
CSC357-S07-L4 Slide 1

CSC 357 Lecture Notes Week 4

Unbuffered File I/O

UNIX Files and Directories

CSC357-S07-L4 Slide 2

I. Relevant reading:

A. Stevens chapters 3 and 4.

B. Skim chapter 2.

CSC357-S07-L4 Slide 3

II. C and UNIX standards (Stevens Ch 2)

A. Tw o levels of standards.

B. ISO C standard defines language proper, and C

standard library.

CSC357-S07-L4 Slide 4

C and UNIX standards, cont’d

1. Appendix A of K&R is the reference manual for

the language proper.

2. Appendix B of K&R is a summary of the major

library components.

3. The ISO (International Standards Organization)

maintains the official standard.

CSC357-S07-L4 Slide 5

C and UNIX standards, cont’d

C. IEEE POSIX defines the full library standard.

1. The standard is based on UNIX, but any operat-

ing system may meet the standard.

2. Systems that do are all POSIX compliant.

3. POSIX includes the ISO standard C library, but

not the specification of the language proper.

CSC357-S07-L4 Slide 6

C and UNIX standards, cont’d

D. POSIX is a specification of library functions, not

an implementation.

1. Many implementations of UNIX.

2. IEEE has official POSIX certification program.

CSC357-S07-L4 Slide 7

C and UNIX standards, cont’d

3. Four implementations of UNIX in Stevens:

a. Solaris

b. Linux

c. Mac OS X

d. FreeBSD

CSC357-S07-L4 Slide 8

III. UNIX unbuffered file I/O (Stevens Ch 3).

A. Five functions -- open, read, write, lseek,

and close.

B. Operate on file descriptors, at UNIX kernel level.

C. Lower-level than the "f" series, like fopen.

CSC357-S07-L4 Slide 9

Unbuffered I/O, cont’d

1. These lower-level functions are referred to as

unbuffered.

2. The OS does perform buffering on FILE*

streams, but not with files accessed through

lower level file descriptors.

3. Sec 5.4 of Stevens talks about buffering details.

CSC357-S07-L4 Slide 10

IV. File descriptors (Stevens Sec 3.2).

A. At the kernel level, all files are referred to by a

file descriptor, which is a non-negative integer.

B. The open function returns a file descriptor.

C. Functions like read and write take file

descriptors as inputs.

CSC357-S07-L4 Slide 11

V. open (Stevens Sec 3.3).

A. Open a file, returning file descriptor, or -1 if error.

B. Signature:

int open(const char *pathname,

int oflag, ... /* mode_t mode */);

CSC357-S07-L4 Slide 12

open, cont’d

1. pathname is name of file to open or create

2. oflag is used to specify options

3. the optional mode is only applicable when a new

file is being created

CSC357-S07-L4 Slide 13

open, cont’d

C. Options values are constructed by a bitwise-

inclusive-OR of flags.

1. Exactly one of the following:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

CSC357-S07-L4 Slide 14

open, cont’d

2. Any combination of the following may be used:

O_APPEND Append to end

O_CREAT Create the file

O_EXCL Fail O_CREAT if file exists

O_TRUNC Truncate length to 0

CSC357-S07-L4 Slide 15

O_NOCTTY Do not have a terminal

O_NONBLOCK Do not block on open

CSC357-S07-L4 Slide 16

open, cont’d

3. POSIX synchronization options are:

O_DSYNC Wait for write to complete, no attrs

O_RSYNC Have reads wait for pending writes

O_SYNC Wait for write to complete, yes attrs

CSC357-S07-L4 Slide 17

open, cont’d

4. There are other platform-specific options for

such things as symbolic links, locks, and 64-bit

file offsets.

CSC357-S07-L4 Slide 18

open, cont’d

D. Example:

open("data", O_RDWR | O_APPEND)

CSC357-S07-L4 Slide 19

VI. creat (Stevens Sec 3.4).

A. Create a file.

B. Equivalent to following open:

open(pathname,

O_WRONLY | O_CREAT | O_TRUNC,

mode)

CSC357-S07-L4 Slide 20

VII. close (Stevens Sec 3.5).

A. Close an open file, returning 0 if OK, -1 if error.

B. Signature:

int close(int filedes);

C. When a process terminates, all open files are

closed by the kernel.

