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CSC 309 Lecture Notes Week 4

Formal Specs in Testing
Intr o to Testing Techniques
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I. Deriving and refining method specs.

A. Testing requires that we know exactly what
constitutes valid versus invalid inputs.

1. Pre- and postconds answer this question.

2. Used to inform unit test development.
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Overview, cont’d

B. Recap of what pre/postconds mean.

1. Preconditionis one boolean expression
that is true before method executes.

2. Postconditionis one boolean expression
that is true after method completes.
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II. Formal specs used in testing

A. Formal method test consists of:

1. Inputs within legal ranges, expected output

2. Inputs outside legal ranges, expected output

3. Inputs on boundaries, expected output
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Formal specs in testing, cont’d

B. Preconds used to determine inputs.

C. Postconds used to determine expected output
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III. Formal specs in formal verification

A. To verify formally, two specs needed:

1. formal spec of given program

2. formal spec of programming language
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Formal specs in verification, cont’d

B. Program spec is "entry ticket" to verification.

C. Details in later lectures.
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IV. Precondition enforcement -- "by contract"
versus "defensive programming"

A. Precond failure means an op is "undefined".

1. For abstract spec, this is enough.

2. At imple’n level, precond must be dealt
with more concretely.

3. Tw o basic approaches.
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Precond enforcement, cont’d

B. Approach 1: Precond is guaranteed true,
before method call.

1. This is"programming by contract".

2. Precond enforced by callers.

3. Verified or checked atcalling site.

4. Bottom line -- called method assumes its
precond is always true.
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Precond enforcement, cont’d

C. Approach 2: Precond is checked by
method being called.

1. This is"Defensive programming".

2. Method includes logic to enforce its own
precondition.

3. Enforcement can:
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Precond enforcement, cont’d

a. Assert unconditional failure.

b. Return "null" value.

c. Output error report.

d. Throw an exception.
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Precond enforcement, cont’d

D. In Model/View comm’n, we use exception
handling approach.

E. We will discuss exception handling further in
upcoming lectures.
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V. Details of deriving method specs.

A. Start with Spest specs for 308.

B. Update and expand based on design refine-
ments done in 309.

C. For some details, see M3 example.
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Now on to General
System Testing Techniques
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VI. General Concepts
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VI. General Concepts

A. Components are independently testable.
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VI. General Concepts

A. Components are independently testable.

B. Testing is thorough and systematic.
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VI. General Concepts

A. Components are independently testable.

B. Testing is thorough and systematic.

C. Testing is repeatable.



CSC309-S15-L4 Slide19

VII. Overall system testing styles
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VII. Overall system testing styles

A. Top-down
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VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.
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VII. Overall system testing styles

A. Top-down

1. Top-level methods tested first.

2. "Stubs" written for lower-level methods.
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Testing styles, cont’d

B. Bottom-up
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Testing styles, cont’d

B. Bottom-up

1. Lower-level methods tested first.
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Testing styles, cont’d

B. Bottom-up

1. Lower-level methods tested first.

2. Function "drivers" written for upper-level
methods.
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Testing styles, cont’d

C. Object-oriented
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Testing styles, cont’d

C. Object-oriented

1. Methods for particular class are tested.
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Testing styles, cont’d

C. Object-oriented

1. Methods for particular class are tested.

2. Stubs and drivers written as necessary.
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Testing styles, cont’d

D. Hybrid
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Testing styles, cont’d

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.
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Testing styles, cont’d

D. Hybrid

1. A combination of top-down, bottom-up,
and object-oriented testing is employed.

2. This is a good practical approach.
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Testing styles, cont’d

E. Big-bang
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Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.
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Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

2. Cross fingers and run it.
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Testing styles, cont’d

E. Big-bang

1. All compiled in one huge executable.

2. Cross fingers and run it.

3. When big bang fizzles,
enter debugger and hack.
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VIII. Independently testable designs

A. Modular interfaces designed thoroughly.

1. Don’t fudge on method signatures,
pre/post logic.

2. Be clear on public and protected.
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Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.
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Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.

