
CSC357-S07-L2 Slide 1

CSC 357 Lecture Notes Week 2

C Program Structure

Arrays and Structs

Dynamic Memory Management



CSC357-S07-L2 Slide 2

Updates to Program 1 Testing

• "-v" option to run.csh

• scoring works

• simplification to sgrep option parsing

• simplification to a couple patterns

• please recopy testing dir



CSC357-S07-L2 Slide 3

I. Relevant reading.

A. K&R chapters 5 and 6, section 8.7.

B. Selected parts of Stevens and selected man pages,

as cited in writeups.



CSC357-S07-L2 Slide 4

II. Initial example -- simple linked list in C.

A. See attached listings for

• linked-list.h

• linked-list.c

• list-node. { h , c }

• linked-list-test.c

• std-macros.h



CSC357-S07-L2 Slide 5

Linked List Example, cont’d

• LinkedList.java , ListNode.java ,

LinkedListTest.java

• Makefile



CSC357-S07-L2 Slide 6

III. C program structure.

A. Collections of .c and .h files.

B. Preprocessor directives #include and

#define.



CSC357-S07-L2 Slide 7

IV. #define.

A. Used for constants, as in

#define MAXLINE 1000

B. By convention, all uppercase.



CSC357-S07-L2 Slide 8

#define, cont’d

C. Also be used for parameterized macros,

as in std-macros.h.

D. The general form of a macro is:

#define name optional-parameters body



CSC357-S07-L2 Slide 9

#define, cont’d

E. E.g.,

#define new(t)

(t*) malloc(sizeof(t))



CSC357-S07-L2 Slide 10

#define, cont’d

F. Macros invoked strictly by

in-place textual substitution.

1. E.g.,

ListNode* node = new(ListNode);

expands to

ListNode* node =

(ListNode*) malloc(

sizeof(ListNode));



CSC357-S07-L2 Slide 11

#define, cont’d

2. Expansion done by C preprocessor.

3. Inspect preprocessor output using gcc -E.



CSC357-S07-L2 Slide 12

V. Memory allocation (K&R Section 5.4).

A. The ’&’ operator is of limited practical utility for

building dynamically linked data structures.

B. As illustrated in Part 1 of this week’s lecture

notes, programmers need to allocate new blocks

of memory for such data structures.

C. Section 5.4 of K&R talks about the implementa-

tion of a simplistic alloc function.



CSC357-S07-L2 Slide 13

D. In practice, C programmers use the library-sup-

plied malloc, as well as derivatives calloc

and realloc.

E. The signature of malloc is the following:

void* malloc(size_t size);



CSC357-S07-L2 Slide 14

1. The type size_t is an int or long; the size

parameter is the number of bytes to be allo-

cated.

2. void* is the type of a generic pointer; in prac-

tice, the void* return value from malloc is

always cast to a more specific type of pointer.



CSC357-S07-L2 Slide 15

F. Here are typical examples of malloc:

/* Allocate memory for a 100-char string. */

char* some_string = (char*) malloc(100);

/* Allocate memory for an integer array ... */

int* a = (int*) malloc(array_size);

/* Allocate memory for a structured data value. */

typedef struct {int x; char y; char z[20];} SomeStruct;

SomeStruct* s = (SomeStruct*) malloc(sizeof(SomeStruct));



CSC357-S07-L2 Slide 16

G. The last of these examples is so frequently

used, that a macro like new can be very handy.

1. The definition of new is:

#define new(t) (t*) malloc(sizeof(t))

2. It is used, for example, like this:

SomeStruct* s = new(SomeStruct);



CSC357-S07-L2 Slide 17

H. You should read the man page for malloc and

related library functions (man malloc).



CSC357-S07-L2 Slide 18

VI. How malloc works (K&R Section 8.7).

A. Malloc is reasonably straightforward C program.

B. Figure from Page 185 of K&R:



CSC357-S07-L2 Slide 19

How malloc works, cont’d

use
in

use
in

use
in

use
in

free, owned by malloc

in use, owned by malloc

not owned by malloc

in use

free list



CSC357-S07-L2 Slide 20

How malloc works, cont’d

C. When user requests malloc searches freelist.

1. Can use "first fit" strategy.

2. Alternatively, can use "best fit" strategy.



CSC357-S07-L2 Slide 21

How malloc works, cont’d

D. If no free block big enough, malloc asks OS

using sbrk.

E. When the user frees, malloc searches and

coalesces.



