
assignments/3/support-files SymbolTable.java Page 1

1 import java.util.*;

2

3 /****

4 *

5 * SymbolTable is a datatype for a tree structured table, where each node in

6 * the tree represents a program scope. The overall tree structure represents

7 * the scope nesting of a program. For example, consider the following

8 * (Pascal) program:

9 * <p><pre>

10 program

11 var p1,p2,p3: integer;

12

13 procedure A(a1: integer; a2: real);

14 var a3: integer;

15 begin

16 a3 := a1 + a2;

17 end A;

18 procedure B(b1: real; b2: integer);

19 var b3: integer;

20 procedure C(c1: integer; c2: real);

21 var c3: integer;

22 begin

23 c1 := c3;

24 c2 := c1 * c3 / 10;

25 end C;

26 begin

27 b1 := b2 - b3;

28 end B;

29 begin

30 p1 := p2 - p3;

31 end

32 * </pre><p>

33 * An abstract depiction of the symbol table structure for this program is the

34 * following:

35 * <pre><p>

36 program symtab

37 |---------------|

38 | null |<--|

39 |-------|-------| | B’s symtab

40 | p3 | | | |---------------|

41 |-------|-------| |-----------o |<--|

42 | | | |-------|-------| |

43 |-------|-------| | b2 | | | C’s symtab

44 | B | o---------->|-------|-------| | |---------------|

45 |-------|-------| . . . |-----------o |

46 | p1 | | |-------|-------| |-------|-------|

47 |-------|-------| | C | o---------->| c3 | |

48 | p2 | | |-------|-------| |-------|-------|

49 |-------|-------| . . .

50 | | | |-------|-------|

51 |-------|-------| A’s symtab

52 | A | o---------->|---------------|

53 |-------|-------| | o------------> back to program symtab

54 |-------|-------|

55 | a1 | |

56 |-------|-------|

57 . . .

58 |-------|-------|

59 * </pre><p>

60 * Note that a number of structural details are omitted from this picture.

61 * What the picture depicts is the overall tree structure, and how it

62 * represents the nested scope structure of the program. The details that are

63 * shown are the following:

64 * <p>

65 * (1) Each symtab in the tree has a parent pointer that links it to the

66 * symtab for the enclosing scope in the program. The symtab for the

67 * outermost scope has no parent. This topmost symbol table is referred

68 * to as "level 0".

69 * <p>

70 * (2) The table at each level contains entries for all of the identifiers

71 * defined in the program scope represented by that table. For example,

72 * the program symtab has entries for the variables p1, p2 and p3, and

73 * for procedures A and B. In turn, the symtab for procedure B’s scope

74 * has entries for parameters b1 and b2, local variable b3, and local

75 * procedure C (not all of which are shown in the picture).

76 * <p>

77 * (3) Each entry that defines a new scope has a link to its own symbol

78 * table. For example, procedure B above is entered by name in the

79 * program symbol table. Since procedure B defines a scope of its own,

80 * the entry for B points to a symbol table that contains the

81 * identifiers declared within B’s scope. Per point (1) above, B’s

82 * symtab has a parent pointer back to the program symtab.

83 * <p>

84 * (4) The entries in the symtabs are depicted in an order other than

85 * alphabetic to indicate that the body of a symbol table is probably

86 * hashed. I.e., entries are shown in an apparent hashing order, rather

87 * than sequentially or in some lexical order. Under any circumstances,

88 * users of the symtab abstraction may not assume any order for the

89 * entries within a table.

90 *

91 * As noted, the picture above omits some structural details. In particular,

92 * all of the publicly accessible fields for a table entry are not shown. The

93 * type SymbolTableEntry*is an abstract type for the entries within a symtab.

94 * The general format of a symtab entry is the following:

95 * <pre><p>

96 * |-------------------------------|

97 * | symbol name |

98 * |-------------------------------|

99 * | symbol type |

100 * |-------------------------------|

101 * | |

102 * | other information in |

103 * | extending classes |

104 * | |

105 * | ... |

106 * | |

107 * |-------------------------------|

108 * </pre><p>

109 * The name and type fields are common to all symtab entries, the value of the

110 * type be null. As an example, consider the following variable declaration

111 * from the program above:

112 * <p>

assignments/3/support-files SymbolTable.java Page 2

113 * integer p1, p2, p3;

114 * <p>

115 * This declaration is represented by three entries with names "p1", "p2", and

116 * "p3", respectively. The type for all three entries is integer.

