assignments/4/support-files

import java.util.x*;

VAR E

*

* ok k%

* ok k%

SymbolTable is a datatype for a tree structured table, where each node in
the tree represents a program scope. The overall tree structure represents
the scope nesting of a program. For example, consider the following

(Pascal) program:
<p><pre>
program
var pl,p2,p3: integer;
procedure A(al: integer; a2: real);
var a3: integer;
begin
a3 := al + a2;
end A;
procedure B(bl: real; b2: integer);
var b3: integer;
procedure C(cl: integer; c2: real);
var c3: integer;
begin
cl := c3;
c2 :=cl * ¢3 / 10;
end C;
begin
bl := b2 - b3;
end B;
begin
pl := p2 - p3;
end
</pre><p>

An abstract depiction of the symbol table structure for this program is the
following:
<pre><p>
program symtab

B’s symtab

C’s symtab

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

SymbolTable.java

B T S T S e S S S S S S S S R T T T T S

Page 1

[=== [=== |
</pre><p>
Note that a number of structural details are omitted from this picture.
What the picture depicts is the overall tree structure, and how it
represents the nested scope structure of the program. The details that are
shown are the following:
<p>
(1) Each symtab in the tree has a parent pointer that links it to the
symtab for the enclosing scope in the program. The symtab for the
outermost scope has no parent. This topmost symbol table is referred
to as "level 0O".
<p>
(2) The table at each level contains entries for all of the identifiers
defined in the program scope represented by that table. For example,
the program symtab has entries for the variables pl, p2 and p3, and
for procedures A and B. In turn, the symtab for procedure B’s scope
has entries for parameters bl and b2, local variable b3, and local
procedure C (not all of which are shown in the picture).
<p>
(3) Each entry that defines a new scope has a link to its own symbol
table. For example, procedure B above is entered by name in the
program symbol table. Since procedure B defines a scope of its own,
the entry for B points to a symbol table that contains the
identifiers declared within B’s scope. Per point (1) above,
symtab has a parent pointer back to the program symtab.

B’'s

<p>

(4) The entries in the symtabs are depicted in an order other than
alphabetic to indicate that the body of a symbol table is probably
hashed. TI.e., entries are shown in an apparent hashing order, rather
than sequentially or in some lexical order. Under any circumstances,
users of the symtab abstraction may not assume any order for the
entries within a table.

As noted, the picture above omits some structural details. In particular,
all of the publicly accessible fields for a table entry are not shown. The
type SymbolTableEntry*is an abstract type for the entries within a symtab.
The general format of a symtab entry is the following:

<pre><p>
[—mmmmmm I
| symbol name |
[—mmmmmm I
| symbol type |
[—mmmmmm I
| |
| other information in |
| extending classes |
| |
| |
| |
[—mmmmmm I
</pre><p>

The name and type fields are common to all symtab entries,
type be null. As an example,
from the program above:

the value of the
consider the following variable declaration

<p>

assignments/4/support-files SymbolTable.java Page 2

113 * integer pl, p2, p3; 169 newst = fe.scope = new SymbolTable(size);

114 * <p> 170

115 * This declaration is represented by three entries with names "pl", "p2", and 171 /*

116 * "p3", respectively. The type for all three entries is integer. 172 * Link the parent and parententry fields of the new table to their

117 * <p> 173 * appropriate parent locations.

118 * An important instance of other information is that for symbols which define 174 */

119 * a scope. For example, consider the following procedure declaration from the 175 newst.parent = this;

120 * program above: 176

121 * <p> 177 /*

122 * procedure B(real bl, integer b2); 178 * Set the level of the new table to one greater than the parent level.
123 * <p> 179 */

124 * 180 newst.level = level + 1;

125 * <p> 181

126 * A symtab entry for the identifier B has the following values in the header: 182 return newst;

127 * <p> 183

128 * name = "B", type = void 184 }

129 * <p> 185

130 * The entry also has a scope field, which is a reference to its own local 186 /**

131 * symbol table. The documentation for the FunctionEntry extension of 187 * Lookup an entry by name in this symtab. The symtab entry of the given
132 * SymbolTableEntry has further discussion. 188 * name is returned, if found, else null is returned. The lookup algorithm
133 * 189 * is based on the symtab tree structure outlined above. Specifically,

134 */ 190 * <p>
135 public class SymbolTable { 191 * (1) Lookup first checks in the given symtab; if an entry of the

136 192 * given name is found there, it is returned.

