
assignments/3/support-files FunctionEntry.java Page 1

1 /****

2 *

3 * FunctionEntry extends SymbolTableEntry by adding data fields to support

4 * functions, procedures, and methods. These forms of functional construct are

5 * considered equivalent for the purposes of storing data in a symbol table.

6 * <p>

7 * The public data fields of a FunctionEntry are a TreeNodeList of formal

8 * parameters, a TreeNode body, and a SymbolTable scope. The inherited type

9 * field is used to hold the return type of the function.

10 * <p>

11 * The scope field holds a reference to the function’s own local scope. All of

12 * the function’s formal parameters and local variables are entered in this

13 * local table. In this way, the table defines a scope that belongs to the

14 * function, which is the standard semantics in block-structured programming

15 * languages.

16 * <p>

17 * In programming languages that allow nested function definitions, a

18 * function’s local scope may have further nested scopes. These are

19 * represented simply by having function entries in a parent function’s scope

20 * table. Nested symbol tables are also used to represent anonymous inner

21 * scopes, such as nested declaration/statement blocks, in languages that all

22 * such constructs. See the documentation of the SymbolTable class for a

23 * large-grain picture and description of nested scope representation.

24 * <p>

25 * A function’s formal parameters are stored both in the formals list as well

26 * as being entered in the local symtab scope. The list is necessary when

27 * parameters need to be accessed in left-to-right declared order. The formals

28 * are also entered in the function’s local scope, so they have a storage

29 * identity that is distinct to this scope.

30 * <p>

31 * The body data field of a function is a reference to the entire parse tree

32 * for its executable body. This tree is used for back-end processing, which

33 * can include one or more of the following phases: type checking,

34 * interpretation, and/or code generation.

35 *

36 */

37

38 public class FunctionEntry extends SymbolTableEntry {

39

40 /**

41 * Construct this with null data fields.

42 */

43 public FunctionEntry() {

44 }

45

46 /**

47 * Construct this with the given data field values.

48 */

49 public FunctionEntry(String name, TreeNode type, TreeNodeList formals,

50 TreeNode body, SymbolTable scope) {

51 super(name, type);

52 this.formals = formals;

53 this.body = body;

54 this.scope = scope;

55 }

56

57 /**

58 * Return the string rep of this.

59 */

60 public String toString(int level) {

61 return super.toString(level) + formalsString(level) +

62 scopeString(level);

63 }

64

65 /**

66 * Called by toString to stringify the list of formal parameter names.

67 */

68 protected String formalsString(int level) {

69 return formals == null ? "" : "\n" + indentString(level) +

70 " Formals: " + formals.toString(level + 5);

71 }

72

73 /**

74 * Called by toString to recursively stringify the scope, if non-null.

75 */

76 protected String scopeString(int level) {

77 return scope == null ? "" : "\n " + indentString(level) +

78 scope.toString(level);

79 }

80

81

82 /** Formal parameter list, in declared order. */

83 public TreeNodeList formals;

84

85 /** Function body, in the form of its raw parse tree. */

86 public TreeNode body;

87

88 /** Local scope for this function. */

89 public SymbolTable scope;

90

91 }

