
CSC405-W12-L7 Slide1

CSC 405, Week 7

Guest Lecture on Entrepreneurship
General Testing Background

Project-Specific Testing Details
Evaluation of Week 7 Critical Tasks



CSC405-W12-L7 Slide2

Revised 17 February



CSC405-W12-L7 Slide3

I. Weekly Lecture/Lab Overview

A. Monday:

1. Guest lecture/discussion on entrepreneurship

2. Brief introduction to testing

3. Lab time for project work



CSC405-W12-L7 Slide4

B. Wednesday:

1. Continued testing discussion

2. Testing set up and critical task work in lab



CSC405-W12-L7 Slide5

C. Friday:

1. Project-specific testing details

2. Check completion of Week 7 critical tasks

3. Assign Week 8 critical tasks, including
testing duties

4. Lab time for project work



CSC405-W12-L7 Slide6

II. Types of testing we’ll perform:

A. Functional Model --
JUnit testing through model API

B. Functional View --
GWTTesting through view API

C. Acceptance, Automated --
Selenium testing through HCI

D. Acceptance, Manual
-- human testing through HCI



CSC405-W12-L7 Slide7

III. Mapping Testing Terminology onto 405
and 406

A. Consider testing activities from Week 3 Lec-
ture Notes.

B. What follows are notes on how they’ll be
accomplished in 405 & 406.



CSC405-W12-L7 Slide8

IV. Unit Testing

A. For model, use JUnit3.

B. For view, use GWTTest.

C. For DB layer, adapt SQLite testing frame-
work.

D. For critical methods, formalize with JML.



CSC405-W12-L7 Slide9

V. Module Testing

A. For model and view, start with stubbed DB
test fixtures.

B. Output results with JUnit Assert methods.

C. Also output to differencable log.



CSC405-W12-L7 Slide10

VI. Integration Testing

A. Replace stubbed DBs with actual DBs.

B. Re-run module tests.



CSC405-W12-L7 Slide11

VII. System Testing

A. Run the top-most model/view tests with Junit
Runner.

B. Run automated UI tests with Selenium.



CSC405-W12-L7 Slide12

VIII. Acceptance Testing

A. Use existing acceptance test procedure.

B. Run for each department’s Winter 2012
schedule.



CSC405-W12-L7 Slide13

IX. Black Box Testing

A. Write initial test cases, using JML specs for
critical methods.

B. Particular focus on end-user data validation
preconditions.



CSC405-W12-L7 Slide14

X. White box

A. Add more tests based algorithm details in
code.

B. Add more tests based coverage results.



CSC405-W12-L7 Slide15

XI. Testing Design

A. JUnit3 API is well documented.

B. So is GWTTest.

C. And SQLite test framework as well.



CSC405-W12-L7 Slide16

XII. Test Plan

A. I strongly recommend a common, uniform
structure for these.

B. Unit test plans in testing method Javadoc
comments.

C. Module test plans in class Javadoc com-
ments.

D. Integration test plan as a text document.



CSC405-W12-L7 Slide17

XIII. Top-down Testing

A. Algorithm with stubbed DBs.

B. Selenium with or without underlying stubs.



CSC405-W12-L7 Slide18

XIV. Bottom-up Testing

A. Algorithm without UI.

B. Possibly some form of independent DB test-
ing.



CSC405-W12-L7 Slide19

XV. Test Case

A. Defined specifically by JUnit and GWTTest



CSC405-W12-L7 Slide20

XVI. Testing Oracles

A. For critical methods, a formal postcondition.

B. For other aspects of test, human-produced
validation methods.



CSC405-W12-L7 Slide21

XVII. Testing Stubs

A. Used primarily for independent algorithm
testing.

B. Elsewhere as needed.



CSC405-W12-L7 Slide22

XVIII. Test Driver

A. Provided by JUnit, GWTTest, Selenium.



CSC405-W12-L7 Slide23

XIX. Regression Testing

A. With JUnit Assert.

B. Differencable logs for algorithm internals.



CSC405-W12-L7 Slide24

XX. Test Coverage

A. Use Coberatura.

B. It integrates well with Junit3.



CSC405-W12-L7 Slide25

XXI. Test Subsumption

A. Unplug independent DB tests when algo-
rithm is integrated.

B. Much of Junit tests is effectively subsumed
by Selenium-driven tests, but we’ll do both
as part of the official regression suite.



