
Lex − A Lexical Analyzer Generator

MM.. EE.. LLeesskk aanndd EE.. SScchhmmiiddtt

AABBSSTTRRAA CCTT

Lex helps write programs whose control flow is directed by instances of regular

expressions in the input stream. It is well suited for editor-script type transformations and

for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments.

The table is translated to a program which reads an input stream, copying it to an output

stream and partitioning the input into strings which match the given expressions. As each

such string is recognized the corresponding program fragment is executed. The recogni-

tion of the expressions is performed by a deterministic finite automaton generated by Lex.

The program fragments written by the user are executed in the order in which the corre-

sponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications

and choose the longest match possible at each input point. If necessary, substantial look-

ahead is performed on the input, but the input stream will be backed up to the end of the

current partition, so that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be trans-

lated automatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell

GCOS, and IBM OS systems. This manual, however, will only discuss generating ana-

lyzers in C on the UNIX system, which is the only supported form of Lex under UNIX

Version 7. Lex is designed to simplify interfacing with Yacc, for those with access to this

compiler-compiler system.

1. Introduction.

Lex is a program generator designed for

lexical processing of character input streams. It

accepts a high-level, problem oriented specifica-

tion for character string matching, and produces a

program in a general purpose language which rec-

ognizes regular expressions. The regular expres-

sions are specified by the user in the source speci-

fications given to Lex. The Lex written code rec-

ognizes these expressions in an input stream and

partitions the input stream into strings matching

the expressions. At the boundaries between

strings program sections provided by the user are

executed. The Lex source file associates the regu-

lar expressions and the program fragments. As

each expression appears in the input to the pro-

gram written by Lex, the corresponding fragment

is executed.

The user supplies the additional code

beyond expression matching needed to complete

his tasks, possibly including code written by other

generators. The program that recognizes the

expressions is generated in the general purpose

programming language employed for the user’s

program fragments. Thus, a high level expression

language is provided to write the string expres-

sions to be matched while the user’s freedom to

write actions is unimpaired. This avoids forcing

the user who wishes to use a string manipulation

language for input analysis to write processing

programs in the same and often inappropriate

string handling language.

Lex is not a complete language, but rather a

generator representing a new language feature

which can be added to different programming lan-

guages, called ‘‘host languages.’’ Just as general

purpose languages can produce code to run on

PS1:16-2 Lex − A Lexical Analyzer Generator

different computer hardware, Lex can write code

in different host languages. The host language is

used for the output code generated by Lex and

also for the program fragments added by the user.

Compatible run-time libraries for the different

host languages are also provided. This makes Lex

adaptable to different environments and different

users. Each application may be directed to the

combination of hardware and host language

appropriate to the task, the user’s background, and

the properties of local implementations. At pre-

sent, the only supported host language is C,

although Fortran (in the form of Ratfor [2] has

been available in the past. Lex itself exists on

UNIX, GCOS, and OS/370; but the code gener-

ated by Lex may be taken anywhere the appropri-

ate compilers exist.

Lex turns the user’s expressions and actions

(called ssoouurr ccee in this memo) into the host general-

purpose language; the generated program is

named yyyyllee xx.. The yyyyllee xx program will recognize

expressions in a stream (called iinnppuutt in this

memo) and perform the specified actions for each

expression as it is detected. See Figure 1.

Source → Lex → yylex

Input → yylex → Output

An overview of Lex

Figure 1

For a trivial example, consider a program to

delete from the input all blanks or tabs at the ends

of lines.

%%

[\t]+$;

is all that is required. The program contains a

%% delimiter to mark the beginning of the rules,

and one rule. This rule contains a regular expres-

sion which matches one or more instances of the

characters blank or tab (written \t for visibility, in

accordance with the C language convention) just

prior to the end of a line. The brackets indicate

the character class made of blank and tab; the +

indicates ‘‘one or more ...’’; and the $ indicates

‘‘end of line,’’ as in QED. No action is specified,

so the program generated by Lex (yylex) will

ignore these characters. Everything else will be

copied. To change any remaining string of blanks

or tabs to a single blank, add another rule:

%%

[\t]+$;

[\t]+ printf(" ");

The finite automaton generated for this source

will scan for both rules at once, observing at the

termination of the string of blanks or tabs whether

or not there is a newline character, and executing

the desired rule action. The first rule matches all

strings of blanks or tabs at the end of lines, and

the second rule all remaining strings of blanks or

tabs.

Lex can be used alone for simple transfor-

mations, or for analysis and statistics gathering on

a lexical level. Lex can also be used with a parser

generator to perform the lexical analysis phase; it

is particularly easy to interface Lex and Yacc [3].

Lex programs recognize only regular expressions;

Yacc writes parsers that accept a large class of

context free grammars, but require a lower level

analyzer to recognize input tokens. Thus, a com-

bination of Lex and Yacc is often appropriate.

When used as a preprocessor for a later parser

generator, Lex is used to partition the input

stream, and the parser generator assigns structure

to the resulting pieces. The flow of control in

such a case (which might be the first half of a

compiler, for example) is shown in Figure 2.

Additional programs, written by other generators

or by hand, can be added easily to programs writ-
ten by Lex.

lexical grammar

rules rules

↓ ↓
Lex Yacc

↓ ↓
Input → yylex → yyparse → Parsed input

Lex with Yacc

Figure 2

Yacc users will realize that the name yyyyllee xx is what

Yacc expects its lexical analyzer to be named, so

that the use of this name by Lex simplifies inter-

facing.