137 /** 193 * <p>
138 * Allocate a new symtab of the given size. The size is the number of 194 * (2) If (1) fails, Lookup ascends through successive parent levels of
139 * table entries (not bytes). All entries are initialized to null, the 195 * the given symtab, performing another look up at each level. If
140 * parent is initialized to null, and level to 0. Parent and level are 196 * an entry of the given name is found at a parent level, it is

141 * only set to non-null/non-zero values when a SymbolTable is constructed 197 * returned. Note that Lookup will return the entry from the

142 * with the newLevel method. 198 * youngest parent level in which it is found, even if one or more
143 */ 199 * older parent levels also contain an entry of the same name.

144 public SymbolTable (int size) { 200 * <p>
145 entries = new HashMap (size); 201 * (3) If the top level is reached without finding an entry of the

146 level = 0; 202 * given name, null is returned.

147 } 203 * <p>
148 204 * This lookup algorithm is intended to model the open scope resolution

149 /** 205 * rule of most block structured programming languages. Viz., a reference
150 * Allocate a new symtab and add it as a new level to this symtab. The new 206 * to a symbol within an open scope is resolved by looking in the current
151 * level is linked into the existing symtab via the scope field of the 207 * scope, and if not found there, successive levels of enclosing scopes are
152 * given function entry, and the parent entry of this, as illustrated in 208 * searched.

153 * the class documnentation. The level field of the the new symtab is set 209 *

154 * to this.level+l. The return value is a reference to the new level. 210 */

155 */ 211 public SymbolTableEntry lookup(String name) {

156 public SymbolTable newLevel (FunctionEntry fe, int size) { 212 int 1i;

157 213 SymbolTable st;

158 SymbolTable newst; 214 SymbolTableEntry se;

159 215

160 /* 216 /*

161 * Enter the given entry in the current level. 217 * For this and each parent level, search for an entry of the given

162 */ 218 * name.

163 enter (fe); 219 */

164 220 for (st = this; st != null; st = st.parent) {

165 /* 221

166 * Create a new symtab for the new level, and link it into the 222 /*

167 * structure by pointing the info.proc.symtab field off to it. 223 * Just use get in the HashMap -- sweet.

168 */ 224 */

assignments/4/support-files SymbolTable.java Page 3

225 if ((se = (SymbolTableEntry) entries.get (name)) != null) { 281 */

226 return se; 282 public SymbolTable descend(String name) {

227 } 283 SymbolTableEntry se = lookupLocal (name);

228 } 284

229 285 try {

230 /* 286 return

231 * Return null if symbol is found no where. 287 ((se == null) ||

232 */ 288 (se.getClass () != Class.forName ("FunctionEntry")))

233 return null; 289 ? this : ((FunctionEntry) se).scope;

234 290 }

235 } 291 catch (Exception e) { // ClassNotFound exceptin; this is a pain

236 292 System.out.println(e);

237 /** 293 e.printStackTrace () ;

238 * Lookup an entry by name in this symtab only. I.e., LookupLocal does not 294 return null;

239 * perform the parent-level search that is performed by Lookup. Otherwise, 295 }

240 * the specification is the same as Lookup. 296 }

241 * <p> 297

242 * This version of lookup is intended to model the closed scope resolution 298 /*x*

243 * rule of most block structured programming languages. Viz., a reference 299 * Dump out the contents of the given symbtab, dumping entries serially,
244 * to a symbol within a closed scope is resolved by looking in the current 300 * and recursively traversing into scoping levels. Empty entries are not
245 * scope only, without subsequent checks in enclosing scopes. 301 * dumped. The serial order means that entries are dumped in the physical
246 */ 302 * order they appear in the table. Hence, if the entries are hashed, they
247 public SymbolTableEntry lookupLocal (String name) { 303 * will appear in the dump at their hashed entry positions, not sorted by
248 return (SymbolTableEntry) entries.get (name); 304 * symbol name or other more useful/aesthetic order.