CSC357-S07-L2 Slide 22

How malloc works, cont’d

F. Standard implementation of malloc does little

error checking.

1. malloc’s memory pool can get corrupted.

2. There are packages that do more checking.

3. E.g., "smartalloc".



CSC357-S07-L2 Slide 23

VII. More on pointers and arrays

(K&R Sections 5.6 - 5.10, 5.12).

A. Read and understand these sections.

B. You can skip Section 5.10 for now.



CSC357-S07-L2 Slide 24

VIII. Structures (K&R chapter 6).

A. We’v e seen structs in lecture, lab examples.

B. A set of variables collected under common

name; vars are fields of the struct.

C. Compared to Java, struct is equivalent to a class

with all public data fields and no methods.



CSC357-S07-L2 Slide 25

IX. Basics of structures (K&R Section 6.1).

A. Syntax of a structure declaration

struct struct-tag {

fields

}

where struct-tag is a name, and fields are vari-

able declarations; the tag is optional.



CSC357-S07-L2 Slide 26

Basics, cont’d

B. Structure fields are also referred to as members;

the two terms are synonymous.

C. Here’s a simple example:

struct point {

int x;

int y;

}



CSC357-S07-L2 Slide 27

Basics, cont’d

D. A struct declaration defines a type, and so

can be used directly to declare struct-type vari-

ables.

1. I.e.,

struct { ... } x, y, z;

is syntactically analogous to

int x, y, z;



CSC357-S07-L2 Slide 28

Basics, cont’d

2. If a struct declaration contains a tag, then it

can be used in subsequent decls, as in

struct point pt;

(but cleaner-looking naming is with typedef)



CSC357-S07-L2 Slide 29

Basics, cont’d

E. Structs can be initialized in a declaration, as in

struct point maxpt = {320, 200};



CSC357-S07-L2 Slide 30

Basics, cont’d

F. Struct fields are accessed with ’.’ operator, as in

pt.x = 10;

pt.y = 20;

printf("%d,%d", pt.x, pt.y);



CSC357-S07-L2 Slide 31

Basics, cont’d

G. Nested struct defs, as in

struct rect {

struct point pt1;

struct point pt2;

};



CSC357-S07-L2 Slide 32

Basics, cont’d

H. If we declare

struct rect screen;

then

screen.pt1.x

refers to the x coordinate of the pt1 field.



CSC357-S07-L2 Slide 33

X. Structures and functions (K&R Section 6.2).

A. Legal operations on structs are assignment,

address-of, and member access.

B. For large structs, passing a struct pointer as a

parameter is more efficient.

C. Pointers to structs are also necessary when creat-

ing dynamically-linked data structures.



CSC357-S07-L2 Slide 34

Structs and functions, cont’d

D. There are two notations for accessing the fields

of a pointed-to struct, such as

struct point *pp;

1. Expression (*pp).x accesses the x field.

2. Alternative equivalent notation is pp->x.



CSC357-S07-L2 Slide 35

XI. Arrays of structures (K&R Section 6.3).

A. Arrays of structs are an important working data

structure in C.

B. For example, a very simple word-count table:



CSC357-S07-L2 Slide 36

Arrays of structs, cont’d

#define MAXWORDS 100

struct {

char* word;

int count;

} wordtab[MAXWORDS];



CSC357-S07-L2 Slide 37

Arrays of structs, cont’d

C. Assuming the fields of the ith table element have

been properly initialized:

wordtab[i].word[j] = getchar();

wordtab[i].count++;



CSC357-S07-L2 Slide 38

XII. Pointers to structures (K&R Section 6.4).

A. When an array of structs is sparse, an array of

pointers to structs can be more efficient.

B. Consider the following declarations:



CSC357-S07-L2 Slide 39

Pointers to structs, cont’d

struct wordcnt {

char* word;

int count;

};

struct wordcnt wordtab[MAXWORDS];

struct wordcnt* wordtabp[MAXWORDS];



CSC357-S07-L2 Slide 40

Pointers to structs, cont’d

C. Before any elements of wordtabp have been

set, wordtabp is half as big as wordtab.

D. When contents of a table may be partially

unfilled, using struct pointers is advantageous.



CSC357-S07-L2 Slide 41

XIII. Self-referential structures (K&R Sec 6.5).

A. C allows a struct field to be declared as a pointer

to the struct itself.