CSC357-S07-L4 Slide 21

VIII. lseek (Stevens Sec 3.6).

A. The lseek function sets the read/write offset of

an open file, returning new offset if OK, -1 if

error.

1. All open files have an offset position that defines

from what byte a read starts or to what byte a

write starts.

2. The offset is initialized to 0 by open, unless

O_APPEND is specified.

CSC357-S07-L4 Slide 22

B. Signature:

off_t lseek(int filedes,

off_t offset,

int whence);

CSC357-S07-L4 Slide 23

C. Interpretation of offset based value of whence:

• SEEK_SET, set offset from beginning of file

• SEEK_CUR, set to current value plus offset;

offset value can be positive or neg ative

• SEEK_END, set to size of file plus offset

CSC357-S07-L4 Slide 24

lseek, cont’d

D. Programmer can determine the value of the cur-

rent offset without changing, e.g.,

off_t curpos;

curpos = lseek(fd, 0, SEEK_CUR);

1. Used to determine if file is capable of seeking.

2. See example on Page 64 of Stevens.

CSC357-S07-L4 Slide 25

lseek, cont’d

E. When lseek is used to set a file’s offset larger

than its current size, file has"a hole" in it.

1. OS may take advantage of this by allocating

fewer file blocks.

2. Unwritten bytes read back as 0s.

3. See example on pp. 65-66 of Stevens.

CSC357-S07-L4 Slide 26

lseek, cont’d

F. Type off_t allows OS to provide different size

integers for file offsets, and hence max size file.

CSC357-S07-L4 Slide 27

lseek, cont’d

1. Most platforms support both 32-bit and 64-bit

file offsets, the latter being > 2 GB (231-1).

2. Here are defs of off_t on hornet:

CSC357-S07-L4 Slide 28

lseek, cont’d

#if defined(_LP64) || _FILE_OFFSET_BITS == 32

typedef long off_t;

#else

typedef __longlong_t off_t;

#endif

CSC357-S07-L4 Slide 29

IX. read (Stevens Sec 3.7).

A. Read from an open file, returning number of

bytes read, 0 if eof, -1 if error

B. Signature:

ssize_t read(int fildes,

void *buf,

size_t nbytes);

CSC357-S07-L4 Slide 30

read, cont’d

1. ssize_t return value is number of bytes read,

0 on eof

2. fildes is file to read from

3. buf is buffer of at least nbytes

CSC357-S07-L4 Slide 31

read, cont’d

C. There are several cases in which the number of

bytes read is less than requested, including:

1. If eof is reached during the read, the number of

bytes read may be less than requested.

2. When reading from a terminal device, normally

only one line at a time is read.

CSC357-S07-L4 Slide 32

read, cont’d

3. When reading from a network, buffering may

cause fewer bytes than requested to be read.

4. When reading from a pipe, only the number of

available bytes is read.

CSC357-S07-L4 Slide 33

read, cont’d

5. When reading from a record-oriented device,

sometimes only a record at a time is read.

6. When the read is interrupted by a signal, the read

may only be partially completed.

CSC357-S07-L4 Slide 34

read, cont’d

D. The read operation starts at the current file offset.

E. After successful read, file offset is incremented

by number of bytes actually read.

F. Typedefs ssize_t and size_t allow flexibility

in number of bytes readable and requestable.

CSC357-S07-L4 Slide 35

X. write (Stevens Sec 3.8).

A. Write data to an open file, returning number of

bytes written if OK, -1 if error.

B. Signature:

ssize_t write(int fildes,

const void *buf,

size_t nbytes);

CSC357-S07-L4 Slide 36

write, cont’d

C. Write starts at current file offset of the given

filedes, unless O_APPEND set on open.

D. After successful write, offset incremented by

number of bytes actually written.

E. Typical causes for write failure are full disk or

exceeding the file size limit for a process.

CSC357-S07-L4 Slide 37

XI. I/O Efficiency (Stevens Sec 3.9).

A. This section has some interesting data on the

effect of programmer-selected buffer size on

execution time of read and write.