Lex generates a deterministic finite automa-

ton from the regular expressions in the source [4].

The automaton is interpreted, rather than com-

piled, in order to save space. The result is still a

fast analyzer. In particular, the time taken by a

Lex program to recognize and partition an input

stream is proportional to the length of the input.

The number of Lex rules or the complexity of the

rules is not important in determining speed,

unless rules which include forward context

require a significant amount of rescanning. What

does increase with the number and complexity of

rules is the size of the finite automaton, and there-

Lex − A Lexical Analyzer Generator PS1:16-3

fore the size of the program generated by Lex.

In the program written by Lex, the user’s

fragments (representing the aaccttiioonnss to be per-

formed as each regular expression is found) are

gathered as cases of a switch. The automaton

interpreter directs the control flow. Opportunity is

provided for the user to insert either declarations

or additional statements in the routine containing

the actions, or to add subroutines outside this

action routine.

Lex is not limited to source which can be

interpreted on the basis of one character look-

ahead. For example, if there are two rules, one

looking for aabb and another for aabbccddeeffgg , and the

input stream is aabbccddeeffhh , Lex will recognize aabb

and leave the input pointer just before ccdd.. Such

backup is more costly than the processing of sim-

pler languages.

2. Lex Source.

The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are

often omitted. The second %%%% is optional, but

the first is required to mark the beginning of the

rules. The absolute minimum Lex program is

thus

%%

(no definitions, no rules) which translates into a

program which copies the input to the output

unchanged.

In the outline of Lex programs shown

above, the rruulleess represent the user’s control deci-

sions; they are a table, in which the left column

contains rr eegguullaarr eexxpprreessssiioonnss (see section 3) and

the right column contains aaccttiioonnss,, program frag-

ments to be executed when the expressions are

recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string iinnttee ggeerr in the input stream

and print the message ‘‘found keyword INT’’

whenever it appears. In this example the host

procedural language is C and the C library func-

tion pprriinnttff is used to print the string. The end of

the expression is indicated by the first blank or tab

character. If the action is merely a single C

expression, it can just be given on the right side of

the line; if it is compound, or takes more than a

line, it should be enclosed in braces. As a slightly

more useful example, suppose it is desired to

change a number of words from British to Ameri-

can spelling. Lex rules such as

colour printf("color");

mechanise printf("mechanize");

petrol printf("gas");

would be a start. These rules are not quite

enough, since the word ppeettrr oolleeuumm would become

ggaasseeuumm ; a way of dealing with this will be

described later.

3. Lex Regular Expressions.

The definitions of regular expressions are

very similar to those in QED [5]. A regular

expression specifies a set of strings to be matched.

It contains text characters (which match the corre-

sponding characters in the strings being com-

pared) and operator characters (which specify rep-

etitions, choices, and other features). The letters

of the alphabet and the digits are always text char-

acters; thus the regular expression

integer

matches the string iinnttee ggeerr wherever it appears and

the expression

a57D

looks for the string aa5577DD..

OOppeerr aattoorrss.. The operator characters are

" \ [] ˆ − ? . ∗ + | () $ / { } % < >

and if they are to be used as text characters, an

escape should be used. The quotation mark oper-

ator (") indicates that whatever is contained

between a pair of quotes is to be taken as text

characters. Thus

xyz"++"

matches the string xxyyzz++++ when it appears. Note

that a part of a string may be quoted. It is harm-

less but unnecessary to quote an ordinary text

character; the expression

"xyz++"

is the same as the one above. Thus by quoting

ev ery non-alphanumeric character being used as a

text character, the user can avoid remembering the

list above of current operator characters, and is

safe should further extensions to Lex lengthen the

list.

An operator character may also be turned

into a text character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the

above expressions. Another use of the quoting

mechanism is to get a blank into an expression;

normally, as explained above, blanks or tabs end a

rule. Any blank character not contained within []

(see below) must be quoted. Several normal C

PS1:16-4 Lex − A Lexical Analyzer Generator

escapes with \ are recognized: \n is newline, \t is

tab, and \b is backspace. To enter \ itself, use \\.

Since newline is illegal in an expression, \n must

be used; it is not required to escape tab and

backspace. Every character but blank, tab, new-

line and the list above is always a text character.

CChhaarr aacctteerr ccllaasssseess.. Classes of characters

can be specified using the operator pair []. The

construction [[aabbcc]] matches a single character,

which may be aa , bb , or cc . Within square brackets,

most operator meanings are ignored. Only three

characters are special: these are \ − and ˆ. The −
character indicates ranges. For example,

[a−z0−9<>_]

indicates the character class containing all the

lower case letters, the digits, the angle brackets,

and underline. Ranges may be given in either

order. Using − between any pair of characters

which are not both upper case letters, both lower

case letters, or both digits is implementation

dependent and will get a warning message. (E.g.,

[0−z] in ASCII is many more characters than it is

in EBCDIC). If it is desired to include the char-

acter − in a character class, it should be first or

last; thus

[−+0−9]

matches all the digits and the two signs.

