide129

White box heuristics, cont’d

C. Provide inputs to reveal imple’n flaws:

1. particular operation sequences

2. inputs of particular size or range

3. inputs that may cause overflow, underflow,
other abnormal behavior

4. inputs that test well-known problems in
algorithm

CSC309-S15-L4 Slide130

XV. Reconciling path coverage

A. Write purely black box tests.

B. To ensure coverage, execute under path cov-
erage analyzer.

C. If analyzer reports paths not being covered,
strengthen black box tests.

CSC309-S15-L4 Slide131

Reconciling path coverage

1. Uncovered paths may contain useless or
dead code.

2. When legitimate code, add new black box
test cases.

D. Complete "grey box" test plan can have path
column:

CSC309-S15-L4 Slide132

Reconciling path coverage

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= ref parm 1 = p
... ...

parm m = ref parm n =

CSC309-S15-L4 Slide133

XVI. Large inputs and outputs

A. For collections classes, i/o can grow large.

B. Can be specified as file data.

C. Referred to in test plans.

CSC309-S15-L4 Slide134

XVII. Test drivers

A. Once defined, test must be executed.

B. Test driver written as stand-alone program.

1. Executes all tests.

2. Records results.

3. Providesresult differencer.

CSC309-S15-L4 Slide135

Test drivers, con’td

C. Automated in

projects/work/calendar/testing/
implementation/source/java/Makefile

Template in

classes/309/lib/csl-Makefiles/
testing-Makefile

D. Perform tests initially using debugger.

CSC309-S15-L4 Slide136

XVIII. Testing concrete UIs

A. Performed in the same basic manner.

B. User input is simulated.

C. Output screens validated initially by human.

D. Machine-readable form of screen to compare
results mechanically.

CSC309-S15-L4 Slide137

Testing concrete UIs, cont’d

E. We’l l look at mechanized GUI testing
in a couple weeks.

CSC309-S15-L4 Slide138

XIX. Unit test is "dress rehearsal"
for i ntegration testing ...

A. Integration"should not" reveal further errors.

B. From experience, it often does.

C. In so doing, individual tests become stronger.

CSC309-S15-L4 Slide139

XX. Testing with large data.

A. Suppose we have

class SomeModestModel {
...

}

class HumongousDatabase {
...

}

CSC309-S15-L4 Slide140

Large-data requirements, cont’d

B. Modest amount of test data can be built pro-
grammatically, i.e., by calling constructive
methods

C. Large amount of (persistent) data can be
stored external from program, built by exter-
nal means if appropriate.

D. The latter are externaltest fixtures.

CSC309-S15-L4 Slide141

XXI. Other testing terminology

A. The testing oracle.

1. Someone(thing) who knows correct
answers.

2. Used to define expected results.

3. Also used to analyze incorrect test results.

4. In CSC 309, oracle is defined by implemen-
tation of Spest postcondition.

CSC309-S15-L4 Slide142

Terminology, cont’d

5. When building truly experimental code,
spec-based oracle may not be possible.

a. E.g., AI systems.

b. Need initial prototype development.

CSC309-S15-L4 Slide143

Terminology, cont’d

B. Regression testing

1. Runall tests whenever any change is made.

2. Must happen before release.

3. Ideally happens much more often.

4. Ongoing research on "smart" regression.

CSC309-S15-L4 Slide144

Terminology, cont’d

C. Mutation testing

1. It’s a way to test the tests.

2. Strategy --mutateprogram, then rerun
tests.

3. E.g., "if (x < y)" is mutated to "if (x >= y)".

CSC309-S15-L4 Slide145

Terminology, cont’d

4. With such mutation, tests should fail where
the mutated code produces bad result.

5. If previously successful tests donot fail, ...
?

CSC309-S15-L4 Slide146

Terminology, cont’d

a. The tests are too weak and need to be
strengthened.

b. The mutated section of code was "dead"
andshould be removed.

CSC309-S15-L4 Slide147

Terminology, cont’d

6. Generally, the first of these is the case.

7. Mutation can be used systematically to:

CSC309-S15-L4 Slide148

Terminology, cont’d

a. Provide measure of testing effectiveness.

b. Compare different testing strategies.

CSC309-S15-L4 Slide149

XXII. Testing directory structure

A. Figure 1 in notes ...

CSC309-S15-L4 Slide150

*.{h,C} project-specific
package directories
 with .java files

design implementation

c++

diffs

 project-specific
package directories
 iwth .class files

JVM INTELjava

...

T

*.html javadoc images Makefile source executables Makefile input output-good

output *.o output diffs

CSC309-S15-L4 Slide151

Test dir structure, cont’d

B. Contents of testing subdirs:

CSC309-S15-L4 Slide152

Directory or File Description

*Test.java Implementation of class testing plans.

input Test data input files used by test classes.

output-good Output results from last good run of the tests.

output-prev-good Previous good results, in case current results
were erroneously confirmed to be good.

$PLATFORM/output Current platform-specific output results.

$PLATFORM/diffs Differences between current and good results.

$PLATFORM/Makefile Makefile to compile tests, execute tests, and
difference current results with good results.

$PLATFORM/.make* Shell scripts called from the Makefile to per-
form specific testing tasks.

$PLATFORM/
.../*.class

Test implementation object files.

CSC309-S15-L4 Slide153