117 * <p>

118 * An important instance of other information is that for symbols which define

119 * a scope. For example, consider the following procedure declaration from the

120 * program above:

121 * <p>

122 * procedure B(real b1, integer b2);

123 * <p>

124 * ...

125 * <p>

126 * A symtab entry for the identifier B has the following values in the header:

127 * <p>

128 * name = "B", type = void

129 * <p>

130 * The entry also has a scope field, which is a reference to its own local

131 * symbol table. The documentation for the FunctionEntry extension of

132 * SymbolTableEntry has further discussion.

133 *

134 */

135 public class SymbolTable {

136

137 /**

138 * Allocate a new symtab of the given size. The size is the number of

139 * table entries (not bytes). All entries are initialized to null, the

140 * parent is initialized to null, and level to 0. Parent and level are

141 * only set to non-null/non-zero values when a SymbolTable is constructed

142 * with the newLevel method.

143 */

144 public SymbolTable(int size) {

145 entries = new HashMap(size);

146 level = 0;

147 }

148

149 /**

150 * Allocate a new symtab and add it as a new level to this symtab. The new

151 * level is linked into the existing symtab via the scope field of the

152 * given function entry, and the parent entry of this, as illustrated in

153 * the class documnentation. The level field of the the new symtab is set

154 * to this.level+1. The return value is a reference to the new level.

155 */

156 public SymbolTable newLevel(FunctionEntry fe, int size) {

157

158 SymbolTable newst;

159

160 /*

161 * Enter the given entry in the current level.

162 */

163 enter(fe);

164

165 /*

166 * Create a new symtab for the new level, and link it into the

167 * structure by pointing the info.proc.symtab field off to it.

168 */

169 newst = fe.scope = new SymbolTable(size);

170

171 /*

172 * Link the parent and parententry fields of the new table to their

173 * appropriate parent locations.

174 */

175 newst.parent = this;

176

177 /*

178 * Set the level of the new table to one greater than the parent level.

179 */

180 newst.level = level + 1;

181

182 return newst;

183

184 }

185

186 /**

187 * Lookup an entry by name in this symtab. The symtab entry of the given

188 * name is returned, if found, else null is returned. The lookup algorithm

189 * is based on the symtab tree structure outlined above. Specifically,

190 * <p>

191 * (1) Lookup first checks in the given symtab; if an entry of the

192 * given name is found there, it is returned.

193 * <p>

194 * (2) If (1) fails, Lookup ascends through successive parent levels of

195 * the given symtab, performing another look up at each level. If

196 * an entry of the given name is found at a parent level, it is

197 * returned. Note that Lookup will return the entry from the

198 * youngest parent level in which it is found, even if one or more

199 * older parent levels also contain an entry of the same name.

200 * <p>

201 * (3) If the top level is reached without finding an entry of the

202 * given name, null is returned.

203 * <p>

204 * This lookup algorithm is intended to model the open scope resolution

205 * rule of most block structured programming languages. Viz., a reference

206 * to a symbol within an open scope is resolved by looking in the current

207 * scope, and if not found there, successive levels of enclosing scopes are

208 * searched.

209 *

210 */

211 public SymbolTableEntry lookup(String name) {

212 int i;

213 SymbolTable st;

214 SymbolTableEntry se;

215

216 /*

217 * For this and each parent level, search for an entry of the given

218 * name.

219 */

220 for (st = this; st != null; st = st.parent) {

221

222 /*

223 * Just use get in the HashMap -- sweet.

224 */

assignments/3/support-files SymbolTable.java Page 3

225 if ((se = (SymbolTableEntry) entries.get(name)) != null) {

226 return se;

227 }

228 }

229

230 /*

231 * Return null if symbol is found no where.

232 */

233 return null;

234

235 }

236

237 /**

238 * Lookup an entry by name in this symtab only. I.e., LookupLocal does not

239 * perform the parent-level search that is performed by Lookup. Otherwise,

240 * the specification is the same as Lookup.

241 * <p>

242 * This version of lookup is intended to model the closed scope resolution

243 * rule of most block structured programming languages. Viz., a reference

244 * to a symbol within a closed scope is resolved by looking in the current

245 * scope only, without subsequent checks in enclosing scopes.

246 */

247 public SymbolTableEntry lookupLocal(String name) {

248 return (SymbolTableEntry) entries.get(name);

249 }

250

251 /**

252 * Enter the given symtab entry into this symtab, if an entry of that name

253 * does not already exist. True is returned if the entry was added, false

254 * otherwise.