B. E.g.,



CSC357-S07-L2 Slide 42

Self-referential structs, cont’d

struct tnode {

char* word;

int count;

struct tnode* left;

struct tnode* right;

};



CSC357-S07-L2 Slide 43

Self-referential structs, cont’d

C. This is a recursive data type def.



CSC357-S07-L2 Slide 44

XIV. Table lookup (K&R Section 6.6).

A. This section of K&R defines a simple hash table.

B. Have a look.



CSC357-S07-L2 Slide 45

XV. Typedefs (K&R Section 6.7).

A. Typedef provides a convenient way to give a

mnemonic name to a data type definition.

B. The typedef can be as simple as

typedef int Length;

used in declarations like

Length len, maxlen;

Length getLength(...);



CSC357-S07-L2 Slide 46

Typedefs, cont’d

C. Typedefs also add readability to struct defs

typedef struct {

char* word;

int count;

} WordCount;

WordCount wordtab[MAXWORDS];

WordCount* wordtabp[MAXWORDS];



CSC357-S07-L2 Slide 47

Typedefs, cont’d

D. When non-recursive struct is typedef’d, the

struct tag need not be present.

E. But for recursive types, tag must be present for

self-referencing



CSC357-S07-L2 Slide 48

Typedefs, cont’d

typedef struct tnode {

char* word;

int cound;

struct tnode* left;

struct tnode* right;

} TreeNode;

TreeNode* tree;



CSC357-S07-L2 Slide 49

Typedefs, cont’d

F. The following equivalent-looking definition does

NOT work:

typedef struct tnode {

char* word;

int cound;

TreeNode* left; /* INVALID */

TreeNode* right; /* INVALID */

} TreeNode;



CSC357-S07-L2 Slide 50

XVI. Unions (K&R Section 6.8).

A. A union var may hold values of different types.

B. Suppose we want a variable that can hold one of

an int, double, string, or boolean.



CSC357-S07-L2 Slide 51

Unions, cont’d

typedef union {

int int_val;

double double_val;

char* string_val;

unsigned char bool_val;

} GenericValue;



CSC357-S07-L2 Slide 52

Unions, cont’d

C. Syntactically, unions are declared and accessed

in precisely the same way as structs.

1. Union fields are accessed with ’.’.

2. Pointer-to-union fields are accessed with ’->’.



CSC357-S07-L2 Slide 53

Unions, cont’d

D. The semantic difference is that a struct value

contains all its data fields, whereas a union value

contains one of its data fields.



CSC357-S07-L2 Slide 54

Unions, cont’d

E. As explained on pages 147-148 of K&R, "It is

the programmer’s responsibility to keep track of

which type is currently stored in a union; ..."

F. For this reason, union types are often tagged to

keep track of the current value.



CSC357-S07-L2 Slide 55

Unions, cont’d

1. Union tags are frequently implemented with

enums.

2. E.g.,



CSC357-S07-L2 Slide 56

Unions, cont’d

typedef enum {

INT, DOUBLE, STRING, BOOL

} ValueTag;

typedef struct {

ValueTag tag;

GenericValue val;

} TaggedGenericValue;



CSC357-S07-L2 Slide 57

Unions, cont’d

3. Some example usage



CSC357-S07-L2 Slide 58

Unions, cont’d

void PrintTaggedGenericValue(TaggedGenericValue v) {

switch (v.tag) {

case INT:

printf("%d0, v.val.int_val);

break;

case DOUBLE:

printf("%f0, v.val.double_val);

break;

case STRING:

printf("%s0, v.val.string_val);

break;

case BOOL:

printf("%s0, v.val.bool_val ? "true" : "false");

}

}



CSC357-S07-L2 Slide 59

main() {

TaggedGenericValue tval;

tval.val.int_val = 10;

tval.tag = INT;

PrintTaggedGenericValue(tval);

tval.val.bool_val = 0;

tval.tag = BOOL;

PrintTaggedGenericValue(tval);

}



CSC357-S07-L2 Slide 60

Unions, cont’d

4. The idea is that the union type appears in the

context of a struct that has information indi-

cating which union value is current.



CSC357-S07-L2 Slide 61

XVII. Bit-fields (K&R Section 6.9).

A. Bit-fields provide access to individual binary

bits in a word of memory.

B. Such access can save space, e.g., bool as bit.

C. Also provide direct access to hardware devices.

D. We’ll talk more about bit-fields later.



CSC357-S07-L2 Slide 62

XVIII. A culminating example.

A. Attached code listings illustrate key concepts.

B. The commenting style is doxygen-compliant.

C. NOTE: Unanswered questions

person-record-test.c.


