suuport-files

W J o U WwN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

VAR A

*

EE T T S RS U

FunctionEntry extends SymbolTableEntry by adding data fields to support
functions, procedures, and methods. These forms of functional construct are
considered equivalent for the purposes of storing data in a symbol table.

<p>
The public data fields of a FunctionEntry are a TreeNodelList of formal
parameters, a TreeNode body, and a SymbolTable scope. The inherited type
field is used to hold the return type of the function.

<p>
The scope field holds a reference to the function’s own local scope. All of
the function’s formal parameters and local variables are entered in this
local table. 1In this way, the table defines a scope that belongs to the
function, which is the standard semantics in block-structured programming
languages.

<p>
In programming languages that allow nested function definitions, a
function’s local scope may have further nested scopes. These are
represented simply by having function entries in a parent function’s scope
table. Nested symbol tables are also used to represent anonymous inner
scopes, such as nested declaration/statement blocks, in languages that all
such constructs. See the documentation of the SymbolTable class for a
large-grain picture and description of nested scope representation.

<p>
A function’s formal parameters are stored both in the formals list as well
as being entered in the local symtab scope. The list is necessary when
parameters need to be accessed in left-to-right declared order. The formals
are also entered in the function’s local scope, so they have a storage
identity that is distinct to this scope.

<p>
The body data field of a function is a reference to the entire parse tree
for its executable body. This tree is used for back-end processing, which
can include one or more of the following phases: type checking,
interpretation, and/or code generation.

public class FunctionEntry extends SymbolTableEntry {

/**
* Construct this with null data fields.
*/

public FunctionEntry () {

}

/**
* Construct this with the given data field values.
* to 0.
*/
public FunctionEntry (String name, TypeNode type, TreeNodeList formals,
TreeNode body, SymbolTable scope) {
super (name, type);
this.formals = formals;
this.body = body;
this.scope = scope;

Initialize memorySize

FunctionEntry.java

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Page 1

/*‘k
* Return the string rep of this.
*/
public String toString(int level) {
return super.toString(level) + formalsString(level) +
scopeString (level);

/*‘k
* Called by toString to stringify the list of formal parameter names.
*/
protected String formalsString(int level) {
return formals == null ? "" : "\n" + indentString(level) +
" Formals: " + formals.toString(level + 5);

/*‘k
* Called by toString to recursively stringify the scope, if non-null.
*/
protected String scopeString(int level) {
return scope == null ? "" : "\n " + indentString(level) +
scope.toString(level);

/** Formal parameter list, in declared order. */
public TreeNodeList formals;

/** Function body, in the form of its raw parse tree. */
public TreeNode body;

/** Local scope for this function. */
public SymbolTable scope;