In character classes, the ˆ operator must

appear as the first character after the left bracket;

it indicates that the resulting string is to be com-

plemented with respect to the computer character

set. Thus

[ˆabc]

matches all characters except a, b, or c, including

all special or control characters; or

[ˆa−zA−Z]

is any character which is not a letter. The \ char-

acter provides the usual escapes within character

class brackets.

AArrbbiittrr aarryy cchhaarraacctteerr.. To match almost any

character, the operator character

.

is the class of all characters except newline.

Escaping into octal is possible although non-

portable:

[\40−\176]

matches all printable characters in the ASCII

character set, from octal 40 (blank) to octal 176

(tilde).

OOppttiioonnaall eexxpprreessssiioonnss.. The operator ?? indi-

cates an optional element of an expression. Thus

ab?c

matches either aacc or aabbcc .

RReeppeeaatteedd eexxpprreessssiioonnss.. Repetitions of

classes are indicated by the operators ∗∗ and ++ .

aa∗∗
is any number of consecutive aa characters,

including zero; while

a+

is one or more instances of aa.. For example,

[a−z]+

is all strings of lower case letters. And

[A−Za−z][A−Za−z0−9]∗
indicates all alphanumeric strings with a leading

alphabetic character. This is a typical expression

for recognizing identifiers in computer languages.

AAlltteerrnnaattiioonn aanndd GGrroouuppiinngg.. The operator |

indicates alternation:

(ab | cd)

matches either aabb or ccdd.. Note that parentheses

are used for grouping, although they are not nec-

essary on the outside level;

ab | cd

would have sufficed. Parentheses can be used for

more complex expressions:

(ab | cd+)?(ef)∗
matches such strings as aabbeeffeeff , eeffeeffeeff , ccddeeff , or

ccdddddd ; but not aabbcc , aabbccdd , or aabbccddeeff .

CCoonnttee xxtt sseennssiittiivviittyy.. Lex will recognize a

small amount of surrounding context. The two

simplest operators for this are ˆ̂ and $$. If the first

character of an expression is ˆ̂ , the expression will

only be matched at the beginning of a line (after a

newline character, or at the beginning of the input

stream). This can never conflict with the other

meaning of ˆ̂ , complementation of character

classes, since that only applies within the [] oper-

ators. If the very last character is $$, the expres-

sion will only be matched at the end of a line

(when immediately followed by newline). The

latter operator is a special case of the // operator

character, which indicates trailing context. The

expression

ab/cd

matches the string aabb , but only if followed by ccdd..

Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by ssttaarrtt ccoonnddiittiioonnss

as explained in section 10. If a rule is only to be

executed when the Lex automaton interpreter is in

start condition xx,, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we

considered ‘‘being at the beginning of a line’’ to

be start condition OONNEE , then the ˆ operator would

Lex − A Lexical Analyzer Generator PS1:16-5

be equivalent to

<ONE>

Start conditions are explained more fully later.

RReeppeettiittiioonnss aanndd DDeefifinniittiioonnss.. The operators

{} specify either repetitions (if they enclose num-

bers) or definition expansion (if they enclose a

name). For example

{digit}

looks for a predefined string named ddiiggiitt and

inserts it at that point in the expression. The defi-

nitions are given in the first part of the Lex input,

before the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of aa .

Finally, initial %% is special, being the sepa-

rator for Lex source segments.

4. Lex Actions.

When an expression written as above is

matched, Lex executes the corresponding action.

This section describes some features of Lex

which aid in writing actions. Note that there is a

default action, which consists of copying the input

to the output. This is performed on all strings not

otherwise matched. Thus the Lex user who

wishes to absorb the entire input, without produc-

ing any output, must provide rules to match

ev erything. When Lex is being used with Yacc,

this is the normal situation. One may consider

that actions are what is done instead of copying

the input to the output; thus, in general, a rule

which merely copies can be omitted. Also, a

character combination which is omitted from the

rules and which appears as input is likely to be

printed on the output, thus calling attention to the

gap in the rules.

One of the simplest things that can be done

is to ignore the input. Specifying a C null state-

ment, ;; as an action causes this result. A frequent

rule is

[\t\n] ;

which causes the three spacing characters (blank,

tab, and newline) to be ignored.

Another easy way to avoid writing actions

is the action character |, which indicates that the

action for this rule is the action for the next rule.

The previous example could also have been writ-

ten

" " |

"\t" |

"\n" ;

with the same result, although in different style.

The quotes around \n and \t are not required.

In more complex actions, the user will often

want to know the actual text that matched some

expression like [[aa−−zz]]++ . Lex leaves this text in an

external character array named yyyyttee xxtt.. Thus, to

print the name found, a rule like

[a−z]+ printf("%s", yytext);

will print the string in yyyyttee xxtt.. The C function

pprriinnttff accepts a format argument and data to be

printed; in this case, the format is ‘‘print string’’

(% indicating data conversion, and ss indicating

string type), and the data are the characters in

yyyyttee xxtt.. So this just places the matched string on

the output. This action is so common that it may

be written as ECHO:

[a−z]+ ECHO;

is the same as the above. Since the default action

is just to print the characters found, one might ask

why giv e a rule, like this one, which merely speci-

fies the default action? Such rules are often

required to avoid matching some other rule which

is not desired. For example, if there is a rule

which matches rr eeaadd it will normally match the

instances of rr eeaadd contained in bbrr eeaadd or rr eeaaddjjuusstt ;

to avoid this, a rule of the form [[aa−−zz]]++ is needed.

This is explained further below.

