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CSC 309 Lecture Notes Week 8

Mor e on Code Coverage
Acceptance Testing
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I. What is code coverage?

A. What’s covered during program execution.

B. Typically measured at lines of code.

C. Coverage measure is percentage of
program lines run.

D. All lines covered => 100%.



CSC309-S15-L8 Slide3

II. How code goes "uncovered".

A. Reasons include:

1. Uninvoked functions

2. Untaken conditional branches

3. Unexecuted loop bodies
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How code goes uncovered, cont’d

B. During testing, uncovered code means
there are insufficient test cases.
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III. Coverage Tool Resources

A. See the309/doc/ page.

B. Note that code coverage is NOT required
for Milestone 4, but is for final project.

C. M4 requiresselection of which coverage
tool to use.



CSC309-S15-L8 Slide6

IV. Where code coverage fits into testing.

A. Ensure black box tests are adequate.

B. Different levels of coverage exist.

C. Good tests mush ensure
some measure of coverage.
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Where code coverage fits into testing, cont’d

D. Coverage measures made during testing

E. Following discussion is of different cover-
age measures, from weakest to strongest.



CSC309-S15-L8 Slide8

V. Code coverage measures.

A. Function (method) coverage.

B. Statement coverage

C. Simple branch coverage

D. Decision branch coverage
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Code coverage measures, cont’d

E. Loop coverage

F. Define-use (d-u) coverage

G. All path coverage

H. Exhaustive coverage
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VI. A Simple Example:
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public static int f(int i, int j) {
int k;
if (i > j) {

i++;
j++;

}
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++;
j++;

}
else {

i++;
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}
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public static int f(int i, int j) {
int k;
if (i > j) {

i++; // Block 1
j++;

} // Block 2 (false)
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++; // Block 3
j++;

}
else {

i++; // Block 4
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}
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A. Possible program paths:

1. B1, B3

2. B1, B4

3. B2, B3

4. B2, B4
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VII. Function coverage.

A. Each function is called at least once.

B. Very large-grain measure.

C. Not adequate for final tests.

D. Can be done with one test case forf,g.

E. Possible path: P1 only
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VIII. Statement coverage.

A. Every statement is executed at least once.

B. Can be done with two test cases forf

C. Possible paths: P1 and P2
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IX. Simple branch coverage.

A. The true/false direction of each branch is
taken at least once.

B. Can be done with two test cases forf.

C. Possible paths: P1 and P4
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X. Decision branch coverage

A. The boolean logic of each condition is
fully exercised.

B. Requires at least four cases inf.

C. Possible paths: P1, P3, and P4
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XI. D-u coverage

A. Cover every path between var def and
use, without intervening def.

B. D-u for i requires three paths inf:
P1, P3, P4

C. D-u for j requires two paths inf:
P1, P3
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XII. All path coverage

A. Each distinct control path is traversed.

B. Requires four test cases forf.

C. Required paths: P1, P3, P3, and P4
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XIII. Details decision branch coverage.

A. Truth table can help understand

B. E.g., for decision

((k > 0) && (i < 100))
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k > 0  i < 100 i j Remarks(k > 0)
&&
(i < 100)

0 0  0 1 2 i < j means k <= 0
0 1  0 100 101 i< j means k <= 0
1 0  0 100 100 i>= j means k > 0
1 1  1 2 1 i >= j means k > 0
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XIV. Coverage tools.

A. There are several coverage tools for Java.

B. Cobertura is a good one.

C. Example in
309/examples/cobertura.
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coverage-tools, cont’d

1. Example uses program in these notes.

2. Runs coverage and unit tests

3. There’s an ant build script in
build.xml
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coverage-tools, cont’d

4. Examples files are:

• CoverageExample.java

• CoverageExampleTest.java

• build.xml

• build.properties
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coverage-tools, cont’d

5. Results in:

• reports/cobertura-html
-- the coverage report

• reports/junit-html
-- junit testing report
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coverage-tools, cont’d

D. You can modify ant scripts.

E. Alternatively, Coberatura in an IDE.

F. NOTE: Cobertura doesn’t support Java 7.
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XV. A notable research result on test coverage

A. 2009 paper from Microsoft and Avaya.

B. Observations and conclusions:
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Research results on code coverage, cont’d

"Despite dramatic differences between the two
industrial projects under study we found thatcode
coverage was associated with fewer field failures
... . This strongly suggests that code coverage is a
sensible and practical measure of test effec-
tiveness."
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Research results on code coverage, cont’d

"[They found] anincrease in coverage leads to a
proportional decrease in fault potential."
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Research results on code coverage, cont’d

"Disappointingly(?), there isno indication of
diminishing returns(when an additional increase
in coverage brings smaller decrease in fault poten-
tial)."
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Research results on code coverage, cont’d

"What appears to be even more disappointing, is
the finding that additionalincreases in coverage
come with exponentially increasing effort.
Therefore, for many projects it may be impractical
to achieve complete coverage."
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XVI. Data & Method Access During Testing
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XVI. Data & Method Access During Testing

A. Must private methods be tested directly?
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XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.
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XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.

C. So, useprotected instead ofprivate.
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XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.

C. So, useprotected instead ofprivate.

D. Or accessprivate by reflection.
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XVII. Acceptance testing
-- the other kind of functional testing
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XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.
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XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.
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XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.

C. Similar structure to unit testing.
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XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.

C. Similar structure to unit testing.

D. See the handout.




