suuport-files

W J o U WwN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

VAR A

*

N

TypeNode is a specialized extension of TreeNode4 intended for use in tree
The point of this
is to allow users of a TypeNode value to assume specific properties about

evaluation contexts where the node is known to be a type.

the node, without having to cast more generic TreeNodes in various ways.

One specific property of a TypeNode is that its ID should be one of a fixed

set of values that are legal for identifying types. These ID values can

vary among different languages, but should be limited in scope, and have a

specific meaning in the context of a TypeNode, even if they have another
meaning in the context of some other type of TreeNode.

Another known property of a TypeNode is that it has four TreeNode children,
zero or more of which can be used to hold data for different types of node.

For example, built-in atomic types typically use none of the children,
relying on the ID to uniquely identify the type. As another example, a
composite array type will typically use two children -- one for the base
type of the array, the other for the dimensions.

A final specialized component of TypeNode is a data field of type
SymbolTable. This is used for types that need a symbol table reference,
such as struct, record, and class types.

public class TypeNode extends TreeNoded ({

/**
* Construct this with the given id and null children.
*/
public TypeNode (int id) {
super (id, null, null, null, null);

/**
* Construct this with the given id and given single child.
*/
public TypeNode (int id, TreeNode childl) {
super (id, childl, null, null, null);

/**
* Construct this with the given id and given two children.
*/
public TypeNode (int id, TreeNode childl, TreeNode child2) {
super (id, childl, child2, null, null);

/**
* Construct this with the given id and given three children.
*/
public TypeNode (int id, TreeNode childl, TreeNode child2,
TreeNode child3) {
super (id, childl, child2, child3, null);

TypeNode.java

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

/x*
*

*/

Page 1

Construct this with the given id and given four children.

public TypeNode (int id, TreeNode childl, TreeNode child2,

/x*
*

*/

TreeNode child3, TreeNode child4) {
super (id, childl, child2, child3, child4);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, int line, int column) {

/x*
*

*/

super (id, null, null, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode child, int line, int column) {

/x*
*

*/

super (id, child, null, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2, int line,

/x*
*

*/

int column) {
super (id, childl, child2, null, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2,

/x*
*

*/

TreeNode child3, int line, int column) {
super (id, childl, child2, child3, null, line, column);

A la the other constructor, but with line and column numbers.

public TypeNode (int id, TreeNode childl, TreeNode child2,

S
*

~

TreeNode child3, TreeNode child4, int line, int column) {
super (id, childl, child2, child3, child4, line, column);

Return the String representation of this subtree, which is the String
value of its ID, followed on the next zero to four indented lines by the
recursive toString of its four children. Null children are not printed
at all. See the documentation for
TreeNode.toString() for a general description the way trees are
represented as strings.

public String toString(int level) {

String indent = "";

suuport-files

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

for (int 1 = 0;
indent += "

}

return symPrint (id)

(childl ==
childl.
(child2 ==
child2.
(child3 ==
child3.
(child4 ==
child4.

/** Reference to a
public SymbolTable

i < level; i++) |
w.

null 2 " : ("\n" +
toString(level+l)))
null 2 "% : ("\n" +
toString(level+l)))
null 2 "" : ("\n" +
toString(level+l)))
null 2 "% : ("\n" +

toString (level+l)));

symbol table, for struct,

symtab;

+ toStringLineAndColumn ("

indent + "
+
indent + "
+
indent + "
+
indent + "

record,

TypeNode.java

and class types. */

Page 2

