
CSC405-F10-L9 Slide1

CSC 405 Lecture Notes Week 9

OCU/Manet Testing Details



CSC405-F10-L9 Slide2

I. Revisiting SQLite as a "best practice" example.

A. Go over each point in the exec summary.

B. Consider if/how these points will be concretely
realized in the ocu/manet system.



CSC405-F10-L9 Slide3

II. Executive Summary

• Three independently developed test harnesses

• 100% branch test coverage

• Millions and millions of test cases



CSC405-F10-L9 Slide4

Executive Summary, cont’d

• Out-of-memory tests

• I/O error tests

• Crash, power loss tests

• Fuzz tests

• Boundary value tests

• Disabled opt’n tests

• Regression tests

• Malformed DB tests

• Assert run-time checks

• Valgrind analysis



CSC405-F10-L9 Slide5

III. SQLite test harnesses

A. Tcl/Tk unit tests.

B. Deployed system tests.

C. User-level SQL Logic tests.



CSC405-F10-L9 Slide6

Proposal for OCU/Manet Test Harnesses

A. Harness 1: OCU Unplugged.

1. Test with "conventional" CppUnit or
Google Test.

2. Alternatively, use larger-grain unit testing
framework, akin to Tcl/Tk testing,

3. Driven by loop that programmtically sup-
plies inputs to ocu via comm model.



CSC405-F10-L9 Slide7

OCU/Manet Test Harnesses, cont’d

B. Harness 2: Manet Unplugged.

1. Harness 2s: 80211s Unplugged.

2. Harness 2b: Batman Unplugged.

3. Both driven by loops that programmtically
supply different network configurations.



CSC405-F10-L9 Slide8

OCU/Manet Test Harnesses, cont’d

C. Harness 3: OCU + Manet integrated.

1. Harness 3s: OCU + 80211s.

2. Harness 3b: OCU + Batman.

3. Driven by manet-unplugged driver.



CSC405-F10-L9 Slide9

OCU/Manet Test Harnesses, cont’d

D. Harness 4: OCU + Manet + Laptops in the
Football Field.

E. Harness 5: OCU + Manet + Surrogates and
Robots in "Live" Environment.

F. Harness 6: OCU + Manet + Simulated Robots.



CSC405-F10-L9 Slide10

IV. 100% branch test coverage

A. Usegcov and/orlcov.

B. Critically important to ensure coverage of black-
box tests.

C. SQLite testing handles coverage of defensive
code in a novel way



CSC405-F10-L9 Slide11

V. Millions and millions of test cases

A. As a practical matter, these are programmatically
generated.

B. SQLite has some interesting, potentially reusable
strategies.



CSC405-F10-L9 Slide12

VI. Out-of-memory tests

A. Particularly important for C++ code, to test for
memory leakage.

B. Important in general for all forms of malloc
errors.

C. Use test-configured versions of malloc.



CSC405-F10-L9 Slide13

VII. I/O error tests

A. In SQLite terms "the system responds sanely to
filed I/O operations".

B. Can be done with simulated I/O errors.



CSC405-F10-L9 Slide14

VIII. Crash and power loss tests

A. Test that state of OCU is non-corrupted if Manet
or its OS crashes.

B. Test other deployed-configuration power-loss sce-
narios.



CSC405-F10-L9 Slide15

IX. Fuzz tests

A. May want to test for mutation-inducing failures of
damaged robots.

B. E.g., "fuzzy" behavior that occurs when robot gets
partially blown up.



CSC405-F10-L9 Slide16

X. Boundary value and range tests

A. The main driver of test case generation loops.

B. Data range parameters currently identified:

1. throughput

2. latency

3. signal strength

4. number of nodes

5. network target node

6. path configuration



CSC405-F10-L9 Slide17

XI. Disabled optimization tests

A. For SQLite testing, this refers to specific forms of
query processing.

B. For OCU/Manet testing, it can mean that tests
need to be run on both-g and-O version of the
compiled code.



CSC405-F10-L9 Slide18

XII. Regression tests

A. Of course.



CSC405-F10-L9 Slide19

XIII. Malformed data tests

A. For SQLite, these are tests on various database
malformations.

B. For OCU/Manet, comparable tests are for various
network malformations.

C. I’m not entirely clear what external causes there
may be of network malformations.



CSC405-F10-L9 Slide20

XIV. Extensive use of assert() and run-time checks

A. In SQLite, the production build disables asserts,
for performance.

B. I think the same should be true in OCU/Manet.



CSC405-F10-L9 Slide21

XV. Valgrind analysis

A. Valgrind is a Linux simulator that analyzes for
a variety of runtime errors.

B. If we have a simulated test harness, it might be
interesting to run it undervalgrind.



CSC405-F10-L9 Slide22

XVI. Re-visit testing repository structure.



CSC405-F10-L9 Slide23

XVII. Some practical implementation details.

A. Do a sample loop that shows concretely what pro-
grammatic driving of ocu/manet could look like.

B. Ask Batman and 80211s teams what such a loop
would look like for their side of things.



CSC405-F10-L9 Slide24

XVIII. Action Items for this Week

A. Agreed testing framework for OCU teams.

B. Agreed testing framework for 80211s teams.

C. Committed testing for 80211s and OCU teams.

D. Project-wide regression test makefile.

E. Agreement, as appro, on preceding practices.



CSC405-F10-L9 Slide25

XIX. Suggested repository updates.

A. Populatetesting subirs for all 4 subprojects.

B. Movebatmobile/implementa-
tion/.../*Tests* to batmobile/test-
ing/implementation/.../*Tests*.

C. Code tests and install for80211s, kareem-
nassar, ocunited.



CSC405-F10-L9 Slide26

Repository additions and modifications, cont’d

D. Add manet-ocu/testing dir, with Make-
file for project-wide test build and execute.

E. Install bug-tracking supporting infrastructure (if
not already there).

F. Add requirements dir and put SRS there.

G. Add administration dir and put project-
wide admin docs there.



CSC405-F10-L9 Slide27