B. We’ll discuss further in an upcoming lecture.

CSC357-S07-L4 Slide 38

XII. File sharing (Stevens Section 3.10).

A. Tw o or more processes1 can share the same file.

B. They hav e common pointer to same file data.

1 As defined in Chapter 1 of Stevens, a process is an

independently executing program.

CSC357-S07-L4 Slide 39

File sharing, cont’d

C. The processes have independent copies of:

1. the file descriptor and its flags

2. file status flags

3. current file offset

CSC357-S07-L4 Slide 40

File sharing, cont’d

D. Pictures on pp. 72 and 73 illustrate well.

E. If processes only read file, no problems.

F. If they each try to write, they can interfere with

each other.

G. A classic "readers/writers" situation.

CSC357-S07-L4 Slide 41

XIII. Atomic operations (Stevens Section 3.11).

A. Problem with operation sequence lseek fol-

lowed immediately by write.

1. Process can seek, but be suspended before write.

2. If during suspension another process does seek

and write, unexpected results can occur.

CSC357-S07-L4 Slide 42

Atomic operations, cont’d

B. Suppose processes A and B have a shared file.

1. Process A seeks to end, then is suspended.

2. Process B then seeks to end, writes 100 bytes.

3. Process A gets reactivated to do its write, but it’s

now 100 bytes in front of the end.

CSC357-S07-L4 Slide 43

Atomic operations, cont’d

C. To address this problem, there are functions

pwrite and pread.

D. Signatures:

ssize_t pwrite(

int fildes,

const void *buf,

size_t nbytes,

off_t offset);

CSC357-S07-L4 Slide 44

Atomic operations, cont’d

ssize_t pread(

int fildes,

void *buf,

size_t nbytes,

off_t offset);

CSC357-S07-L4 Slide 45

Atomic operations, cont’d

E. Also potential problem with creating file.

1. Process A checks if a file exists, with intent not

to create if it does.

2. Process A is suspended, B gets control.

3. Process B creates file that A just checked.

CSC357-S07-L4 Slide 46

Atomic operations, cont’d

4. Process A gets control back, thinks file does not

exist, and proceeds to re-create it.

5. Problem if B wrote to file before A got control

back, then A re-creates with truncation.

CSC357-S07-L4 Slide 47

Atomic operations, cont’d

F. Term atomic operation refers to operation com-

posed of multiple uninterruptible steps.

1. Subset of steps cannot be performed.

2. All steps run to completion, or none runs.

CSC357-S07-L4 Slide 48

XIV. dup and dup2 (Stevens Section 3.12).

A. File descriptors can be duplicated.

B. The only difference between dup’d descriptors is

file descriptor flags.

C. Share same status flags, current offset, file data.

D. We’ll discuss the relevance later.

CSC357-S07-L4 Slide 49

XV. fsync

A. UNIX kernels typically use buffer caches to make

read/write operations more efficient.

B. Contents of cache memory and file may differ.

C. For applications that care, fsync function forces

synchronization of cache and associated file.

CSC357-S07-L4 Slide 50

XVI. fcntl (Stevens Section 3.14).

A. Provides for control of open files.

B. Signature:

int fcntl(

int fildes,

int cmd,

... /* arg */);

CSC357-S07-L4 Slide 51

fcntl, cont’d

1. cmd is #defined in <fcntl.h>.

2. Optional arg varies based on value of cmd.

C. Myriad different cmds and args.

CSC357-S07-L4 Slide 52

fcntl, cont’d

D. Many settable when file is opened, but

1. fcntl allows file props to be changed without

close and reopen;

2. for stdio and pipes, fcntl is only way to set file

props, when an appl’n did not itself open.

CSC357-S07-L4 Slide 53

XVII. ioctl (Stevens Section 3.15).

A. Provides control of file descriptors associated

with devices.

B. Signature:

int iocntl(

int fildes,

int request,

...);

CSC357-S07-L4 Slide 54

ioctl, cont’d

1. request and optional third arg interpreted by

device driver

2. interpretation performed in device-specific way

CSC357-S07-L4 Slide 55

XVIII. /dev/fd

A. UNIX has uniform treatment of files and devices.

1. There’s a standard dir named "/dev".

2. We’ll see more about /dev in coming lectures.

CSC357-S07-L4 Slide 56

/dev/fd, cont’d

B. At level of file descriptors, many UNIX systems

provide a /dev/fd subdirectory

1. By convention, file descriptors 0, 1, 2 corre-

spond to stdin, stdout, stderr.