249 } 305 * <p>
250 306 * As an example, the following is a symtab dump for the sample program and
251 /** 307 * picture shown above:

252 * Enter the given symtab entry into this symtab, if an entry of that name 308 *

253 * does not already exist. True is returned if the entry was added, false 309 * <pre><p>
254 * otherwise. 310 Level 1 Symtab Contents:

255 */ 311 Entry 7: Symbol: B, Type: 0x0

256 public boolean enter (SymbolTableEntry se) { 312 Formals: bl,b2

257 if (lookupLocal (se.name) != null) { 313 Level 2 Symtab Contents:

258 return false; 314 Entry 9: Symbol: bl, Type: 0x68760

259 } 315 Entry 12: Symbol: b2, Type: 0x66312

260 entries.put (se.name, se); 316 Entry 15: Symbol: b3, Type: 0x66312

261 return true; 317 Entry 18: Symbol: C, Type: 0x0

262 } 318 Formals: cl,c2

263 319 Level 3 Symtab Contents:

264 /** 320 Entry 20: Symbol: cl, Type: 0x66312

265 * Move up one parent level from this symtab, returning a reference to the 321 Entry 23: Symbol: c2, Type: 0x68760

266 * new level. If the current level of this symtab has no parent (i.e., it 322 Entry 26: Symbol: c3, Type: 0x66312

267 * is at level 0), then Ascend has no effect, i.e., it returns a reference 323 Entry 195: Symbol: pl, Type: 0x66312

268 * to this. 324 Entry 200: Symbol: p2, Type: 0x66312

269 */ 325 Entry 203: Symbol: p3, Type: 0x66312

270 public SymbolTable ascend() { 326 Entry 228: Symbol: A, Type: 0x0

271 return parent != null ? parent : this; 327 Parms: al,a2

272 } 328 Level 2 Symtab Contents:

273 329 Entry 39: Symbol: al, Type: 0x66312

274 /** 330 Entry 42: Symbol: a2, Type: 0x68760

275 * Move down one level in this symtab, returning a reference to the new 331 Entry 52: Symbol: a3, Type: 0x66312

276 * level. The level descended to is the one referenced by the symtab entry 332 * </pre><p>
277 * of the given name, which must have scope field, i.e., it must be a 333 *

278 * FunctionEntry. If no such entry exists, of if the given name is not 334 * The dump format of the type fields is an object memory address, for

279 * that of a FunctionEntry, then descend has no effect, i.e., it returns a 335 * brevity.

280 * reference to this. 336 */

assignments/4/support-files SymbolTable.java Page 4

337 public void dump (SymbolTable st) { 393 * vars, and if appropriate parameters, have been entered in the this
338 System.out.println(toString()); 394 * scope, the resulting value of this counter field is the size of the
339 } 395 * memory necesary for this scope. For for the level 0 symtab, this is the
340 396 * size of the static pool. For a function scope, this is the size of its
341 /** 397 * activation record.
342 * Produce the string value printed by dump. 398 */

343 */ 399 public int memorySize;
344 public String toString() { 400

345 return toString(this.level); 401}

346 }

347

348 /x*

349 * Work doer for toString. The level parameter is used for indenting.

350 */

351 public String toString(int level) ({

352 SymbolTableEntry e;

353 String indent = "", output = "";

354 int nextLevel = level + 1;

355

356 /*

357 * Indent per level.

358 */

359 for (int 1 = 0; 1 < level; i++) {

360 indent += " ";

361 }

362

363 /*

364 * Message at top of table.

365 */

366 output += "Level " + Integer.toString(level) + " Symtab Contents:\n";

367

368 /*

369 * Serially traverse the entries and dump each.

370 */

371 for (Iterator it = entries.values().iterator(); it.hasNext();) {

372 output += ((SymbolTableEntry)it.next()).toString(nextLevel) +

373 (it.hasNext () 2 "\n" : "");

374 }

375

376 return output;

377 }

378

379 /** The parent table in the tree structure, i.e., the symtab of this’

380 * enclosing scope. This is null for the level 0 symtab.

381 */

382 public SymbolTable parent;

383

384 /** The hash table of entries */

385 protected HashMap entries;

386

387 /** Nesting level of this, starting with 0 at the top. */

388 public int level;

389

390 /** Incrementing counter for the memory addresses of data values declared

391 * in this symtab’s scope. During parsing and symbol table construction,

392 * this is used as the memory address offset counter. Once all of the