255 */

256 public boolean enter(SymbolTableEntry se) {

257 if (lookupLocal(se.name) != null) {

258 return false;

259 }

260 entries.put(se.name, se);

261 return true;

262 }

263

264 /**

265 * Move up one parent level from this symtab, returning a reference to the

266 * new level. If the current level of this symtab has no parent (i.e., it

267 * is at level 0), then Ascend has no effect, i.e., it returns a reference

268 * to this.

269 */

270 public SymbolTable ascend() {

271 return parent != null ? parent : this;

272 }

273

274 /**

275 * Move down one level in this symtab, returning a reference to the new

276 * level. The level descended to is the one referenced by the symtab entry

277 * of the given name, which must have scope field, i.e., it must be a

278 * FunctionEntry. If no such entry exists, of if the given name is not

279 * that of a FunctionEntry, then descend has no effect, i.e., it returns a

280 * reference to this.

281 */

282 public SymbolTable descend(String name) {

283 SymbolTableEntry se = lookupLocal(name);

284

285 try {

286 return

287 ((se == null) ||

288 (se.getClass() != Class.forName("FunctionEntry")))

289 ? this : ((FunctionEntry) se).scope;

290 }

291 catch (Exception e) { // ClassNotFound exceptin; this is a pain

292 System.out.println(e);

293 e.printStackTrace();

294 return null;

295 }

296 }

297

298 /**

299 * Dump out the contents of the given symbtab, dumping entries serially,

300 * and recursively traversing into scoping levels. Empty entries are not

301 * dumped. The serial order means that entries are dumped in the physical

302 * order they appear in the table. Hence, if the entries are hashed, they

303 * will appear in the dump at their hashed entry positions, not sorted by

304 * symbol name or other more useful/aesthetic order.

305 * <p>

306 * As an example, the following is a symtab dump for the sample program and

307 * picture shown above:

308 *

309 * <pre><p>

310 Level 1 Symtab Contents:

311 Entry 7: Symbol: B, Type: 0x0

312 Formals: b1,b2

313 Level 2 Symtab Contents:

314 Entry 9: Symbol: b1, Type: 0x68760

315 Entry 12: Symbol: b2, Type: 0x66312

316 Entry 15: Symbol: b3, Type: 0x66312

317 Entry 18: Symbol: C, Type: 0x0

318 Formals: c1,c2

319 Level 3 Symtab Contents:

320 Entry 20: Symbol: c1, Type: 0x66312

321 Entry 23: Symbol: c2, Type: 0x68760

322 Entry 26: Symbol: c3, Type: 0x66312

323 Entry 195: Symbol: p1, Type: 0x66312

324 Entry 200: Symbol: p2, Type: 0x66312

325 Entry 203: Symbol: p3, Type: 0x66312

326 Entry 228: Symbol: A, Type: 0x0

327 Parms: a1,a2

328 Level 2 Symtab Contents:

329 Entry 39: Symbol: a1, Type: 0x66312

330 Entry 42: Symbol: a2, Type: 0x68760

331 Entry 52: Symbol: a3, Type: 0x66312

332 * </pre><p>

333 *

334 * The dump format of the type fields is an object memory address, for

335 * brevity.

336 */

assignments/3/support-files SymbolTable.java Page 4

337 public void dump(SymbolTable st) {

338 System.out.println(toString());

339 }

340

341 /**

342 * Produce the string value printed by dump.

343 */

344 public String toString() {

345 return toString(this.level);

346 }

347

348 /**

349 * Work doer for toString. The level parameter is used for indenting.

350 */

351 public String toString(int level) {

352 SymbolTableEntry e;

353 String indent = "", output = "";

354 int nextLevel = level + 1;

355

356 /*

357 * Indent per level.

358 */

359 for (int i = 0; i < level; i++) {

360 indent += " ";

361 }

362

363 /*

364 * Message at top of table.

365 */

366 output += "Level " + Integer.toString(level) + " Symtab Contents:\n";

367

368 /*

369 * Serially traverse the entries and dump each.

370 */

371 for (Iterator it = entries.values().iterator(); it.hasNext();) {

372 output += ((SymbolTableEntry)it.next()).toString(nextLevel) +

373 (it.hasNext() ? "\n" : "");

374 }

375

376 return output;

377 }

378

379 /** The parent table in the tree structure, i.e., the symtab of this’

380 * enclosing scope. This is null for the level 0 symtab.

381 */

382 public SymbolTable parent;

383

384 /** The hash table of entries */

385 protected HashMap entries;

386

387 /** Nesting level of this, starting with 0 at the top. */

388 public int level;

389

390 }