CSC405-W12-L7 Slide26

XXII. Test Automation

A. Via Eclipse.

B. May also useant builds and/ormake-
files.



CSC405-W12-L7 Slide27

XXIII. Mutation Testing

A. Might be interesting to do a bit in 406.



CSC405-W12-L7 Slide28

XXIV. Testing Harness

A. Covered above, particularly under Test Driv-
ers.



CSC405-W12-L7 Slide29

XXV. Testing Frameworks

A. To summarize:

1. JUnit for model API

2. GWTest for view API

3. Selenium for automated HCI.

4. Human-performed for accepted HCI.



CSC405-W12-L7 Slide30

Resources

XXVI. See405/doc page.



CSC405-W12-L7 Slide31

XXVII. Code coverage basics.

A. Measures applied during test execution.

B. Terminology varies quite a bit.

C. List of weakest to strongest follows.



CSC405-W12-L7 Slide32

XXVIII. Code coverage criteria.

A. Function (method) coverage

B. Statement coverage

C. Branch coverage



CSC405-W12-L7 Slide33

Code coverage criteria, cont’d

D. Decision coverage

E. Loop coverage

F. Define-use (d-u) coverage



CSC405-W12-L7 Slide34

Code coverage criteria, cont’d

G. All path coverage

H. Exhaustive coverage



CSC405-W12-L7 Slide35

XXIX. Common Example
public static int f(int i, int j) {

int k;
if (i > j) {

i++;
j++;

}
k = g(i,j);
if ((k > 0) && (i < 100)) {

i++;
j++;

}
else {

i++;
}
return i+j+k;

}

static int g(int i, int j) {
return i-j+1;

}



CSC405-W12-L7 Slide36

XXX. Function coverage.

A. Each function called at least once.

B. Very large-grain measure.

C. Not adequate for final tests.

D. Can be done with one test case forf.



CSC405-W12-L7 Slide37

XXXI. Statement coverage.

A. Every statement is executed at least once.

B. Can be done with two test cases forf.



CSC405-W12-L7 Slide38

XXXII. Branch coverage.

A. The true/false direction of each branch is
taken at least once.

B. Requires four test cases forf.



CSC405-W12-L7 Slide39

XXXIII. All path coverage

A. Each distinct control path is traversed.

B. Requires four cases forf.



CSC405-W12-L7 Slide40

XXXIV. Decision coverage

A. The boolean logic of each condition is fully
exercised.

B. Requires at least four cases inf.



CSC405-W12-L7 Slide41

XXXV. D-u coverage

A. Every path for every variable to every use of
that variable is covered.

B. D-u for i requires three paths inf.

C. D-u for j requires two paths inf.



CSC405-W12-L7 Slide42

XXXVI. When 100% coverage is not attainable.

A. Platform-specific code not "#ifdef’d" out.

B. Catchs for exceptions that cannot be forced,
e.g., I/O.

C. Uninvoked methods necessary to satisfy
interface contract.



CSC405-W12-L7 Slide43

XXXVII. Friday In-Class Testing Briefs

A. Solame meets briefly with Selenium testers.

B. Fisher meets briefly with database, model,
and support testers.



CSC405-W12-L7 Slide44

XXXVIII. Practical Matters for JUnit Testing

A. Make all data membersprotected instead
of private.

B. At beginning of database-dependent testing,
set-up an in-memory database fixture, which
persists throughout all test execution.


