
CSC309-S15-L8 Slide1

CSC 309 Lecture Notes Week 8

Mor e on Code Coverage
Acceptance Testing

CSC309-S15-L8 Slide2

I. What is code coverage?

A. What’s covered during program execution.

B. Typically measured at lines of code.

C. Coverage measure is percentage of
program lines run.

D. All lines covered => 100%.

CSC309-S15-L8 Slide3

II. How code goes "uncovered".

A. Reasons include:

1. Uninvoked functions

2. Untaken conditional branches

3. Unexecuted loop bodies

CSC309-S15-L8 Slide4

How code goes uncovered, cont’d

B. During testing, uncovered code means
there are insufficient test cases.

CSC309-S15-L8 Slide5

III. Coverage Tool Resources

A. See the309/doc/ page.

B. Note that code coverage is NOT required
for Milestone 4, but is for final project.

C. M4 requiresselection of which coverage
tool to use.

CSC309-S15-L8 Slide6

IV. Where code coverage fits into testing.

A. Ensure black box tests are adequate.

B. Different levels of coverage exist.

C. Good tests mush ensure
some measure of coverage.

CSC309-S15-L8 Slide7

Where code coverage fits into testing, cont’d

D. Coverage measures made during testing

E. Following discussion is of different cover-
age measures, from weakest to strongest.

CSC309-S15-L8 Slide8

V. Code coverage measures.

A. Function (method) coverage.

B. Statement coverage

C. Simple branch coverage

D. Decision branch coverage

CSC309-S15-L8 Slide9

Code coverage measures, cont’d

E. Loop coverage

F. Define-use (d-u) coverage

G. All path coverage

H. Exhaustive coverage

CSC309-S15-L8 Slide10

VI. A Simple Example:

CSC309-S15-L8 Slide11

public static int f(int i, int j) {
int k;
if (i > j) {

i++;
j++;

}
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++;
j++;

}
else {

i++;
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}

CSC309-S15-L8 Slide12

public static int f(int i, int j) {
int k;
if (i > j) {

i++; // Block 1
j++;

} // Block 2 (false)
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++; // Block 3
j++;

}
else {

i++; // Block 4
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}

CSC309-S15-L8 Slide13

A. Possible program paths:

1. B1, B3

2. B1, B4

3. B2, B3

4. B2, B4

CSC309-S15-L8 Slide14

VII. Function coverage.

A. Each function is called at least once.

B. Very large-grain measure.

C. Not adequate for final tests.

D. Can be done with one test case forf,g.

E. Possible path: P1 only

CSC309-S15-L8 Slide15

VIII. Statement coverage.

A. Every statement is executed at least once.

B. Can be done with two test cases forf

C. Possible paths: P1 and P2

CSC309-S15-L8 Slide16

IX. Simple branch coverage.

A. The true/false direction of each branch is
taken at least once.

B. Can be done with two test cases forf.

C. Possible paths: P1 and P4

CSC309-S15-L8 Slide17

X. Decision branch coverage

A. The boolean logic of each condition is
fully exercised.

B. Requires at least four cases inf.

C. Possible paths: P1, P3, and P4

CSC309-S15-L8 Slide18

XI. D-u coverage

A. Cover every path between var def and
use, without intervening def.

B. D-u for i requires three paths inf:
P1, P3, P4

C. D-u for j requires two paths inf:
P1, P3

CSC309-S15-L8 Slide19

XII. All path coverage

A. Each distinct control path is traversed.

B. Requires four test cases forf.

C. Required paths: P1, P3, P3, and P4

CSC309-S15-L8 Slide20

XIII. Details decision branch coverage.

A. Truth table can help understand

B. E.g., for decision

((k > 0) && (i < 100))

CSC309-S15-L8 Slide21

k > 0 i < 100 i j Remarks(k > 0)
&&
(i < 100)

0 0 0 1 2 i < j means k <= 0
0 1 0 100 101 i< j means k <= 0
1 0 0 100 100 i>= j means k > 0
1 1 1 2 1 i >= j means k > 0

CSC309-S15-L8 Slide22

XIV. Coverage tools.

A. There are several coverage tools for Java.

B. Cobertura is a good one.

C. Example in
309/examples/cobertura.

CSC309-S15-L8 Slide23

coverage-tools, cont’d

1. Example uses program in these notes.

2. Runs coverage and unit tests

3. There’s an ant build script in
build.xml

CSC309-S15-L8 Slide24

coverage-tools, cont’d

4. Examples files are:

• CoverageExample.java

• CoverageExampleTest.java

• build.xml

• build.properties

CSC309-S15-L8 Slide25

coverage-tools, cont’d

5. Results in:

• reports/cobertura-html
-- the coverage report

• reports/junit-html
-- junit testing report

CSC309-S15-L8 Slide26

coverage-tools, cont’d

D. You can modify ant scripts.

E. Alternatively, Coberatura in an IDE.

F. NOTE: Cobertura doesn’t support Java 7.

CSC309-S15-L8 Slide27

XV. A notable research result on test coverage

A. 2009 paper from Microsoft and Avaya.

B. Observations and conclusions:

CSC309-S15-L8 Slide28

Research results on code coverage, cont’d

"Despite dramatic differences between the two
industrial projects under study we found thatcode
coverage was associated with fewer field failures
... . This strongly suggests that code coverage is a
sensible and practical measure of test effec-
tiveness."

CSC309-S15-L8 Slide29

Research results on code coverage, cont’d

"[They found] anincrease in coverage leads to a
proportional decrease in fault potential."

CSC309-S15-L8 Slide30

Research results on code coverage, cont’d

"Disappointingly(?), there isno indication of
diminishing returns(when an additional increase
in coverage brings smaller decrease in fault poten-
tial)."

CSC309-S15-L8 Slide31

Research results on code coverage, cont’d

"What appears to be even more disappointing, is
the finding that additionalincreases in coverage
come with exponentially increasing effort.
Therefore, for many projects it may be impractical
to achieve complete coverage."

CSC309-S15-L8 Slide32

XVI. Data & Method Access During Testing

CSC309-S15-L8 Slide33

XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

CSC309-S15-L8 Slide34

XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.

CSC309-S15-L8 Slide35

XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.

C. So, useprotected instead ofprivate.

CSC309-S15-L8 Slide36

XVI. Data & Method Access During Testing

A. Must private methods be tested directly?

B. For 309, the answer isYes.

C. So, useprotected instead ofprivate.

D. Or accessprivate by reflection.

CSC309-S15-L8 Slide37

XVII. Acceptance testing
-- the other kind of functional testing

CSC309-S15-L8 Slide38

XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

CSC309-S15-L8 Slide39

XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.

CSC309-S15-L8 Slide40

XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.

C. Similar structure to unit testing.

CSC309-S15-L8 Slide41

XVII. Acceptance testing
-- the other kind of functional testing

A. Performed by end user.

B. Based on HCI instead of API.

C. Similar structure to unit testing.

D. See the handout.

