
CSC357-S07-L3 Slide 1

CSC 357 Lecture Notes Week 3

Leftovers from Week 2 Notes;

Additional C Language and Library Features

CSC357-S07-L3 Slide 2

I. C I/O (K&R Chapter 7).

A. Strictly speaking, I/O not part of C language.

B. Rather, it’s part of standard library.

C. You’ve seen and used stdio.h.

D. Further detail here.

CSC357-S07-L3 Slide 3

II. Standard input and output (K&R Section 7.1).

A. Names of file streams are stdin, stdout.

B. Char-at-a-time functions getchar and

putchar.

C. printf also goes to stdout.

CSC357-S07-L3 Slide 4

Standard I/O, cont’d

D. Stdio streams redirected and piped with shell

operators ’<’, ’>’, and ’|’.

CSC357-S07-L3 Slide 5

III. Formatted output -- printf and

sprintf (K&R Section 7.2).

A. You’ve used printf plenty already.

B. Read the printf man page.

C. Page 154 of K&R has a handy table of %

formatting codes.

CSC357-S07-L3 Slide 6

Formatted output, cont’d

D. sprintf let’s you do in-memory "printing".

1. Same as printf, but to a string buffer.

2. First arg is char* buffer; rest of args same as

printf.

CSC357-S07-L3 Slide 7

IV. Variable-length arg lists (K&R Section 7.3).

A. printf has variable number of args.

B. Define your own using macros in <stdarg.h>.

C. We’ll cover in upcoming lab.

CSC357-S07-L3 Slide 8

V. Formatted input -- scanf (K&R Section 7.4).

A. scanf is input analog of printf.

B. First arg is a formatting string.

C. For scanf, ’%’ codes govern how inputs are

interpreted and converted.

CSC357-S07-L3 Slide 9

Formatted input, cont’d

D. The input variables are the scanf arguments

following the formatting string.

E. We’ll not use scanf much in 357, but will cover

it a bit in an upcoming lab.

CSC357-S07-L3 Slide 10

VI. File access (K&R Section 7.5).

A. The functions discussed thus far work with

stdin and stdout.

B. To read from a stored file, you first use fopen:

FILE* fopen(

char* name, char* mode);

CSC357-S07-L3 Slide 11

File access, cont’d

1. First arg is name of file.

2. Second arg is mode, as specified at shell level

(see fopen man page).

CSC357-S07-L3 Slide 12

File access, cont’d

C. FILE is a structure declared in <stdio.h>.

D. Character-level read/write with getc and putc.

E. Operate just as getchar and putchar:

#define getchar() getc(stdin)

#define putchar() putc(stdout)

CSC357-S07-L3 Slide 13

File access, cont’d

F. File versions of scanf and printf:

int fscanf(

FILE* fp, char* format, ...)

int fprintf(

FILE* fp, char* format, ...)

See the man pages

CSC357-S07-L3 Slide 14

File access, cont’d

G. fclose closes a file opened with fopen

• most OSs have a limit on the number of files

that can be open at the same time

• always a good idea to use fclose whenever a

file is no longer needed.

CSC357-S07-L3 Slide 15

VII. Error handling (K&R Section 7.6).

A. printf goes to stdout.

B. C provides second output called stderr.

CSC357-S07-L3 Slide 16

Error handling, cont’d

1. Sent to stderr using fprintf, as in

fprintf(stderr,

"%s: No such file or directory",

filename);

CSC357-S07-L3 Slide 17

Error handling, cont’d

2. When stdio is redirected to a file with ’>’,

stderr still appears on terminal.

3. To redirect both, use ’>&’.

CSC357-S07-L3 Slide 18

Error handling, cont’d

C. C program signals an error in two ways --

stderr stream and exit system function.

1. Calling exit terminates program.

2. Integer argument is returned by entire program.

3. Conventionally, 0 means exit normally.

CSC357-S07-L3 Slide 19

Error handling, cont’d

4. Non-zero used to signal specific errors.

5. UNIX system calls usually return -1 to signal an

error, and set the external variable errno

CSC357-S07-L3 Slide 20

VIII. Line input and output (K&R Section 7.7).

A. fgets reads a line of input from a file stream;

its signature is

char* fgets(char* line,

int maxline,

FILE* fp)

If successful, returns line, null otherwise.

CSC357-S07-L3 Slide 21

Line I/O, cont’d

B. The fputs function is the output analog

int fputs(char* line, FILE* fp)

If successful, returns number of chars output,

EOF otherwise.

