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TypeNode is a specialized extension of TreeNode4 intended for use in tree
The point of this
is to allow users of a TypeNode value to assume specific properties about

evaluation contexts where the node is known to be a type.

the node, without having to cast more generic TreeNodes in various ways.

One specific property of a TypeNode is that its ID should be one of a fixed

set of values that are legal for identifying types. These ID values can

vary among different languages, but should be limited in scope, and have a

specific meaning in the context of a TypeNode, even if they have another
meaning in the context of some other type of TreeNode.

Another known property of a TypeNode is that it has four TreeNode children,
zero or more of which can be used to hold data for different types of node.

For example, built-in atomic types typically use none of the children,
relying on the ID to uniquely identify the type. As another example, a
composite array type will typically use two children -- one for the base
type of the array, the other for the dimensions.

A final specialized component of TypeNode is a data field of type
SymbolTable. This is used for types that need a symbol table reference,
such as struct, record, and class types.

public class TypeNode extends TreeNoded ({

/**
* Construct this with the given id and null children.
*/
public TypeNode (int id) {
super (id, null, null, null, null);

/**
* Construct this with the given id and given single child.
*/
public TypeNode (int id, TreeNode childl) {
super (id, childl, null, null, null);

/**
* Construct this with the given id and given two children.
*/
public TypeNode (int id, TreeNode childl, TreeNode child2) {
super (id, childl, child2, null, null);

/**
* Construct this with the given id and given three children.
*/
public TypeNode (int id, TreeNode childl, TreeNode child2,
TreeNode child3) {
super (id, childl, child2, child3, null);

TypeNode.java
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Construct this with the given id and given four children.

public TypeNode (int id, TreeNode childl, TreeNode child2,

/x*
*

*/

TreeNode child3, TreeNode child4) {
super (id, childl, child2, child3, child4);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, int line, int column) {

/x*
*

*/

super (id, null, null, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode child, int line, int column) {

/x*
*

*/

super (id, child, null, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2, int line,

/x*
*

*/

int column) {
super (id, childl, child2, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2,

/x*
*

*/

TreeNode child3, int line, int column) {
super (id, childl, child2, child3, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2,

S
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TreeNode child3, TreeNode child4, int line, int column) {
super (id, childl, child2, child3, child4, line, column);

Return the String representation of this subtree, which is the String
value of its ID, followed on the next zero to four indented lines by the
recursive toString of its four children. Null children are not printed
at all. See the documentation for <a href= "TreeNode.html#toString()">
TreeNode.toString() </a> for a general description the way trees are
represented as strings.

public String toString(int level) {

String indent = "";
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for (int 1 = 0;
indent += "

}

return symPrint (id)

(childl ==
childl.
(child2 ==
child2.
(child3 ==
child3.
(child4 ==
child4.

/** Reference to a
public SymbolTable

i < level; i++) |
w.

null 2 " : ("\n" +
toString(level+l)))
null 2 "% : ("\n" +
toString(level+l)))
null 2 "" : ("\n" +
toString(level+l)))
null 2 "% : ("\n" +

toString (level+l)));

symbol table, for struct,

symtab;

+ toStringLineAndColumn ("

indent + "
+
indent + "
+
indent + "
+
indent + "

record,
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and class types. */
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