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CSC 405 Lecture Notes Week 9

OCU/Manet Testing Details
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I. Revisiting SQLite as a "best practice" example.

A. Go over each point in the exec summary.

B. Consider if/how these points will be concretely
realized in the ocu/manet system.
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II. Executive Summary

• Three independently developed test harnesses

• 100% branch test coverage

• Millions and millions of test cases
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Executive Summary, cont’d

• Out-of-memory tests

• I/O error tests

• Crash, power loss tests

• Fuzz tests

• Boundary value tests

• Disabled opt’n tests

• Regression tests

• Malformed DB tests

• Assert run-time checks

• Valgrind analysis
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III. SQLite test harnesses

A. Tcl/Tk unit tests.

B. Deployed system tests.

C. User-level SQL Logic tests.
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Proposal for OCU/Manet Test Harnesses

A. Harness 1: OCU Unplugged.

1. Test with "conventional" CppUnit or
Google Test.

2. Alternatively, use larger-grain unit testing
framework, akin to Tcl/Tk testing,

3. Driven by loop that programmtically sup-
plies inputs to ocu via comm model.



CSC405-F10-L9 Slide7

OCU/Manet Test Harnesses, cont’d

B. Harness 2: Manet Unplugged.

1. Harness 2s: 80211s Unplugged.

2. Harness 2b: Batman Unplugged.

3. Both driven by loops that programmtically
supply different network configurations.
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OCU/Manet Test Harnesses, cont’d

C. Harness 3: OCU + Manet integrated.

1. Harness 3s: OCU + 80211s.

2. Harness 3b: OCU + Batman.

3. Driven by manet-unplugged driver.
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OCU/Manet Test Harnesses, cont’d

D. Harness 4: OCU + Manet + Laptops in the
Football Field.

E. Harness 5: OCU + Manet + Surrogates and
Robots in "Live" Environment.

F. Harness 6: OCU + Manet + Simulated Robots.
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IV. 100% branch test coverage

A. Usegcov and/orlcov.

B. Critically important to ensure coverage of black-
box tests.

C. SQLite testing handles coverage of defensive
code in a novel way
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V. Millions and millions of test cases

A. As a practical matter, these are programmatically
generated.

B. SQLite has some interesting, potentially reusable
strategies.
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VI. Out-of-memory tests

A. Particularly important for C++ code, to test for
memory leakage.

B. Important in general for all forms of malloc
errors.

C. Use test-configured versions of malloc.
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VII. I/O error tests

A. In SQLite terms "the system responds sanely to
filed I/O operations".

B. Can be done with simulated I/O errors.
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VIII. Crash and power loss tests

A. Test that state of OCU is non-corrupted if Manet
or its OS crashes.

B. Test other deployed-configuration power-loss sce-
narios.



CSC405-F10-L9 Slide15

IX. Fuzz tests

A. May want to test for mutation-inducing failures of
damaged robots.

B. E.g., "fuzzy" behavior that occurs when robot gets
partially blown up.
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X. Boundary value and range tests

A. The main driver of test case generation loops.

B. Data range parameters currently identified:

1. throughput

2. latency

3. signal strength

4. number of nodes

5. network target node

6. path configuration
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XI. Disabled optimization tests

A. For SQLite testing, this refers to specific forms of
query processing.

B. For OCU/Manet testing, it can mean that tests
need to be run on both-g and-O version of the
compiled code.
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XII. Regression tests

A. Of course.
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XIII. Malformed data tests

A. For SQLite, these are tests on various database
malformations.

B. For OCU/Manet, comparable tests are for various
network malformations.

C. I’m not entirely clear what external causes there
may be of network malformations.
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XIV. Extensive use of assert() and run-time checks

A. In SQLite, the production build disables asserts,
for performance.

B. I think the same should be true in OCU/Manet.
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XV. Valgrind analysis

A. Valgrind is a Linux simulator that analyzes for
a variety of runtime errors.

B. If we have a simulated test harness, it might be
interesting to run it undervalgrind.
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XVI. Re-visit testing repository structure.
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XVII. Some practical implementation details.

A. Do a sample loop that shows concretely what pro-
grammatic driving of ocu/manet could look like.

B. Ask Batman and 80211s teams what such a loop
would look like for their side of things.
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XVIII. Action Items for this Week

A. Agreed testing framework for OCU teams.

B. Agreed testing framework for 80211s teams.

C. Committed testing for 80211s and OCU teams.

D. Project-wide regression test makefile.

E. Agreement, as appro, on preceding practices.
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XIX. Suggested repository updates.

A. Populatetesting subirs for all 4 subprojects.

B. Movebatmobile/implementa-
tion/.../*Tests* to batmobile/test-
ing/implementation/.../*Tests*.

C. Code tests and install for80211s, kareem-
nassar, ocunited.



CSC405-F10-L9 Slide26

Repository additions and modifications, cont’d

D. Add manet-ocu/testing dir, with Make-
file for project-wide test build and execute.

E. Install bug-tracking supporting infrastructure (if
not already there).

F. Add requirements dir and put SRS there.

G. Add administration dir and put project-
wide admin docs there.
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