CSC357-S07-L3 Slide 22

IX. Miscellaneous functions (K&R Section 7.8).

A. This section of K&R provides a brief overview of

system functions we have been using in the

assignments.

B. The man pages and Stevens book have more

detailed information.

CSC357-S07-L3 Slide 23

X. Makefiles.

A. See Gnu manual page, cited in lab writeup.

B. Hold commands to be conveniently executed.

1. Frequently, used for compilation.

2. However, any UNIX commands can be used.

3. Used to run tests, print, other tasks.

CSC357-S07-L3 Slide 24

Makefiles, cont’d

C. Make also performs "smart recompilation".

D. During lecture/lab, we’ll dissect Makefiles for

linked-list program.

CSC357-S07-L3 Slide 25

Updates to OBJS-Style Makefile

CFLAGS = -Wall -ansi -g

CC = /opt/gnu/bin/gcc

OBJS = nwc.o hash.o getwd.o

nwc: $(OBJS)

$(CC) $(CFLAGS) $(OBJS) -o nwc

clean:

rm *.o nwc

CSC357-S07-L3 Slide 26

Notes on Program Organization

• Conventions say must use .c,.h pairs.

• E.g., nwc.c, nwc.h, hash.c, hash.h, ...

• The main function goes in "main" .c file,

e.g., nwc.c.

CSC357-S07-L3 Slide 27

Notes on Program 2 Testing

• Prog 2 testing dir had executable nwc.

• Replace it with your nwc.

• You can use 357/programs/2/nwc

to compare its output to yours.

CSC357-S07-L3 Slide 28

XI. static storage class (K&R Section 4.6).

A. Vars can be declared static, as in

static int i;

B. External static vars are not visible in other C

source files.

CSC357-S07-L3 Slide 29

static, cont’d

C. static can be used for local function vars.

D. We’ll discuss further in upcoming lecture.

CSC357-S07-L3 Slide 30

XII. Memory layout in a C program.

A. The memory used by a C program is organized

conceptually into three storage areas:

1. static pool

2. stack

3. heap

CSC357-S07-L3 Slide 31

Memory layout, cont’d

B. Lifetime of storage is:

1. Static-pool is lifetime of the entire program.

2. Function parameters and non-static local vars is

activation lifetime of function.

3. Heap storage alive until freeed, or program

ends.

CSC357-S07-L3 Slide 32

Memory layout, cont’d

Consider following example.

#include <strings.h>

#include <stdlib.h>

#include <stdio.h>

NOTE: The code has one of my favorite C bugs;

say something when you see it.

CSC357-S07-L3 Slide 33

char s[20];

char* f(char* s1, char* s2, int* ip) {

char* s3;

s3 = strcat(s1, s2);

strcpy(s, s3);

*ip = strlen(s3);

return s3;

}

CSC357-S07-L3 Slide 34

void main() {

char s1[20] = "abcdef";

char* s2 = strcpy((char*)

malloc(strlen("ghijklmn")),

"ghijklmn");

char* s3;

int i;

CSC357-S07-L3 Slide 35

s3 = f(s1, s2, &i);

free(s2);

printf("...",

s, s3, strlen(s), i);

printf("...",

sizeof(s), sizeof(s3));

}

CSC357-S07-L3 Slide 36

XIII. Program modularization and

information hiding in C.

A. C programs modularized using .h, .C files.

1. .h file contains type decls, function decls,

global constants, global (module) vars.

2. .C file contains implementation of functions.

CSC357-S07-L3 Slide 37

Modularization, cont’d

B. static declaration provides info hiding.

1. Global statics visible only to functions declared

in the module.

2. Functions declared static are similarly limited in

visibility.

CSC357-S07-L3 Slide 38

XIV. doxygen

A. doxygen is a documentation-generation tool for

C and C++ programs

B. Operates very much like javadoc.

C. See person-record example program

(for Lab 3).

CSC357-S07-L3 Slide 39

Example of Local Static

/* Simple string list iterator. */

char* next(char** str_list) {

static int i = 0;

if (str_list[i] != NULL) {

return str_list[i++];

}

else {

i = 0;

return NULL;

}

}

CSC357-S07-L3 Slide 40

Local Static, cont’d

int main() {

char* str_list[] =

{"1", "2", "3", "4", "5", NULL};

char* s;

while ((s = next(str_list)) != NULL) {

printf("%s ", s);

}

printf("0);

}

