assignments/3/support-files

W J o U WwN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

/x*
*

L S NSRS R TR

/

* K

TreeNode is the abstract parent class for a parse tree node. It contains an
integer ID data field that is common to all types of node. The ID defines
what type of tree node this is, e.g., an IF node, a PLUS, etc. The ID

values are those defined for symbols in sym. java.

<p>
Extensions of TreeNode add additional data fields to hold information
necessary for a particular node type. The TreeNode extensions are the
following:
<1li>
TreeNodel -- a node with one subtree
reference, used to define unary expressions, or other unary
constructs, such as a single declaration
<p><1li>
TreeNode2 -- a node with two subtree
references, used to define binary expressions, or other binary
constructs, such an assignment statement
<p><1li>
TreeNode3 -- a node with three subtree
references, used to define trinary expressions, or other
trinary constructs, such as an if-then-else statement
<p><1li>
TreeNode4 -- a node with four subtree
references, used to define quartinary constructs
<p><1li>
TreeNodeList -- a node with an
indefinite number of subtree references, used to define node
lists of any form, or equivalently, n-ary constructs
<p><1li>
LeafNode -- a leaf node with value
information, but no subtree references
<p>

See the documentation for each of these extending classes for further
detail.

public abstract class TreeNode {

/**
* Construct a tree node with id = 0. This is used, e.g., for nodes in a
* list, that don’t need individual id’s.
*/
public TreeNode () {
this.id = 0;

/**
* Construct a tree node with the given id.
*/
public TreeNode (int id) {
this.id = id;

/**
* Output the String representation of a pre-order tree traversal. The

TreeNode.java

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

Page 1
* value of each node is written on a separate line, with subtree nodes
* indented two spaces per each level of depth, starting at depth 0 for the
* root.
* <p>
* For example, the following tree
* <p>
*
* <p>
* looks like this from TreeNode.toString
* <pre>
* 4+
* a
* *
* b
* c
* </pre>
* The implementation of toString() uses an int-valued overload to perform
* recursive traversal, passing an incrementing level value to successive
* recursive invocations. See the definitions of toString(int) in each
* TreeNode extension for further details.
*

/
public String toString()
return toString(0);

/*‘k
* This is the recursive work-doer for toString.
* extending classes for details.
*/

public abstract String toString(int level);

See its definition in

/*‘k
* Print a readable string value for a numeric-valued tree ID.
* uses the mapping defined in the symNames class.
*/
public static String symPrint (int id) {
return symNames.map[id];

This method

/** The ID of this node.
* software engineers. */
public int id;

Yea, it’s public. Take that, you pain-in-the-xxx

