
CSC309-S15-L6-7 Slide1

CSC 309 Lecture Notes Weeks 6 and 7
Design Refinement

Introduction to Code Coverage Measures



CSC309-S15-L6-7 Slide2

I. Administrati ve Matters

A. Midterm moved to Monday 18 May.

B. M4 due date also moved to Monday 18 May.

C. Here isWeek 7design review schedule:



CSC309-S15-L6-7 Slide3

Week 7 Design Reviews

Day Time Team

Wed 13 May 2:35-3:00 DJCars
3:10-3:35 FireBreathers
3:35-4:00 Node

Fri 15 May 2:35-3:00 Team 0
3:10-3:35 Team 1
3:35-4:00 Token CSC



CSC309-S15-L6-7 Slide4

D. Here meeting schedule forFr iday Week 6:

Time Team

2:10 - 2:28 DJ Cars
2:28 - 2:46 Token CSC
2:46 - 3:04 Team #1
3:04 - 3:22 Rubber Duckies
3:22 - 3:40 Node
3:40 - 3:58 Team 0



CSC309-S15-L6-7 Slide5

II. The "P" part of "MVP"

A. "P" is for "Process".

B. Define data and methods to support efficient
imple’n of Model classes.

C. Process classes do not trace directly to user-
level spec.



CSC309-S15-L6-7 Slide6

"P" is for "Process", cont’d

D. A lot of process classes come from a library,
Java or other language.

1. In particular, Javacollectionclasses.

2. Highly suitable for 309 use.



CSC309-S15-L6-7 Slide7

III. Example data structure refinement

A. See Calendar Tool example online.

B. Ke y refinement is choosing appropriate
data rep for a user calendar.

C. Design based on need to access items by
unique key, and in ordered sequences.

D. TreeMap is chosen.

E. See in particularUserCalendar and
ItemKey classes.



CSC309-S15-L6-7 Slide8

IV. Usingjava.io.File

A. Ke y classes and methods:

1. FileInputStream,
FileOutputStream

2. ObjectInputStream,
ObjectOutputStream

3. readObject, writeObject



CSC309-S15-L6-7 Slide9

Using java.io.File, cont’d

B. Suppose we have

public class SomeModelClass
extends Model {

...
}



CSC309-S15-L6-7 Slide10

C. To write out:

model = new SomeModelClass();

/* Put some data in model ... */



CSC309-S15-L6-7 Slide11

C. To write out:

model = new SomeModelClass();

/* Put some data in model ... */

FileOutputStream outFile =
new FileOutputStream(

"model.dat");



CSC309-S15-L6-7 Slide12

C. To write out:

model = new SomeModelClass();

/* Put some data in model ... */

FileOutputStream outFile =
new FileOutputStream(

"model.dat");

ObjectOutputStream outStream =
new ObjectOutputStream(outFile);



CSC309-S15-L6-7 Slide13

C. To write out:

model = new SomeModelClass();

/* Put some data in model ... */

FileOutputStream outFile =
new FileOutputStream(

"model.dat");

ObjectOutputStream outStream =
new ObjectOutputStream(outFile);

outStream.writeObject(model);



CSC309-S15-L6-7 Slide14

D. To read back in:

FileInputStream inFile =
new FileInputStream("model.dat");

ObjectInputStream inStream =
new ObjectInputStream(inFile);

model = (SomeModelClass)
inStream.readObject();



