
CSC309-S15-L5 Slide1

CSC 309 Lecture Notes Week 5

Testing Implementation

CSC309-S15-L5 Slide2

I. Highlights of Milestone 4

CSC309-S15-L5 Slide3

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

CSC309-S15-L5 Slide4

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

B. Choose testing framework, coverage tool

CSC309-S15-L5 Slide5

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

B. Choose testing framework, coverage tool

C. Finish Spest for all methods

CSC309-S15-L5 Slide6

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

B. Choose testing framework, coverage tool

C. Finish Spest for all methods

D. Finish approx 75% of model/view design &
implementation

CSC309-S15-L5 Slide7

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

B. Choose testing framework, coverage tool

C. Finish Spest for all methods

D. Finish approx 75% of model/view design &
implementation

E. Unit tests for 4-6 methods per person

CSC309-S15-L5 Slide8

I. Highlights of Milestone 4

A. Due Fri Wk 7, May 15th.

B. Choose testing framework, coverage tool

C. Finish Spest for all methods

D. Finish approx 75% of model/view design &
implementation

E. Unit tests for 4-6 methods per person

F. See what coverage looks like

CSC309-S15-L5 Slide9

II. Different Styles of Functional Testing

A. Pure end user.

B. Log-based testing.

C. X-Unit testing.

CSC309-S15-L5 Slide10

III. Pure End User Testing Pros and Cons

A. Pros:

• Ensures HCI evaluated by humans.

• Makes programmer involvement indirect.

CSC309-S15-L5 Slide11

End-User Testing Pros and Cons, cont’d

B. Cons:

• Difficult to verify coverage.

• Difficult to do stress testing.

CSC309-S15-L5 Slide12

End-User Testing Pros and Cons, cont’d

C. Other considerations:

• Works well with suitable work force.

• Should always be done in some form.

CSC309-S15-L5 Slide13

IV. Log-Based Testing Pros and Cons

A. Pros:

• Expected test results defined concretely.

• Reports only differences.

• External oracle implementation.

CSC309-S15-L5 Slide14

Log-Based Testing Pros and Cons, cont’d

B. Cons:

• Generating expected results may be tedious

• External oracle implementation.

CSC309-S15-L5 Slide15

Log-Based Testing Pros and Cons, cont’d

C. Other considerations:

• Useful when spec is data-oriented, e.g., a
compiler.

• Can be used in combo with X-Unit.

CSC309-S15-L5 Slide16

V. X-Unit Pros and Cons

A. Pros:

• Formal spec oracle directly implemented.

• No need to generate expected output data.

CSC309-S15-L5 Slide17

X-Unit Testing Pros and Cons, cont’d

B. Cons:

• Oracle imple’n may itself be buggy.

• Oracle execution may take longer than diff.

CSC309-S15-L5 Slide18

X-Unit Testing Pros and Cons, cont’d

C. Other considerations:

• Becoming an industry standard.

• Can support log-style if desired.

CSC309-S15-L5 Slide19

VI. What We’ll Do in 309

A. Complete X-unit testing of model and
process packages, with some use of logging.

B. Pure end-user testing of model+view.

C. Examination of automated view testing.

CSC309-S15-L5 Slide20

VII. Unit test development steps:

A. Finish Spest specs.

B. Use specs to generate/write tests.

C. Refine specs to get better tests, based on
coverage results.

CSC309-S15-L5 Slide21

VIII. Anatomy of a unit test plan.

A. Javadoc comment for a unit test method.

B. In the form of a table:
<pre>

Test Expected
Case Inputs Outputs Remarks
==
1 x=1 this.x == 1 Set x
2 ...

</pre>

C. Examples coming up.

CSC309-S15-L5 Slide22

IX. Anatomy of a unit test method.

A. Class and method under test:

class X {

// Method under test (with Spest spec)
public Y m(A a, B b, C c) { ... }

// Data field inputs
I i;
J j;

// Data field output
Z z;

}

CSC309-S15-L5 Slide23

B. Testing class and method:
class XTest {

/** Test plan goes here */
public void testM() {

// Set up
X x = new X(...);
...

// Invoke
Y y = m(aValue, bValue, cValue);

// Validate
assertEqual(y, expectedY);

}
}

CSC309-S15-L5 Slide24

Anatomy of a unit test method, cont’d

C. Common core of unit test method:

1. Setup -- set up inputs necessary to run test

2. Invoke -- invoke the method under test and
acquire its actual output

3. Validate -- validate that actual output
equals expected output

CSC309-S15-L5 Slide25

During lecture we’ll go through,
in some detail,

the Milestone 4 code examples for

Schedule.java

and

ScheduleTest.java.