Sometimes it is more convenient to know

the end of what has been found; hence Lex also

provides a count yyyylleenngg of the number of charac-

ters matched. To count both the number of words

and the number of characters in words in the

input, the user might write

[a−zA−Z]+ {words++; chars += yyleng;}

which accumulates in cc hhaarrss the number of char-

acters in the words recognized. The last character

in the string matched can be accessed by

yytext[yyleng−1]

Occasionally, a Lex action may decide that

a rule has not recognized the correct span of char-

acters. Two routines are provided to aid with this

situation. First, yyyymmoorr ee(()) can be called to indicate

that the next input expression recognized is to be

tacked on to the end of this input. Normally, the

next input string would overwrite the current

entry in yyyyttee xxtt.. Second, yyyylleessss ((nn)) may be called

to indicate that not all the characters matched by

the currently successful expression are wanted

right now. The argument nn indicates the number

of characters in yyyyttee xxtt to be retained. Further

characters previously matched are returned to the

input. This provides the same sort of lookahead

offered by the / operator, but in a different form.

EExxaammppllee:: Consider a language which

defines a string as a set of characters between

quotation (") marks, and provides that to include a

PS1:16-6 Lex − A Lexical Analyzer Generator

" in a string it must be preceded by a \. The regu-

lar expression which matches that is somewhat

confusing, so that it might be preferable to write

\"[ˆ"]∗ {

if (yytext[yyleng−1] == ′\\′)
yymore();

else

... normal user processing

}

which will, when faced with a string such as

""aabbcc\\""ddeeff "" first match the five characters ""aabbcc\\ ;

then the call to yyyymmoorr ee(()) will cause the next part

of the string, ""ddeeff , to be tacked on the end. Note

that the final quote terminating the string should

be picked up in the code labeled ‘‘normal process-

ing’’.

The function yyyylleessss(()) might be used to

reprocess text in various circumstances. Consider

the C problem of distinguishing the ambiguity of

‘‘=−a’’. Suppose it is desired to treat this as ‘‘=−
a’’ but print a message. A rule might be

=−[a−zA−Z] {

printf("Op (=−) ambiguous\n");

yyless(yyleng−1);

... action for =− ...

}

which prints a message, returns the letter after the

operator to the input stream, and treats the opera-

tor as ‘‘=−’’. Alternatively it might be desired to

treat this as ‘‘= −a’’. To do this, just return the
minus sign as well as the letter to the input:

=−[a−zA−Z] {

printf("Op (=−) ambiguous\n");

yyless(yyleng−2);

... action for = ...

}

will perform the other interpretation. Note that

the expressions for the two cases might more eas-

ily be written

=−/[A−Za−z]

in the first case and

=/−[A−Za−z]

in the second; no backup would be required in the

rule action. It is not necessary to recognize the

whole identifier to observe the ambiguity. The

possibility of ‘‘=−3’’, however, makes

=−/[ˆ \t\n]

a still better rule.

In addition to these routines, Lex also per-

mits access to the I/O routines it uses. They are:

1) iinnppuutt(()) which returns the next input charac-

ter;

2) oouuttppuutt((cc)) which writes the character cc on

the output; and

3) uunnppuutt((cc)) pushes the character cc back onto

the input stream to be read later by iinnppuutt(())..

By default these routines are provided as macro

definitions, but the user can override them and

supply private versions. These routines define the

relationship between external files and internal

characters, and must all be retained or modified

consistently. They may be redefined, to cause

input or output to be transmitted to or from

strange places, including other programs or inter-

nal memory; but the character set used must be

consistent in all routines; a value of zero returned

by iinnppuutt must mean end of file; and the relation-

ship between uunnppuutt and iinnppuutt must be retained or

the Lex lookahead will not work. Lex does not

look ahead at all if it does not have to, but every

rule ending in ++ ∗∗ ?? or $$ or containing // implies

lookahead. Lookahead is also necessary to match

an expression that is a prefix of another expres-

sion. See below for a discussion of the character

set used by Lex. The standard Lex library

imposes a 100 character limit on backup.

Another Lex library routine that the user

will sometimes want to redefine is yyyywwrr aapp(())

which is called whenever Lex reaches an end-of-

file. If yyyywwrr aapp returns a 1, Lex continues with the

normal wrapup on end of input. Sometimes, how-

ev er, it is convenient to arrange for more input to

arrive from a new source. In this case, the user

should provide a yyyywwrr aapp which arranges for new

input and returns 0. This instructs Lex to con-

tinue processing. The default yyyywwrr aapp always

returns 1.

This routine is also a convenient place to

print tables, summaries, etc. at the end of a pro-

gram. Note that it is not possible to write a nor-

mal rule which recognizes end-of-file; the only

access to this condition is through yyyywwrr aapp.. In

fact, unless a private version of iinnppuutt(()) is supplied

a file containing nulls cannot be handled, since a

value of 0 returned by iinnppuutt is taken to be end-of-

file.

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.

When more than one expression can match the

current input, Lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same

number of characters, the rule given first is

preferred.

Thus, suppose the rules

Lex − A Lexical Analyzer Generator PS1:16-7

integer keyword action ...;

[a−z]+ identifier action ...;

to be given in that order. If the input is iinnttee ggeerrss ,

it is taken as an identifier, because [[aa−−zz]]++

matches 8 characters while iinnttee ggeerr matches only

7. If the input is iinnttee ggeerr , both rules match 7 char-

acters, and the keyword rule is selected because it

was giv en first. Anything shorter (e.g. iinntt) will

not match the expression iinnttee ggeerr and so the iden-

tifier interpretation is used.