2. Enforces uniformity of files and devices.

CSC357-S07-L4 Slide 57

/dev/fd, cont’d

C. Association of stdio with numeric file descrip-

tors is not POSIX.

1. POSIX requires the def of STDIO_FILENO,

STDOUT_FILENO, STDERR_FILENO.

2. Despite this, many UNIX apps rely on hard

numeric mapping.

CSC357-S07-L4 Slide 58

XIX. Files and directories (Stevens Chapter 4).

A. Fundamental part of any OS.

B. UNIX treats files and directories pretty uniformly.

C. Also treats files and devices uniformly.

D. Also provides the symbolic link file type.

CSC357-S07-L4 Slide 59

Files and directories, cont’d

E. At system call level, there are stat functions.

F. Also other useful system functions that operate on

files and directories.

CSC357-S07-L4 Slide 60

XX. stat, lstat, fstat (Stevens Section 4.2).

A. Functions return file info in a struct stat,

defined in <sys/stat.h>.

B. Signatures:

CSC357-S07-L4 Slide 61

stat, lstat, fstat, cont’d

int stat(

const char* restrict2 pathname,

struct stat* restrict buf);

2 restrict is keyword added to 1999 ISO C

CSC357-S07-L4 Slide 62

stat, lstat, fstat, cont’d

int lstat(

const char* restrict pathname,

struct stat* restrict buf);

int fstat(

int fildes,

struct stat* buf);

CSC357-S07-L4 Slide 63

stat, lstat, fstat, cont’d

1. Returned data in buf parameter, which must

point to caller-declared structure.

2. For fstat, filedes is fd of open file.

3. Return val is 0 if OK, -1 if error.

CSC357-S07-L4 Slide 64

stat, lstat, fstat, cont’d

C. Diff between stat and lstat is lstat returns

info about sym link file, not file ref’d by link;

i.e., stat follows the symbolic link pointer,

lstat does not.

CSC357-S07-L4 Slide 65

stat, lstat, fstat, cont’d

D. Here’s def of struct stat on falcon/hornet:

struct stat {

dev_t st_dev;

ino_t st_ino;

mode_t st_mode;

nlink_t st_nlink;

uid_t st_uid;

gid_t st_gid;

CSC357-S07-L4 Slide 66

struct stat, cont’d

dev_t st_rdev;

off_t st_size;

timestruc_t st_atim;

timestruc_t st_mtim;

timestruc_t st_ctim;

blksize_t st_blksize;

blkcnt_t st_blocks;

char st_fstype

[_ST_FSTYPSZ];

};

CSC357-S07-L4 Slide 67

struct stat, cont’d

1. Struct fields declared as sys-defined datatypes,

from <sys/types.h> and elsewhere.

2. Use of struct stat will figure prominently

in programming assignment 3.

CSC357-S07-L4 Slide 68

XXI. File types (Stevens Section 4.3).

A. Most common are regular data files and dirs.

B. UNIX defines seven different files types:

1. Regular file, which holds data; kernel does not

distinguish between text and binary.

2. Directory file, which contains names of other

files and pointers to file info.

CSC357-S07-L4 Slide 69

Files and dirs, cont’d

3. Block special file, which provides buffered I/O

access to devices such as disk drives.

4. Character special file, which provides

unbuffered I/O access to devices.

CSC357-S07-L4 Slide 70

Files and dirs, cont’d

5. FIFO, for communication between processes,

also called named pipe.

6. Socket, for inter-process communication accross

network

7. Symbolic link, points to another file; akin to

short cut in Windows.

CSC357-S07-L4 Slide 71

Files and dirs, cont’d

C. Page 90 of Stevens has a useful code example.

1. Program that prints file-type of each command-

line arg.

2. Uses lstat to obtain file info.

CSC357-S07-L4 Slide 72

Files and dirs, cont’d

D. Later on pages 121-125, another code example

that uses lstat to traverse dir hierarchy.