CSC309-S15-L6-7 Slide15

Using java.io.File, cont’d

E. More details on pages 1-2 of notes.

F. For team members who implement file open-
ing and saving.



CSC309-S15-L6-7 Slide16

V. Observer/Observable pattern.

A. Useful when multiple views change, based
on changing model, e.g.,



CSC309-S15-L6-7 Slide17

V. Observer/Observable pattern.

A. Useful when multiple views change, based
on changing model, e.g.,

1. CalTool: daily, weekly, monthly views



CSC309-S15-L6-7 Slide18

V. Observer/Observable pattern.

A. Useful when multiple views change, based
on changing model, e.g.,

1. CalTool: daily, weekly, monthly views

2. Grader:gradebook, graphics views



CSC309-S15-L6-7 Slide19

V. Observer/Observable pattern.

A. Useful when multiple views change, based
on changing model, e.g.,

1. CalTool: daily, weekly, monthly views

2. Grader:gradebook, graphics views

3. Scheduler:list and calendar views



CSC309-S15-L6-7 Slide20

V. Observer/Observable pattern.

A. Useful when multiple views change, based
on changing model, e.g.,

1. CalTool: daily, weekly, monthly views

2. Grader:gradebook, graphics views

3. Scheduler:list and calendar views

4. TestTool:ques dialogs, ques bank views



CSC309-S15-L6-7 Slide21

B. Java’s Observer interface.

interface Observer {

public void update(
Observable o,
Object arg)

}



CSC309-S15-L6-7 Slide22

C. Java’s Observable class.

class Observable {

void addObserver(Observer o)

void setChanged()

boolean hasChanged()

void notifyObservers()

void notifyObservers(Object arg)
}



CSC309-S15-L6-7 Slide23

D. Typical usage

class model extends Observable { ... }

class View implements Observer { ... }

class UserCalendar extends Model {

. . .

public void add(ScheduledItem item) {

. . .

items.add(item);
setChanged();

}
}



CSC309-S15-L6-7 Slide24

public class OKScheduleEVentButtonListener
implements ActionListener {

public void actionPerformed() {

. . .

userCalendar.add(...);
userCalendar.notifyObservers();

}
}



CSC309-S15-L6-7 Slide25

public class MonthlyAgenda extends View {

public MonthlyAgenda(
UserCalendar userCalendar) {

. . .

userCalendar.addObserver(this)
}

public void update(Observable o,
Object arg) {

/* Get items from model ... */

}
}



CSC309-S15-L6-7 Slide26

VI. Client/server pattern

A. Details in on page 4 of notes and
309/examples/rmi.

B. For team members who implement
server-to-client processing using RMI.



CSC309-S15-L6-7 Slide27

VII. Coupling and cohesion
-- a Couple Well-Established Terms

A. "Coupling" and "cohesion" denote
connectedness and interconnectedness.



CSC309-S15-L6-7 Slide28

Coupling and Cohesion, cont’d

B. Measures of coupling:



CSC309-S15-L6-7 Slide29

Coupling and Cohesion, cont’d

B. Measures of coupling:

1. number of classes inherited from



CSC309-S15-L6-7 Slide30

Coupling and Cohesion, cont’d

B. Measures of coupling:

1. number of classes inherited from

2. number of classes referenced



CSC309-S15-L6-7 Slide31

Coupling and Cohesion, cont’d

B. Measures of coupling:

1. number of classes inherited from

2. number of classes referenced

3. number of methods called



CSC309-S15-L6-7 Slide32

Coupling and Cohesion, cont’d

B. Measures of coupling:

1. number of classes inherited from

2. number of classes referenced

3. number of methods called

4. number of parameters in a method



CSC309-S15-L6-7 Slide33

Coupling and Cohesion, cont’d

C. Measures of cohesion:



CSC309-S15-L6-7 Slide34

Coupling and Cohesion, cont’d

C. Measures of cohesion:

1. class has logically-related functionality



CSC309-S15-L6-7 Slide35

Coupling and Cohesion, cont’d

C. Measures of cohesion:

1. class has logically-related functionality

2. method performs single specific function



CSC309-S15-L6-7 Slide36

Coupling and Cohesion, cont’d

C. Measures of cohesion:

1. class has logically-related functionality

2. method performs single specific function

3. coupling is reduced overall



CSC309-S15-L6-7 Slide37

Coupling and Cohesion, cont’d

D. Conclusion --
minimize coupling, maximize cohesion



CSC309-S15-L6-7 Slide38

VIII. Techniques to reduce coupling



CSC309-S15-L6-7 Slide39

VIII. Techniques to reduce coupling

A. Limit number of classes that communicate
with each other.



CSC309-S15-L6-7 Slide40

VIII. Techniques to reduce coupling

A. Limit number of classes that communicate
with each other.

B. Limit number of calls between classes that do
communicate.



CSC309-S15-L6-7 Slide41

Reduce coupling, cont’d

1. E.g., button listeners talk directly to model:

OKScheduleEventListener.
actionPerformed

calls

schedule.scheduleEvent

directly.