1. A stub is also known as amock.
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Independently testable designs, cont’d

B. Write stubs anddrivers as necessary.

1. A stub is also known as amock.

2. Drivers generally supplied by testing
framework, as part of its typical use.
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IX. General approaches to testing
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IX. General approaches to testing

A. Black box testing
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IX. General approaches to testing

A. Black box testing

1. Each method viewed as black box.
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IX. General approaches to testing

A. Black box testing

1. Each method viewed as black box.

2. Function tested using spec only.
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General approaches, cont’d

B. White-box testing
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General approaches, cont’d

B. White-box testing

1. Testing based on method code.
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General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully exercise code logic.
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General approaches, cont’d

B. White-box testing

1. Testing based on method code.

2. Inputs that fully exercise code logic.

3. Each control path is exercised at least
once by some test.
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General approaches, cont’d

C. Runtime pre/postcond enforcement
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General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.



CSC309-S15-L4 Slide50

General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.
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General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.

3. Function returns (or throws) error if con-
dition is not met.
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General approaches, cont’d

C. Runtime pre/postcond enforcement

1. Code added to methods to enforce
pre/postconds at runtime.

2. E.g., input range checking.

3. Function returns (or throws) error if con-
dition is not met.

4. Crudely, function could useassert.
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General approaches, cont’d

D. Formal verification
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General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.
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General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

2. Function body treated as math’l formula.
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General approaches, cont’d

D. Formal verification

1. Pre/post conds treated as math’l theorems.

2. Function body treated as math’l formula.

3. Verification entails proving precond
implies postcond,through method body.
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X. Functional unit test details
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X. Functional unit test details

A. List of test cases produced for each method.
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X. Functional unit test details

A. List of test cases produced for each method.

B. This constitutes theunit test plan.
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Case No. Inputs ExpectedOutput Remarks

1 parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
data field a = ... data field a = ...

... ...
data field z = ... data field z = ...

return = ...
throw = ...

...

n parm 1 = ... ref parm 1 = ...
... ...

parm m = ... ref parm n = ...
data field a = ... data field a = ...

... ...
data field z = ... data field z = ...

return = ...
throw = ...

...
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Unit test details, cont’d

C. Note that
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Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.
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Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.
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Unit test details, cont’d

C. Note that

1. Must specify all input parameters and
data fields.

2. Must specify all ref parms, return val,
modified fields.

3. Not mentioned assumed "don’t care".
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Unit test details, cont’d

D. One test plan for each method.
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Unit test details, cont’d

D. One test plan for each method.

E. Unit test plans included a javadoc comments.
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XI. Module, i.e., class testing
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XI. Module, i.e., class testing

A. Write unit test plans for each method.
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XI. Module, i.e., class testing

A. Write unit test plans for each method.

B. For class as whole, writeclass test plan.
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XI. Module, i.e., class testing

A. Write unit test plans for each method.

B. For class as whole, writeclass test plan.

C. Guidelines:
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Class testing, cont’d

1. Start with unit tests for constructors.
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Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.
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Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.
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Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

4. Test certain method interleavings.
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Class testing, cont’d

1. Start with unit tests for constructors.

2. Next, unit test other constructive methods.

3. Unit test selector methods.

4. Test certain method interleavings.

5. Stress test.
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Class testing, cont’d

D. Use/write a test driver that:
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Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,
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Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,
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Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,

3. reports the differences, if any,
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Class testing, cont’d

D. Use/write a test driver that:

1. executes each method test plan,

2. compares actual with expected output,

3. reports the differences, if any,

4. optionally records output results.
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Class testing, cont’d

E. Concrete examples:

projects/work/calendar/testing/
implementation/source/java/

caltool/schedule/
ScheduleTest.java

projects/work/calendar/testing/
implementation/source/java/

caltool/caldb/
UserCalendarTest.java
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Class testing, cont’d