The principle of preferring the longest

match makes rules containing expressions like ..∗∗
dangerous. For example,

′.∗′
might seem a good way of recognizing a string in

single quotes. But it is an invitation for the pro-

gram to read far ahead, looking for a distant sin-

gle quote. Presented with the input

′first′ quoted string here, ′second′ here

the above expression will match

′first′ quoted string here, ′second′
which is probably not what was wanted. A better

rule is of the form

′[ˆ′\n]∗′
which, on the above input, will stop after ′′fifirr sstt′′ .

The consequences of errors like this are mitigated

by the fact that the .. operator will not match new-

line. Thus expressions like ..∗∗ stop on the current

line. Don’t try to defeat this with expressions like

[[..\\nn]]++ or equivalents; the Lex generated program

will try to read the entire input file, causing inter-

nal buffer overflows.

Note that Lex is normally partitioning the

input stream, not searching for all possible

matches of each expression. This means that each

character is accounted for once and only once.

For example, suppose it is desired to count occur-

rences of both sshhee and hhee in an input text. Some

Lex rules to do this might be

she s++;

he h++;

\n |

. ;

where the last two rules ignore everything besides

hhee and sshhee. Remember that . does not include

newline. Since sshhee includes hhee, Lex will nor-

mally nnoott recognize the instances of hhee included

in sshhee, since once it has passed a sshhee those char-

acters are gone.

Sometimes the user would like to override

this choice. The action REJECT means ‘‘go do

the next alternative.’’ It causes whatever rule was

second choice after the current rule to be

executed. The position of the input pointer is

adjusted accordingly. Suppose the user really

wants to count the included instances of hhee:

she {s++; REJECT;}

he {h++; REJECT;}

\n |

. ;

these rules are one way of changing the previous

example to do just that. After counting each

expression, it is rejected; whenever appropriate,

the other expression will then be counted. In this

example, of course, the user could note that sshhee

includes hhee but not vice versa, and omit the

REJECT action on hhee; in other cases, however, it

would not be possible a priori to tell which input

characters were in both classes.

Consider the two rules

a[bc]+ { ... ; REJECT;}

a[cd]+ { ... ; REJECT;}

If the input is aabb , only the first rule matches, and

on aadd only the second matches. The input string

aaccccbb matches the first rule for four characters and

then the second rule for three characters. In con-

trast, the input aaccccdd agrees with the second rule

for four characters and then the first rule for three.

In general, REJECT is useful whenever the

purpose of Lex is not to partition the input stream

but to detect all examples of some items in the

input, and the instances of these items may over-

lap or include each other. Suppose a digram table

of the input is desired; normally the digrams over-

lap, that is the word tthhee is considered to contain

both tthh and hhee . Assuming a two-dimensional

array named ddiiggrr aamm to be incremented, the appro-

priate source is

%%

[a−z][a−z] {

digram[yytext[0]][yytext[1]]++;

REJECT;

}

. ;

\n ;

where the REJECT is necessary to pick up a letter

pair beginning at every character, rather than at

ev ery other character.

6. Lex Source Definitions.

Remember the format of the Lex source:

{definitions}

%%

{rules}

%%

{user routines}

So far only the rules have been described. The

user needs additional options, though, to define

PS1:16-8 Lex − A Lexical Analyzer Generator

variables for use in his program and for use by

Lex. These can go either in the definitions section

or in the rules section.

Remember that Lex is turning the rules into

a program. Any source not intercepted by Lex is

copied into the generated program. There are

three classes of such things.

1) Any line which is not part of a Lex rule or

action which begins with a blank or tab is

copied into the Lex generated program.

Such source input prior to the first %%

delimiter will be external to any function in

the code; if it appears immediately after the

first %%, it appears in an appropriate place

for declarations in the function written by

Lex which contains the actions. This mate-

rial must look like program fragments, and

should precede the first Lex rule.

As a side effect of the above, lines which

begin with a blank or tab, and which con-

tain a comment, are passed through to the

generated program. This can be used to

include comments in either the Lex source

or the generated code. The comments

should follow the host language convention.

2) Anything included between lines containing

only %%{{ and %%}} is copied out as above.

The delimiters are discarded. This format

permits entering text like preprocessor

statements that must begin in column 1, or

copying lines that do not look like pro-

grams.

3) Anything after the third %% delimiter,

regardless of formats, etc., is copied out

after the Lex output.

Definitions intended for Lex are given

before the first %% delimiter. Any line in this

section not contained between %{ and %}, and

begining in column 1, is assumed to define Lex

substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be

associated with the name. The name and transla-

tion must be separated by at least one blank or

tab, and the name must begin with a letter. The

translation can then be called out by the {name}

syntax in a rule. Using {D} for the digits and {E}

for an exponent field, for example, might abbrevi-

ate rules to recognize numbers:

D [0−9]

E [DEde][−+]?{D}+

%%

{D}+ printf("integer");

{D}+"."{D}∗ ({E})? |

{D}∗ "."{D}+({E})? |

{D}+{E} printf("real");

Note the first two rules for real numbers; both

require a decimal point and contain an optional

exponent field, but the first requires at least one

digit before the decimal point and the second

requires at least one digit after the decimal point.

