CSC406-W12-Ja Corventions Fage 1

CSC 406 Design and I mplementation Conventions
for Java Programs

1. Defineeach public class in onevmfile. Theonly exception to the one-class-per file rule is for homogeneous
collection or container classeBor such classes, a singlevgfie may (but is not required to) contain the defini-
tions for both the container class as well as the elements that it coriairexample, a collection class and the
protected type of its elements may be defined in a singkefila. If the element type of the container has data
members that are defined as other classes, all of those other class must be defined in sepieste .ja

2. Format and document va filesprecisely as follows, with strict adherence to the format of the comments, includ-
ing the number and placement of ¥hd the amount of indentation.

i nmport

/*

*

E I I S R . N . N N S S N I N SN N S N

* % %

The comment at the top of a .java file is a high-level description of the
class defined in the file. Start the description with the words "d ass X'
and then describe the purpose of the class and the major nethods it
provides. The nethod descriptions in this header coment are generally
brief, e.g., "Cass X provides nethods to add, delete, change, and find
its elements.” Do not list all of the method details in the header
coment, since full comments for each nethod appear below in the body of
the class, at the site of each nethod declaration. The header conment can
descri be the data representation used in the class in high-level terns if
it’s germane to explaining what the class is for. The header comment does
not describe |lowlevel details of the data representation or any details of
net hod i npl enent ati on.

@ut hor Nane and current enmnil address of file's author; nane is at
least first and last, with mddle nane or initial if necessary or
comonly used by author; enmil address appears in parentheses
following full name; enail address may be abbreviated to a | ocal
address if the full address can be expected to be known to. E.g.,
Gene Fisher (gfisher@hyne); John H Smith (john_smith).

/

[public] class X extends Y inplenments Z {

*

/
Prose description of the nethod, describing what the nethod does,

not howit is inplenmented. Describe the use of each paraneter by nane,
refer to the instance object as "this", and use the word "return" to
describe the return value if there is one. Also describe each data
field used as an input and each data field nodified as an output.

Modi fication to a parameter or data field includes indirect

nodi fication to the value of a reference paraneter or data field.
Stylistically, use conplete sentences, avoid passive voi ce.

pre: formal precondition

post: formal postcondition

E I I S S . I R N B R

~

public T1 nethodName(T2 t2, ..., Tn tn) [throws ...] {

CSC406-W12-Ja Corventions Fage 2

I nclude coments for each |ocal variable and comments above each
line or group of lines that describe how the nethod works. All

but the "totally obvious" lines of code should be conmented.
Conmment s for variables should be descriptive noun phrases. Coments
for code lines should be in conpl ete sentences.

Al'l code conments should be formatted exactly as as this one is: (1)
start with "/*" on a separate line, indented to the current |evel of
code indentation; (2) start each conment line with "*", indented to
current indentation + 1; (3) end with "*/" on a separate |ine,
indented to current indentation + 1.

See bel ow under "indentation and spaci ng conventions" for further
di scussion of the format of code within a nmethod body.

EBE I T N S R B B N R N S

ot her public nethods ...

Note no public or private data fields

Protected nmethods in same format as public nethods.

[** Commrent describing data field */
protected T1 var nane;

ot her protected data fields ...

I

3. Indentatiorand spacing caentions.

a. Excepfor the specific indentation shown within a class definitiorveliadentation iseery 4 spaces.

b. Wherever possible in a program editause tab characters for indentation, and set the tab width to 4 charac-
ters. If 4-character tab stops are not supported invengiditor, set whateer indentation parameters are
awailable to be as close as possible to 4-character tab spacing.

c. Thefollowing is a template for indentation and spacing eaJaethod bodies; blank lines are significant.

T1 nmethodNanme(T2 t2, ..., Tn tn) {

/* Commrent ... */
Tvl tvil,

/[** Comment ... */
Tvm tvm

/*
* Comment
*/
for (...) {

/*
* Comment
*/
if (...) {

CSC406-W12-Ja Corventions Fage 3

}
/*
* Comment, if necessary.
*/
else if {
}
I
* Comment, if necessary.
*/
el se {
}
}
/*
* Comment
*/
while (...) {
}
/*
* Comment
*/
for (start-expression; while-expression; end-expression) {
}
/*
* Comment
*/

for (long-start-expression ... ;
| ong-whi | e-expression ... ;
| ong- end- expressi on) {

/*
* Comment
*/
switch (...) {
/*
* Comment, if necessary.
*/
case cl:
br eak;
[+
* Comment, if necessary.
*/

case ck:

br eak;

CSC406-W12-Ja Corventions Fage 4

In the preceding commenting a@ntion, the '/’ style of comments can be used instead of the '/* ...df", b
the two gyles cannot be med. For multi-line comments with ’//’, format as follows:
Il

/1 Conment
/1

4. Classand method naming ceentions.

a.

Thenames of MVP model types (i.e., class hames) should be identical to the names of corresponding RSL
objects. Ifthe RSL object name does not plibe capitalization carentions for type names \gin below,
then the RSL name should be changed accordingly.

The names of model methods should be identical to the names of corresponding RSL operations, except the
first letter of all method names should be lower case. If the RSL operation name doeg rtio¢ alapital-

ization rules for method names/gi below (except for first letter laver case), then the RSL name should be
changed accordingly.