F. Java details
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Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.
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Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

2. Test class may extend class it tests.
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Class testing, cont’d

F. Java details

1. Each classX has companion testing class
namedXTest.

2. Test class may extend class it tests.

3. Each methodX.f has a companion unit test
method namedXTest.testF.
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Class testing, cont’d

3. Comment at top of test class describes the
module test plan.
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Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.
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Class testing, cont’d

3. Comment at top of test class describes the
module test plan.

4. The comment for each unit test method
describes unit test plan.

5. Each tested class implementsdump
method for dumping test values as String.
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XI. Integration testing
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XI. Integration testing

A. Once tested, modules are integrated.
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XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.
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XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.
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XI. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

D. Continues until entire system is integrated.
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D. Integration testing

A. Once tested, modules are integrated.

B. Stubs replaced with actual methods.

C. Test plan for top-most method(s) rerun with
integrated modules.

D. Continues until entire system is integrated.
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Integration testing, cont’d

E. Concrete example:

projects/work/calendar/testing/
implementation/
integration-test-plan.html
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1. Integrateschedule + caldb
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1. Integrateschedule + caldb

2. Add view to schedule+caldb
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

8. Add edit schedule + ...
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1. Integrateschedule + caldb

2. Add view to schedule+caldb

3. Add admin to schedule+view+caldb

4. Integratecaldb + caldb.server

5. Add caldb.server to schedule + ...

6. Add options to schedule + ...

7. Add file to schedule + ...

8. Add edit schedule + ...

9. Add top-level caltool classes



CSC309-S15-L4 Slide105

XII. Black box testing heuristics
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XII. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.
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XII. Black box testing heuristics

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.

B. Provide inputs where the precond is false,
if not a by-contract method.
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Black box heuristics, cont’d

B. For data ranges:
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Black box heuristics, cont’d

B. For data ranges:

1. Provide inputs below, within, above each
precond range.
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Black box heuristics, cont’d

B. For data ranges:

1. Provide inputs below, within, above each
precond range.

2. Provide inputs that produce outputs at bot-
tom, within, at top of each postcond range.
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Black box heuristics, cont’d
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Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.
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Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.
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Black box heuristics, cont’d

C. With and/or logic, provide test cases that
fully exercise logic.

1. Provide an input that makes each clause
both true and false.

2. This means 2n test cases, wheren is number
of logical terms.
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Black box heuristics, cont’d

D. Provide selected combinations of inputs.
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Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.
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Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.
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Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.

3. Used by Spest generator.
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Black box heuristics, cont’d

D. Provide selected combinations of inputs.

1. Combinatorially explosive in general.

2. Pairwise combination is practical approach.

3. Used by Spest generator.

4. See pairwise.org
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Black box heuristics, cont’d

E. For collection classes:
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.
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Black box heuristics, cont’d

E. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.

6. Stress test with order of magnitude greater
than expected size.
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XIII. Function paths

A. Control flow through method body.

B. Branching defines path separation point.

C. An old-schoolflow chart show paths clearly.

D. Each path is labeled with a number.
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XIV. White box testing heuristics

A. Exercise each path at least once.

B. For loops:

1. zero times (if appropriate),

2. one time

3. two times

4. a substantial number of times

5. max number times (if appro)
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White box heuristics, cont’d

C. Provide inputs to reveal imple’n flaws:

1. particular operation sequences

2. inputs of particular size or range

3. inputs that may cause overflow, underflow,
other abnormal behavior

4. inputs that test well-known problems in
algorithm
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XV. Reconciling path coverage

A. Write purely black box tests.

B. To ensure coverage, execute under path cov-
erage analyzer.

C. If analyzer reports paths not being covered,
strengthen black box tests.
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Reconciling path coverage

1. Uncovered paths may contain useless or
dead code.

2. When legitimate code, add new black box
test cases.

D. Complete "grey box" test plan can have path
column:
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Reconciling path coverage