To correctly handle the problem posed by a For-

tran expression such as 3355..EEQQ..II , which does not

contain a real number, a context-sensitive rule

such as

[0−9]+/"."EQ printf("integer");

could be used in addition to the normal rule for

integers.

The definitions section may also contain

other commands, including the selection of a host

language, a character set table, a list of start con-

ditions, or adjustments to the default size of

arrays within Lex itself for larger source pro-

grams. These possibilities are discussed below

under ‘‘Summary of Source Format,’’ section 12.

7. Usage.

There are two steps in compiling a Lex

source program. First, the Lex source must be

turned into a generated program in the host gen-

eral purpose language. Then this program must

be compiled and loaded, usually with a library of

Lex subroutines. The generated program is on a

file named llee xx..yyyy ..cc . The I/O library is defined in

terms of the C standard library [6].

The C programs generated by Lex are

slightly different on OS/370, because the OS

compiler is less powerful than the UNIX or

GCOS compilers, and does less at compile time.

C programs generated on GCOS and UNIX are

the same.

UUNNIIXX.. The library is accessed by the

loader flag −−llll . So an appropriate set of com-

mands is

lex source cc lex.yy.c −ll

The resulting program is placed on the usual file

aa..oouutt for later execution. To use Lex with Yacc

see below. Although the default Lex I/O routines

use the C standard library, the Lex automata

themselves do not do so; if private versions of

iinnppuutt,, oouuttppuutt and uunnppuutt are given, the library can

be avoided.

Lex − A Lexical Analyzer Generator PS1:16-9

8. Lex and Yacc.

If you want to use Lex with Yacc, note that

what Lex writes is a program named yyyyllee xx(()),, the

name required by Yacc for its analyzer. Nor-

mally, the default main program on the Lex

library calls this routine, but if Yacc is loaded, and

its main program is used, Yacc will call yyyyllee xx(())..

In this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An

easy way to get access to Yacc’s names for tokens

is to compile the Lex output file as part of the

Yacc output file by placing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the

grammar to be named ‘‘good’’ and the lexical

rules to be named ‘‘better’’ the UNIX command

sequence can just be:

yacc good

lex better

cc y.tab.c −ly −ll

The Yacc library (−ly) should be loaded before

the Lex library, to obtain a main program which

invokes the Yacc parser. The generations of Lex

and Yacc programs can be done in either order.

9. Examples.

As a trivial problem, consider copying an

input file while adding 3 to every positive number

divisible by 7. Here is a suitable Lex source pro-

gram

%%

int k;

[0−9]+ {

k = atoi(yytext);

if (k%7 == 0)

printf("%d", k+3);

else

printf("%d",k);

}

to do just that. The rule [0−9]+ recognizes strings

of digits; aattooii converts the digits to binary and

stores the result in kk.. The operator % (remainder)

is used to check whether kk is divisible by 7; if it

is, it is incremented by 3 as it is written out. It

may be objected that this program will alter such

input items as 4499..6633 or XX77 . Furthermore, it

increments the absolute value of all negative num-

bers divisible by 7. To avoid this, just add a few

more rules after the active one, as here:

%%

int k;

−?[0−9]+ {

k = atoi(yytext);

printf("%d",

k%7 == 0 ? k+3 : k);

}

−?[0−9.]+ ECHO;

[A-Za-z][A-Za-z0-9]+ ECHO;

Numerical strings containing a ‘‘.’’ or preceded by

a letter will be picked up by one of the last two

rules, and not changed. The iiff−−eellssee has been

replaced by a C conditional expression to save

space; the form aa??bb::cc means ‘‘if aa then bb else

cc ’’.

For an example of statistics gathering, here

is a program which histograms the lengths of

words, where a word is defined as a string of let-

ters.

int lengs[100];

%%

[a−z]+ lengs[yyleng]++;

. |

\n ;

%%

yywrap()

{

int i;

printf("Length No. words\n");

for(i=0; i<100; i++)

if (lengs[i] > 0)

printf("%5d%10d\n",i,lengs[i]);

return(1);

}

This program accumulates the histogram, while

producing no output. At the end of the input it

prints the table. The final statement rr eettuurrnn((11));;

indicates that Lex is to perform wrapup. If

yyyywwrr aapp returns zero (false) it implies that further

input is available and the program is to continue

reading and processing. To provide a yyyywwrr aapp that

never returns true causes an infinite loop.

As a larger example, here are some parts of

a program written by N. L. Schryer to convert

double precision Fortran to single precision For-

tran. Because Fortran does not distinguish upper

and lower case letters, this routine begins by

defining a set of classes including both cases of

each letter:

a [aA]

b [bB]

c [cC]

...

z [zZ]

An additional class recognizes white space:

W [\t]∗
The first rule changes ‘‘double precision’’ to

PS1:16-10 Lex − A Lexical Analyzer Generator

‘‘real’’, or ‘‘DOUBLE PRECISION’’ to ‘‘REAL’’.

{d}{o}{u}{b}{l}{e}{W}

{p}{r}{e}{c}{i}{s}{i}{o}{n} {

printf(yytext[0]==′d′? "real" : "REAL");

}

Care is taken throughout this program to preserve

the case (upper or lower) of the original program.