CSC309-S15-L6-7 Slide42

Reduce coupling, cont’d

2. More highly-coupled alternative,
mediator / controller style:

SomeMediator.
getSchedule().
scheduleEvent(...)



CSC309-S15-L6-7 Slide43

Reduce coupling, cont’d

C. Limit public methods in each class.



CSC309-S15-L6-7 Slide44

Reduce coupling, cont’d

C. Limit public methods in each class.

1. Make method public only if demanded.



CSC309-S15-L6-7 Slide45

Reduce coupling, cont’d

C. Limit public methods in each class.

1. Make method public only if demanded.

2. Don’t addget, set methods "in case"
they may be needed.



CSC309-S15-L6-7 Slide46

Reduce coupling, cont’d

C. Limit public methods in each class.

1. Make method public only if demanded.

2. Don’t addget, set methods "in case"
they may be needed.

3. E.g., ScheduleEventDialog.getSchedule is
never used, and not provided.



CSC309-S15-L6-7 Slide47

Reduce coupling, cont’d

D. Limit method parameters, return vals to
smallest type necessary.



CSC309-S15-L6-7 Slide48

Reduce coupling, cont’d

D. Limit method parameters, return vals to
smallest type necessary.

1. ConsiderUserCalendar.getItems.



CSC309-S15-L6-7 Slide49

Reduce coupling, cont’d

D. Limit method parameters, return vals to
smallest type necessary.

1. ConsiderUserCalendar.getItems.

2. It could return fullUserCalendar or
simplerScheduledItem[].



CSC309-S15-L6-7 Slide50

Reduce coupling, cont’d

D. Limit method parameters, return vals to
smallest type necessary.

1. ConsiderUserCalendar.getItems.

2. It could return fullUserCalendar or
simplerScheduledItem[].

3. ScheduledItem[] is preferable, since
callers ofgetItems don’t need full
UserCalendar.



CSC309-S15-L6-7 Slide51

Reduce coupling, cont’d

E. Design to limit change needed if
data representations change.



CSC309-S15-L6-7 Slide52

Reduce coupling, cont’d

E. Design to limit change needed if
data representations change.

1. When using external process classes (e.g.,
DB package), designwrapper classes.



CSC309-S15-L6-7 Slide53

Reduce coupling, cont’d

E. Design to limit change needed if
data representations change.

1. When using external process classes (e.g.,
DB package), designwrapper classes.

2. With properly designed wrappers, little or
no change to Model is necessary when
changing Process classes.



CSC309-S15-L6-7 Slide54

Reduce coupling, cont’d

F. Use exception handling wisely.



CSC309-S15-L6-7 Slide55

Reduce coupling, cont’d

F. Use exception handling wisely.

1. Consider use of exception handling to
communicate between models and views.



CSC309-S15-L6-7 Slide56

Reduce coupling, cont’d

F. Use exception handling wisely.

1. Consider use of exception handling to
communicate between models and views.

2. ThePrecondViolation exception
classes provide generic, uniform error
communication.



CSC309-S15-L6-7 Slide57

IX. Techniques to increase cohesion



CSC309-S15-L6-7 Slide58

IX. Techniques to increase cohesion

A. Coupling easier to pinpoint.



CSC309-S15-L6-7 Slide59

IX. Techniques to increase cohesion

A. Coupling easier to pinpoint.

B. Less coupling generally increases cohesion.



CSC309-S15-L6-7 Slide60

IX. Techniques to increase cohesion

A. Coupling easier to pinpoint.

B. Less coupling generally increases cohesion.

C. Addressing cohesion directly means each
class does"one thing" .



CSC309-S15-L6-7 Slide61

Increase cohesion, cont’d

D. Many design patterns promote cohesion.



CSC309-S15-L6-7 Slide62

Increase cohesion, cont’d

D. Many design patterns promote cohesion.

E. Simply limiting size of methods and classes
increases cohesion.



CSC309-S15-L6-7 Slide63

Increase cohesion, cont’d

D. Many design patterns promote cohesion.

E. Simply limiting size of methods and classes
increases cohesion.

F. I.e., it’s harder to do too much in small classes
and functions.



CSC309-S15-L6-7 Slide64

NOTE:

Handout on design and
implementation conventions says:



CSC309-S15-L6-7 Slide65

Increase cohesion, cont’d

• No method longer than 50 lines

• No more that 25 public, 25 protected methods
per class (50 total)

• No more than 50 data fields



CSC309-S15-L6-7 Slide66

X. Ease of debugging --
a major rationale for limiting coupling



CSC309-S15-L6-7 Slide67

X. Ease of debugging --
a major rationale for limiting coupling

A. "If something goes wrong in module X,

where do I look?"



CSC309-S15-L6-7 Slide68

X. Ease of debugging --
a major rationale for limiting coupling

A. "If something goes wrong in module X,

where do I look?"

B. First, look in module X.



CSC309-S15-L6-7 Slide69

X. Ease of debugging --
a major rationale for limiting coupling

A. "If something goes wrong in module X,

where do I look?"

B. First, look in module X.

C. Then look at other modules coupled to X.



CSC309-S15-L6-7 Slide70

X. Ease of debugging --
a major rationale for limiting coupling

A. "If something goes wrong in module X,

where do I look?"

B. First, look in module X.

C. Then look at other modules coupled to X.

D. Repeat until problem located.



CSC309-S15-L6-7 Slide71

X. Ease of debugging --
a major rationale for limiting coupling

A. "If something goes wrong in module X,

where do I look?"

B. First, look in module X.

C. Then look at other modules coupled to X.

D. Repeat until problem located.

E. This is much easier with less coupling.



CSC309-S15-L6-7 Slide72

XI. Milestone 4 Testing Details

A. We will NOT use Spest to generate tests.

B. Do use Spest for specs,
to aid hand-written testing:

1. preconds define testing input ranges

2. postconds define testing oracles



CSC309-S15-L6-7 Slide73

Milestone 4 Testing Details, Cont’d

C. Don’t forget HOW-TO-RUN-TESTS.html.

D. Describe in detail the following:

1. Exactly what’s tested per team member.

2. How to execute tests.

3. Where results appear.



CSC309-S15-L6-7 Slide74

XII. What is code coverage?

A. What’s covered during program execution.

B. Typically measured at lines of code.

C. Coverage measure is percentage of
program lines run.

D. All lines covered => 100%.



CSC309-S15-L6-7 Slide75

XIII. How code goes "uncovered".

A. Reasons include:

1. Uninvoked functions

2. Untaken conditional branches

3. Unexecuted loop bodies



CSC309-S15-L6-7 Slide76

How code goes uncovered, cont’d

B. During testing, uncovered code meansthere
are insufficient test cases.



CSC309-S15-L6-7 Slide77

XIV. Coverage Tool Resources

A. See the309/doc/ page.

B. Note that full code coverage is NOT required
for Milestone 4, but is for final project.

C. M4 requiresselection of which coverage tool
to use+ initial application.



CSC309-S15-L6-7 Slide78

XV. Where code coverage fits into testing.

A. Ensure black box tests are adequate.

B. Different levels of coverage exist.

C. Good tests must ensure
some measure of coverage.



CSC309-S15-L6-7 Slide79

Where code coverage fits into testing, cont’d

D. Coverage measures made during testing

E. Following discussion is of different coverage
measures, from weakest to strongest.



CSC309-S15-L6-7 Slide80

XVI. Code coverage measures.

A. Function (method) coverage.

B. Statement coverage

C. Branch coverage

D. Decision coverage



CSC309-S15-L6-7 Slide81

Code coverage measures, cont’d

E. Loop coverage

F. Define-use (d-u) coverage

G. All path coverage

H. Exhaustive coverage




