assignments/4/support-files

import java.util.x*;

VAR E

*

*

*

*

*/

Class Memory has static utility methods for allocating, clearing, and
dumping an Object-valued memory array.

public class Memory {

/x*
*

*/

Allocate an Object-valued memory array of the given size.

public static Object[] allocate(int size) {

/**
*

*/

return new Object[size];

Set all elements of the given memory to null.

public static void clear (Object[] mem) {

* ok ok ok ok ok

/

Arrays.fill (mem, null);

Dump the given number of elements in the given memory to stdout.

Memory.java

The

dump starts at memory location 0. The dump of each element is started
on a separate line, prefixed with "Location n: ", for n = the index of
that location. The number of lines dumped per element is dependent on

the toString method for the type of element being dumped.

public static void dump (Object[] mem, int numElems) {
for (int 1 = 0; i1 < numElems; i++) {
System.out.println("Location " + i + ": " + mem[i]);

*/

Dump the given memory to stdout, from the given startElem to endElem
indices, inclusive. Note that in the "Location n: " dump prefixes, the

value of n is an absolute address relative to overall location O.
Cf. dumpRelative.

public static void dump (Object[] mem, int startElem, int endElem) ({

e

for (int i1 = startElem; i <= endElem; i++) {
System.out.println("Location " + i + ": " + mem[i]);

Dump the given memory to stdout, from the given startElem to endElem

indices, inclusive. The difference between this method and the
other three-argument version of dump is that here the "Location n

prefixes start at 0, so this dump is relative to the given startElem

beginning at 0 instead of its absolute value.

57
58
59
60
61
62
63

public static void dumpRelative (Object[] mem,

for

(int 1 = startElem; i <= endElem;

System.out.println("Location "

+

i++)

(1

int startElem,

{
startElem)

+

".

Page 1

int endElem)

"

+ mem[i]);

{