The conditional operator is used to select the

proper form of the keyword. The next rule copies

continuation card indications to avoid confusing

them with constants:

ˆ" "[ˆ 0] ECHO;

In the regular expression, the quotes surround the

blanks. It is interpreted as ‘‘beginning of line,

then five blanks, then anything but blank or zero.’’

Note the two different meanings of ˆ̂ . There fol-

low some rules to change double precision con-

stants to ordinary floating constants.

[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ |

[0−9]+{W}"."{W}{d}{W}[+−]?{W}[0−9]+ |

"."{W}[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ {

/∗ convert constants ∗ /

for(p=yytext; ∗ p != 0; p++)

{

if (∗ p == ′d′ || ∗ p == ′D′)
∗ p=+ ′e′− ′d′;

ECHO;

}

After the floating point constant is recognized, it

is scanned by the ffoorr loop to find the letter dd or

DD . The program than adds ′′ee′′−−′′dd′′ , which con-

verts it to the next letter of the alphabet. The

modified constant, now single-precision, is writ-

ten out again. There follow a series of names

which must be respelled to remove their initial dd.

By using the array yyyyttee xxtt the same action suffices

for all the names (only a sample of a rather long

list is given here).

{d}{s}{i}{n} |

{d}{c}{o}{s} |

{d}{s}{q}{r}{t} |

{d}{a}{t}{a}{n} |

...

{d}{f}{l}{o}{a}{t} printf("%s",yytext+1);

Another list of names must have initial dd changed

to initial aa:

{d}{l}{o}{g} |

{d}{l}{o}{g}10 |

{d}{m}{i}{n}1 |

{d}{m}{a}{x}1 {

yytext[0] =+ ′a′ − ′d′;
ECHO;

}

And one routine must have initial dd changed to

initial rr:

{d}1{m}{a}{c}{h} {yytext[0] =+ ′r′ − ′d′;
ECHO;

}

To avoid such names as ddssiinnxx being detected as

instances of ddssiinn, some final rules pick up longer

words as identifiers and copy some surviving

characters:

[A−Za−z][A−Za−z0−9]∗ |

[0−9]+ |

\n |

. ECHO;

Note that this program is not complete; it does not

deal with the spacing problems in Fortran or with

the use of keywords as identifiers.

10. Left Context Sensitivity.

Sometimes it is desirable to have sev eral

sets of lexical rules to be applied at different times

in the input. For example, a compiler preproces-

sor might distinguish preprocessor statements and

analyze them differently from ordinary state-

ments. This requires sensitivity to prior context,

and there are several ways of handling such prob-

lems. The ˆ̂ operator, for example, is a prior con-

text operator, recognizing immediately preceding

left context just as $$ recognizes immediately fol-

lowing right context. Adjacent left context could

be extended, to produce a facility similar to that

for adjacent right context, but it is unlikely to be

as useful, since often the relevant left context

appeared some time earlier, such as at the begin-

ning of a line.

This section describes three means of deal-

ing with different environments: a simple use of

flags, when only a few rules change from one

environment to another, the use of ssttaarrtt ccoonnddiittiioonnss

on rules, and the possibility of making multiple

lexical analyzers all run together. In each case,

there are rules which recognize the need to

change the environment in which the following

input text is analyzed, and set some parameter to

reflect the change. This may be a flag explicitly

tested by the user’s action code; such a flag is the

simplest way of dealing with the problem, since

Lex is not involved at all. It may be more con-

venient, however, to hav e Lex remember the flags

as initial conditions on the rules. Any rule may

be associated with a start condition. It will only

be recognized when Lex is in that start condition.

The current start condition may be changed at any

time. Finally, if the sets of rules for the different

environments are very dissimilar, clarity may be

best achieved by writing several distinct lexical

analyzers, and switching from one to another as

Lex − A Lexical Analyzer Generator PS1:16-11

desired.

Consider the following problem: copy the

input to the output, changing the word mmaa ggiicc to

fifirr sstt on every line which began with the letter aa,

changing mmaa ggiicc to sseeccoonndd on every line which

began with the letter bb, and changing mmaa ggiicc to

tthhiirr dd on every line which began with the letter cc.

All other words and all other lines are left

unchanged.

These rules are so simple that the easiest

way to do this job is with a flag:

int flag;

%%

ˆa {flag = ′a′; ECHO;}

ˆb {flag = ′b′; ECHO;}

ˆc {flag = ′c′; ECHO;}

\n {flag = 0 ; ECHO;}

magic {

switch (flag)

{

case ′a′: printf("first"); break;

case ′b′: printf("second"); break;

case ′c′: printf("third"); break;

default: ECHO; break;

}

}

should be adequate.

To handle the same problem with start con-

ditions, each start condition must be introduced to

Lex in the definitions section with a line reading

%Start name1 name2 ...

where the conditions may be named in any order.

The word SSttaarrtt may be abbreviated to ss or SS. The

conditions may be referenced at the head of a rule

with the <> brackets:

<name1>expression

is a rule which is only recognized when Lex is in

the start condition nnaammee11. To enter a start condi-

tion, execute the action statement

BEGIN name1;

which changes the start condition to nnaammee11. To

resume the normal state,

BEGIN 0;

resets the initial condition of the Lex automaton

interpreter. A rule may be active in sev eral start

conditions:

<name1,name2,name3>

is a legal prefix. Any rule not beginning with the

<> prefix operator is always active.