Thenames of vier types (i.e., class hames) should be the same as corresponding model names, with the suf-
fix "UI" added. If a single design defines twor more alternatie views, the viev class names should be dis-
ambiguated with the type of Ul for each. E.g., for model class PersonDatabaseslasses Person-
DatabaseButtonUl and PersonDatabaseMenuUl are button-style and menu-style Ul'syebspecti

. Thenames of viee methods should be full-word mnemonic, including multi-word where appropriate, with

the same capitalization caentions as for model type and method nam@see "capitalization coentions"
below for further details.

. Thenames of process types and methods should be full-word mnemonic, including multi-word where appro-

priate, with the same capitalization gentions as for model type and method nam®se "capitalization
corventions" belov for further details.

f. Thenames of constants should be mnemonic, typically one wordoowbnds, all uppercase, with multiple

g.
h.

words separated by underscores. E.g., LENGTH, MAX_SIZE.
Thenames of data fields access methods should start with "get".
Thenames of data field setting methods should start with "set".

i. Thenames of boolean-valued query methods should start with "is".
j- Thenames of searching methods should start with "find".

5. Capitalizatiorcorventions.

a.

Type names (i.e., class names) should begin with a capita) éetfezach distinct word in the name should be
capitalized, e.g.Per sonRecor d. If an abreviation is used in the name, all letters in the abbt®n
should be capital, e.§er sonDB.

b. Method names should follothe same corentions as type names.
c. .java ot filenames must be the same as the class name, including capitalization.

6. Variable naming carentions (including method parameters and class data fields).

a.

For variable names of user-defined types:

i. Variable names (including parameter and data field names) start witlerackise letter and otherwise fol-
low the cowentions for class names.

ii. A variable name may be a "proper" abbreviation of the type name, e.g., PersonRecord personRec, Per
sonDB personDB.

iii. A "proper" abbreviation is an abbration the characters of which are a proper subset of the characters in
the words of the variabletype. E.g.PersonDB personDataBase is not a proper abbreviation.

iv. Short variable names are acceptable as long & suficiently mnemonically understandable in their
contt of use, e.g., PersonRecord PersonDB pdb Given the "proper abbreviation" rule, anable

CSC406-W12-Ja Corventions Fage 5

name may be no shorter than the total number of capital letters in its type name.

v. When a variable name abbreviates twv more words, the second words and beyond are capitalized.

vi. Theserules are one of thevieplaces in these standards open to subjedtiterpretation. E.gin a con-
text where fev other variables start with the letter "p", the name "pRec" could be sufficiently mnemoni-
cally significant to be used instead of the longer "personRecord".

vii. In all cases, variable naming should be consistent throughout a project.

viii. In the case where twor nore variables of the same type are declared irnvengtope, the names
should be stiixed with unique intgers starting with 1, e.gPer sonRecord personRecl, per-
sonRec?2 or prefixed or sdixed with short mnemonic identifiers, e.g.edField name&xtField or
JTextField nameJtf.

b. For variable names of atomic types or external library types thawfetime other type naming cesntions:
i. Variable names (including parameter and data field names) should be lower case, short, and mnemonic,
e.g.,
bool ean st at us
int counter

ii. Wherevery short names are sufficiently mnemonic, such as with loop couariables, single-character
variables names are allowed, e.g., inti; for (i=1, ...) ... ;
iii. The same numeric suffix and disambiguation rulesvatsbould be used.

7. Sizelimits.

a. Nomethod may be longer than 50 lines, except as noted.bdlbe 50-line length does not include com-
ments and blank lines. This rule may not be aakidy condensing lines in such a way as to violatg @hn
the preceding formatting ceentions. E.g.the following is Igd

for (i=1; i<=n; i++) {
if (i %2) {
x. Fool(i);
x. Foo2(i);
}
}
the following is NO legd
for (i=1; i<=n; i++) { if (i %2) { x.Fool(i): x.Foo2(i); } }
nor is e/en the following
for (i=1; i<=n; i++) {
if (i %2) {
x. Fool(i);
x. Foo2(i);}
}
The following are exceptions to the 50-line rule:
i. View conmpose methods whose bodies are generated by a GUI builder.

ii. Othersggments of code for which the author can rigorously justify the reasomcéee the 50-line rule,
where "rigorously justify" does not mean "I'm too lazy to break it up into method calls".

b. No dass may hee nore than 25 public methods plus 25 protected methods, i.e., no more than 50 methods
total. If a dass has fewer that 25 public methods, it mayehp to 50 methods total, hoever it may never
have nore than 25 public method3ypically classes should Y. far fewer than 50 methods total.

c. Noclass may h& nore than 50 protected data fields.

d. Notethat combining the 50-line rule with the 50-method rule means thatvaofig@can be longer the 2500
lines of code, excluding commentgypically, .java files should hee far fewer than 2500 lines.

8. Onthe use of interface builders for Vieclasses.

CSC406-W12-Ja Corventions Fage 6

a. Theoveall design of vier classes must following the wiedesign comentions discussed in 309 lecture notes
4 through 6.

b. This means in particular that code generated by GUI builders must be placed in appropriate constructor and
compose methods.

c. Asnoted abwe, the 50-line rule need not apply to the code generated by a@débas bng as the code is
placed in an appropriate constructor or compose method.

d. Ingeneral, interface builders do not alldlirect editing of generated code, which meany twe good for
generating the initial version ofi&v-class methods, which is then hand edited outside of theaogerf
builder to produce code that meets the 309 design and implementati@mtioms.

9. Encapsulatingon-corventional external libraries and utilities.

a. Resourceprovided by ay external that violate gnof the preceding caentions must be encapsulated in
exactly one class.

b. That is, a "wrapper" must be placed around all norv@dional outside services.

