CSC484-508-L4.1 &ye 1

CSC 484 Lectue Notes Week 4, Part 1
Understanding and Conceptualizing Interaction

I. Relevant Reading-- chapter 2 of the book.

II. Introduction to Chapter 2 (Section 2.1).

A. Speakingon behalf of software engineers, | think this chapter displays a pretty significant misunderstanding
of what modern software engineering is about.
B. Theintroductory question/answer sequence sets up a would-be dichotomy that does not really exist.
1. The start by posing the (paraphrased) questions,
"In designing a ne application, would you start by coding®r, would you start by talking to user
and seeing what else is out there?"
2. Theiranswer
"Interaction designes would do the latter."
begs the question
"Who wouldn’t?"
3. Awell-trained software engineesven the most extreme of thexteeme programmers, would answer the
questions the same way as the ID folks answer.
4. l.e.,theyd gart by talking to users and seeing what else is out there.

C. Thisintroduction sets the stage for a largely false dichotomy between what the authors tend to see as the fol-
lowing actors:

1. therather clueless software engineers, versus
2. theinspired interaction designers,
the latter seeing it as their mission to enlighten the former on the importanegelahipusers in a design.

D. Inmy experience, software engineers really dran'dueless as they're made out to be.
1. Therehave been more than thirty years of research in software requirements and modeling.
2. Thisresearch addresses ryari the same issues discussed in this chapter.
3. Theresearch has mgmood ideas on hw eff ectively to solve problems, and to be creati tbing it.

E. With particular rgard to Agile deelopment, the following statement on Page 44 is antithetical:
"... Once ideas & committed to codehey become mucharder to throw away".
1. Agile developers say precisely the opposite, since their methodolegives around writing small incre-
ments of code, which are entirely disposable if necessary.

2. Ewen for fully traditional SE, the idea of "committed to code" does not apply tev-#may prototypes,
since the very name suggestsythee designed to be throwmvay.

F. All that harving been said, the chapter does provide some useful informatiors hgrést of hits and misses:
1. Hits:
a. Praoking thought, by challenging the assumptions and beliefs of engineers.
b. The importance of understanding the problem space, in Section 2.2.
c. Analysisof theinteraction typesin Section 2.3.4.
d. Theintervien with Terry Winograd, at the end.

i. Notethat he talks a lot about of "people”, "products”, and "examples".

ii. He never mentions "conceptual models”, "metaphors"”, or "analogies".



CSC484-508-L4.1 &ye 2

2. Misses;
a. Themisunderstanding of SE.
b. The maltreatment of conceptual modeling -- high on aphorism, deficient on useful suggestions.

[ll. Understanding the problem space (Section 2.2).

A. Whatyou should ta& avay from this section are mthings:
1. Theimportance of having a problem to solve.
2. Thenotion of identifying and challenging your design assumptions.

B. Theengineers cmmmon refrain -*What's the problem here?"
1. You ask this whether you're improving on an existing product, or coming up with a brandeae
2. Thebulleted list at the end of the section summarizes some useful questions igdtds re
a. Whatproblems are you trying to solve?
b. Why do these problems exist?
c. Haw is your nav design going to solv/the problems?

d. If you've ot identified ag specific problem¥ but are designing for a brandweiser eperience,
how do your ideas mak things better than the current way of doing things?

C. Aspart of your work on Assignment 2, do the following in a team meeting:
1. Answereach of the questions al®i.e., whats your problem, hav are you going to makthings better?
2. Identifythe assumptions you're making, andvhyou’re going to validate them.

a. For example, you may identify some underlying assumption about which you tvgreaifically
cognizant, and the team may determine on the spot that the assumptionakdnadlbie means you
should not base srof your ideas on it.

b. Alternatvely, you may identify an assumption you think is true, but you cannot validate immediately;
in this case, come up with some ways to do validation, such as asking users appropriate questions.

IV. Conceptualizing the design space (Section 2.3).

A. Theauthors need to get straight what we're trying to do. Is it
1. tryingto sohe a mrticular problem, or
2. tryingto build a product that will appeal to the largest possible user commamity
3. tryingto invent some yet undreamed ofiméorm of interaction

B. If it's the first of these, then the conceptual model is based on a specific understanding of real and concrete
user problems.

C. Ifthe second, then the conceptual model is based on a generalized understanding of potential users.
D. If it's the last, then the conceptual model is wiata design team might dream of.

