
assignments/3/support-files Tr eeNode.java Page 1

1 /****

2 *

3 * TreeNode is the abstract parent class for a parse tree node. It contains an

4 * integer ID data field that is common to all types of node. The ID defines

5 * what type of tree node this is, e.g., an IF node, a PLUS, etc. The ID

6 * values are those defined for symbols in sym.java.

7 * <p>

8 * Extensions of TreeNode add additional data fields to hold information

9 * necessary for a particular node type. The TreeNode extensions are the

10 * following:

11 *

12 * TreeNode1 -- a node with one subtree

13 * reference, used to define unary expressions, or other unary

14 * constructs, such as a single declaration

15 * <p>

16 * TreeNode2 -- a node with two subtree

17 * references, used to define binary expressions, or other binary

18 * constructs, such an assignment statement

19 * <p>

20 * TreeNode3 -- a node with three subtree

21 * references, used to define trinary expressions, or other

22 * trinary constructs, such as an if-then-else statement

23 * <p>

24 * TreeNode4 -- a node with four subtree

25 * references, used to define quartinary constructs

26 * <p>

27 * TreeNodeList -- a node with an

28 * indefinite number of subtree references, used to define node

29 * lists of any form, or equivalently, n-ary constructs

30 * <p>

31 * LeafNode -- a leaf node with value

32 * information, but no subtree references

33 * <p>

34 * See the documentation for each of these extending classes for further

35 * detail.

36 *

37 */

38 public abstract class TreeNode {

39

40 /**

41 * Construct a tree node with id = 0. This is used, e.g., for nodes in a

42 * list, that don’t need individual id’s.

43 */

44 public TreeNode() {

45 this.id = 0;

46 }

47

48 /**

49 * Construct a tree node with the given id.

50 */

51 public TreeNode(int id) {

52 this.id = id;

53 }

54

55 /**

56 * Output the String representation of a pre-order tree traversal. The

57 * value of each node is written on a separate line, with subtree nodes

58 * indented two spaces per each level of depth, starting at depth 0 for the

59 * root.

60 * <p>

61 * For example, the following tree

62 * <p>

63 *

64 * <p>

65 * looks like this from TreeNode.toString

66 * <pre>

67 * +

68 * a

69 * *

70 * b

71 * c

72 * </pre>

73 * The implementation of toString() uses an int-valued overload to perform

74 * recursive traversal, passing an incrementing level value to successive

75 * recursive invocations. See the definitions of toString(int) in each

76 * TreeNode extension for further details.

77 */

78 public String toString() {

79 return toString(0);

80 }

81

82 /**

83 * This is the recursive work-doer for toString. See its definition in

84 * extending classes for details.

85 */

86 public abstract String toString(int level);

87

88

89 /**

90 * Print a readable string value for a numeric-valued tree ID. This method

91 * uses the mapping defined in the symNames class.

92 */

93 public static String symPrint(int id) {

94 return symNames.map[id];

95 }

96

97 /** The ID of this node. Yea, it’s public. Take that, you pain-in-the-xxx

98 * software engineers. */

99 public int id;

100

101 }