Test No. Inputs ExpectedOutput Remarks Path

i parm 1= ref parm 1 = p
... ...

parm m = ref parm n =
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XVI. Large inputs and outputs

A. For collections classes, i/o can grow large.

B. Can be specified as file data.

C. Referred to in test plans.
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XVII. Test drivers

A. Once defined, test must be executed.

B. Test driver written as stand-alone program.

1. Executes all tests.

2. Records results.

3. Providesresult differencer.
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Test drivers, con’td

C. Automated in

projects/work/calendar/testing/
implementation/source/java/Makefile

Template in

classes/309/lib/csl-Makefiles/
testing-Makefile

D. Perform tests initially using debugger.
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XVIII. Testing concrete UIs

A. Performed in the same basic manner.

B. User input is simulated.

C. Output screens validated initially by human.

D. Machine-readable form of screen to compare
results mechanically.
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Testing concrete UIs, cont’d

E. We’l l look at mechanized GUI testing
in a couple weeks.
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XIX. Unit test is "dress rehearsal"
for i ntegration testing ...

A. Integration"should not" reveal further errors.

B. From experience, it often does.

C. In so doing, individual tests become stronger.
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XX. Testing with large data.

A. Suppose we have

class SomeModestModel {
...

}

class HumongousDatabase {
...

}
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Large-data requirements, cont’d

B. Modest amount of test data can be built pro-
grammatically, i.e., by calling constructive
methods

C. Large amount of (persistent) data can be
stored external from program, built by exter-
nal means if appropriate.

D. The latter are externaltest fixtures.
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XXI. Other testing terminology

A. The testing oracle.

1. Someone(thing) who knows correct
answers.

2. Used to define expected results.

3. Also used to analyze incorrect test results.

4. In CSC 309, oracle is defined by implemen-
tation of Spest postcondition.
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Terminology, cont’d

5. When building truly experimental code,
spec-based oracle may not be possible.

a. E.g., AI systems.

b. Need initial prototype development.
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Terminology, cont’d

B. Regression testing

1. Runall tests whenever any change is made.

2. Must happen before release.

3. Ideally happens much more often.

4. Ongoing research on "smart" regression.
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Terminology, cont’d

C. Mutation testing

1. It’s a way to test the tests.

2. Strategy --mutateprogram, then rerun
tests.

3. E.g., "if (x < y)" is mutated to "if (x >= y)".
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Terminology, cont’d

4. With such mutation, tests should fail where
the mutated code produces bad result.

5. If previously successful tests donot fail, ...
?
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Terminology, cont’d

a. The tests are too weak and need to be
strengthened.

b. The mutated section of code was "dead"
andshould be removed.
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Terminology, cont’d

6. Generally, the first of these is the case.

7. Mutation can be used systematically to:
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Terminology, cont’d

a. Provide measure of testing effectiveness.

b. Compare different testing strategies.
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XXII. Testing directory structure

A. Figure 1 in notes ...
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*.{h,C}  project-specific
package directories
   with .java files

design  implementation  

c++

diffs

  project-specific
package directories
   iwth .class files

JVM INTELjava

...

T

*.html javadoc images Makefile source executables Makefile input output-good

output *.o output diffs
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Test dir structure, cont’d

B. Contents of testing subdirs:
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Directory or File Description

*Test.java Implementation of class testing plans.

input Test data input files used by test classes.

output-good Output results from last good run of the tests.

output-prev-good Previous good results, in case current results
were erroneously confirmed to be good.

$PLATFORM/output Current platform-specific output results.

$PLATFORM/diffs Differences between current and good results.

$PLATFORM/Makefile Makefile to compile tests, execute tests, and
difference current results with good results.

$PLATFORM/.make* Shell scripts called from the Makefile to per-
form specific testing tasks.

$PLATFORM/
.../*.class

Test implementation object files.
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