V. Conceptual models, and examples thereof (Sections 2.3.1 and 2.3.2).
A. To gart with, the 1996 Liddle quote (on Page 51) is seriously out of date:

"The most important thing to design is the useohceptual model. ... That is almost exactly the opposite
of how most softwaris cesigned.”

! The engineer would sa$if you dont have a specific problem, fuhgeddaboudi®K, so engineers do ba their limitations.



CSC484-508-L4.1 &ye 3

B. In modern (post-1996) SE, conceptual models are an important paenahendane software products.

1. They start with introductory sections of the requirements document, or in a stand-alone document such as
a "Vision and Scope".

2. Modelsthen pervade the rest of thevd®pment, including formalizing the requirements, specifying soft-
ware behaviarand defining the program architecture.

C. Amajor question that the book does not address is the following:
Is the conceptual model a specific, caterartifact of the ID process, or is it embodied in other
process artifact(s)?
1. If the latteywhat exactly does it look like?
2. Inwhat language or notation is it stated?

3. Thebest the book can come up with is to suggest tlebipressed in thelihgua francaused by the
design team".

D. Whatthe book &ils to recognize is Wothat "lingua franca" of the conceptual design is expressed specifi-
cally in thethe storyboards and scenarios

1. If you believe in afordance, a concrete user interface should fethbody and careythe conceptual
design.

2. Itdoes so to the end users, as well as to design team.

3. If a mncrete interface is not so affordant, i.e., if it fails to endkar the underlying conceptual model,
then

a. it's a klad interface, or
b. it's a lad concept

4. Eitherway, the interface itself is the artifact that represents the underlying conceptual model.

E. Directevidence for this is provided book by authors themselves, in Section 2.3.2.
1. Whatis the "lingua franca" thechoose to covey the conceptual models of the "best practicesneples?
2. It's pctures of concrete user interfaces!

F. S -- awell-designed user interfadelly affords and hence defines the underlying conceptual design.
1. Themetaphorsaandanalogiesshould be readily apparent in the interface layout
a. For example, an electronic spreadsheet looksttik paper ledger it models.
b. The Xerox Star Ul looks l&a desktop.
i. Thescreen elements are familiar items from a non-electronic desktop, such as paper documents.
ii. Thereare desk accessories, such as clocks and calendars, easily recognizable as such.

2. Theconceptual moddéxiconis comprised of the words used skillfully in the display of information.

G. Otheraspects of a conceptual model areveyad most effectiely by an operational prototype.

1. TheXerox Star concept of drag-and-drop is very difficult tovegnin any form other than prototypical
demonstration.

2. Thedirect manipulation behavior of the Star interface far better illustrated by example yhiorrarof
ontology.

H. Noneof the preceding discussion means that early versions of a concrete interface need look spedifically lik
the final product.

1. Winograd and others say that designers should not be tied to specific forms of interface "widgets".

2. E.g.,don't get stuck in a corentional menu-based Ul, when designing something that showdahetu-
ral language interface.

3. Throughan eolutionary process, the conceptual model isvegad in a succession of interfaces, from



CSC484-508-L4.1 &ye 4

VI.

VII.

storyboard sketches, to illustrated scenarios, to interface prototypes.

I. As a thought experiment -- considerh®&teven Sielbelg presents his conceptual model for avrggcture.
1. Isit with some storyboards and a plot outline?
2. Oris it with some tome about metaphor and analogies?
3. Fromwhat I've read, its the storyboards
4. Heleaves it to the movie critics to wax idiotic about metaphor.

J. Ot consider hav Frank Lloyd Wright comeyed his conceputal model for a building.
1. Hedid it with sketches of the building and its surroundings.
2. Itwas the civil engineers who did the modeling.

Some specific comments on the Johnson and Henderson paper that forms the basis of Section 2.3.1.

A. Hendersorand Johnson profoundly misunderstand conceptual modelingpifundamental ways:
1. therole played by software engineers and others in thdamEment of conceptual modeling principles;
2. theway that concrete exampleefine and convey cnceptual model via affordance.

B. Rearding the first misunderstanding, the authors ertak following statement, in the introduction:

. our experience with our clients indicates that conceptual models of this sagih@rst completely

unknown outside of the HCI commupégpecially among Web desigsend softwae programmers."