The same example as before can be written:

%START AA BB CC

%%

ˆa {ECHO; BEGIN AA;}

ˆb {ECHO; BEGIN BB;}

ˆc {ECHO; BEGIN CC;}

\n {ECHO; BEGIN 0;}

<AA>magic printf("first");

<BB>magic printf("second");

<CC>magic printf("third");

where the logic is exactly the same as in the pre-

vious method of handling the problem, but Lex

does the work rather than the user’s code.

11. Character Set.

The programs generated by Lex handle

character I/O only through the routines iinnppuutt,, oouutt--

ppuutt,, and uunnppuutt.. Thus the character representation

provided in these routines is accepted by Lex and

employed to return values in yyyyttee xxtt.. For internal

use a character is represented as a small integer

which, if the standard library is used, has a value

equal to the integer value of the bit pattern repre-

senting the character on the host computer. Nor-

mally, the letter aa is represented as the same form

as the character constant ′′aa′′ . If this interpretation

is changed, by providing I/O routines which trans-

late the characters, Lex must be told about it, by

giving a translation table. This table must be in

the definitions section, and must be bracketed by

lines containing only ‘‘%T’’. The table contains

lines of the form

{integer} {character string}

which indicate the value associated with each

character. Thus the next example

%T

1 Aa

2 Bb

...

26 Zz

27 \n

28 +

29 −

30 0

31 1

...

39 9

%T

Sample character table.

maps the lower and upper case letters together

into the integers 1 through 26, newline into 27, +

and − into 28 and 29, and the digits into 30

through 39. Note the escape for newline. If a

table is supplied, every character that is to appear

either in the rules or in any valid input must be

included in the table. No character may be

PS1:16-12 Lex − A Lexical Analyzer Generator

assigned the number 0, and no character may be

assigned a bigger number than the size of the

hardware character set.

12. Summary of Source Format.

The general form of a Lex source file is:

{definitions}

%%

{rules}

%%

{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form ‘‘name space trans-

lation’’.

2) Included code, in the form ‘‘space code’’.

3) Included code, in the form

%{

code

%}

4) Start conditions, given in the form

%S name1 name2 ...

5) Character set tables, in the form

%T

number space character-string

...

%T

6) Changes to internal array sizes, in the form

%xx nnnnnn

where nnnnnn is a decimal integer representing

an array size and xx selects the parameter as

follows:

Letter Parameter

p positions

n states

e tree nodes

a transitions

k packed character classes

o output array size

Lines in the rules section have the form ‘‘expres-

sion action’’ where the action may be continued

on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the follow-

ing operators:

x the character "x"

"x" an "x", even if x is an operator.

\x an "x", even if x is an operator.

[xy] the character x or y.

[x−z] the characters x, y or z.

[ˆx] any character but x.

. any character but newline.

ˆx an x at the beginning of a line.

<y>x an x when Lex is in start condition y.

x$ an x at the end of a line.

x? an optional x.

x∗ 0,1,2, ... instances of x.

x+ 1,2,3, ... instances of x.

x|y an x or a y.

(x) an x.

x/y an x but only if followed by y.

{xx} the translation of xx from the

definitions section.

x{m,n} mm through nn occurrences of x

13. Caveats and Bugs.

There are pathological expressions which

produce exponential growth of the tables when

converted to deterministic machines; fortunately,

they are rare.

REJECT does not rescan the input; instead

it remembers the results of the previous scan.

This means that if a rule with trailing context is

found, and REJECT executed, the user must not

have used uunnppuutt to change the characters forth-

coming from the input stream. This is the only

restriction on the user’s ability to manipulate the

not-yet-processed input.

14. Acknowledgments.

As should be obvious from the above, the

outside of Lex is patterned on Yacc and the inside

on Aho’s string matching routines. Therefore,

both S. C. Johnson and A. V. Aho are really origi-

nators of much of Lex, as well as debuggers of it.

Many thanks are due to both.

The code of the current version of Lex was

designed, written, and debugged by Eric Schmidt.

15. References.

1. B. W. Kernighan and D. M. Ritchie, TThhee CC

PPrr ooggrraammmmiinngg LLaanngguuaaggee,, Prentice-Hall, N.

J. (1978).

2. B. W. Kernighan, RRaattffoorr:: AA PPrreepprroocceessssoorr

ffoorr aa RRaattiioonnaall FFoorrttrraann,, Software − Practice

and Experience, 5, pp. 395-496 (1975).

3. S. C. Johnson, YY aacccc:: YYeett AAnnootthheerr CCoommppiilleerr

CCoommppiilleerr ,, Computing Science Technical

Report No. 32, 1975, Bell Laboratories,

Murray Hill, NJ 07974.

4. A. V. Aho and M. J. Corasick, EEff fificciieenntt

SSttrriinngg MMaattcchhiinngg:: AAnn AAiidd ttoo BBiibblliiooggrraapphhiicc

SSeeaarr cchh,, Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.

Thompson, QQEEDD TTeexxtt EEddiittoorr,, Computing

Science Technical Report No. 5, 1972, Bell

Lex − A Lexical Analyzer Generator PS1:16-13

Laboratories, Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See

also M. E. Lesk, TThhee PPoorrttaabbllee CC LLiibbrraarryy,,

Computing Science Technical Report No.

31, Bell Laboratories, Murray Hill, NJ

07974.