1. Irespectfully submit that their experience is bogus.
2. Conceptuaiodels "of this sort" hae been the subject of SE research for we#r@®0 years; to whit

a.
b.

Theuse of metaphors and analogies are part of what SEeddray calleddomain analysis

Representing concepts as objects and operations dates back as far as the early 1970s, in lamguages lik
PSL and SADTand extends straight through to UML 2.0 today.

Relationshipand mappings were also fundamental parts of PSL and S#ell as ER diagrams.

Artificial intelligence people W& been working on similar concepts and notations for ontologies, for
just as long.

3. Johnsorand Henderson may find the SE notations stodgy and too "engineered" yloft éh@bsolutely
nothing as a construeé dternative.

4. Inthe area of modeling, the Johnson and Hendersamrare to learn from software engineers, than the
other way around.

C. Onthe second misunderstanding,ytlvensistently miss the point about the power of concrete examples.
1. Considepne of the first "concepts” thaite -- whether to represent data as a flat list or hieyarch

2. If this is a fundamental and high# concept, then it should be immediatelywimus by looking at some
aspect of the high&l user interface, not in some other "lingua franca" of the designers.

D. Inthe bginning of the papethe authors say that "iMothe systenpresents itselfo users" is does not con-
vey a onceptual design.

1. If it's does not, then the usersvieaeen left out, and by the authors’ own admissiory tamnot be.

2. Furtherif the authors want to say that a storyboard is not in fact a meansvey @mnceptual design,
then thg should gve sme other specific way to do so.

3. They do ot do so, nor do | think tlyecan.

Interface metaphors and analogies.

A. They're fine, howeer:
1. Choosenes that are understandable and compelling to users.



CSC484-508-L4.1 &ye 5

2. Dont over do it.

B. Inthe book, the part on "opposition to using metaphors" is longer than the other paugst that right.

VIII. Interaction types (Section 2.3.4).
A. Thisis some useful information.

B. They present four specific types:
1. Instructing -- users instruct, i.e, command the system to do things.
2. Conversing -- users hee a wo-way dialog with the system.
3. Manipulating -- users open, close, wg) edit data provided by the system.
4. Exploring -- users mee through a large space or virtual environment.

C. Thesaypes are definitely not mutually exchusi
1. Aninteractve g/stem can, and often does provide more than one of these types of interaction.

2. Allowing users to seamlessly progress among tliierdift types is an important part of a well-greged
user experience.

IX. Instructing Interfaces (Pages 65-67)
A. IconicUls are generally easier to use and less error prone than command-language.

B. Goodreasons to use a command-language Ul:
1. Thenumber of instructions is too large to map well to icons.
2. Theinterface needs to be scriptable, e.g., users can write scripts to perfornmnveepeshs

C. Questionableesasons to use a command language Ul:

1. It's easier to implement, e.g.,
a. asmall vending machineggpad, instead of a large back-lit iconieypad
b. aprogram with a simple text Ul, instead of a more complicated GUI

2. It's easer to maintain, e.g.,
a. it's easier to re-map the vending machine code "B2" to a different product;
b. it's easier to maintain a non-GUI program when @ployed on multiple platforms.

D. Here"questionable" means that the Ul itself is not optimal, but there may be other traderaffedrthat
lead to the selection of a sub-optimal Ul.

X. Conversing Interface (Pages 67-70).

A. TheseUls involve atwo-way corversation, and assume therefore that the system has enough knowledge to
communicate effectely with the human.

B. Goodreasons to use a ognsing Ul.
1. Theuser has little or no knowledge of thesigable commands.
2. Thesystem has enough data and intelligence to provide s#exiswers to general questions.

3. "Intelligent"agents are both good and bad examples, dependingiwoablethe agent is to answer a par
ticular users questions effectiely.

C. Badreasons to use a camsing Ul:
1. It's cheap, e.g., if cheaper to hae an automated phone menu than a person or Al systemagianswer.

2. Itlooks cute andeemsntelligent, e.g., numerous online examples that provide Uls that appear te under
stand some form of natural language, but actually do not.



CSC484-508-L4.1 &ye 6

XI. Manipulating Interfaces (Pages 70-75).

A.

TheseUls involve manipulating "real-world" representations of objects, performing operations with actions
that represent real-world manipulations. E.g.,

1. dragginga file icon into a trash can
2. commanding robotic device using a joystick

Thetermdirect manipulatiorrefers to the form of interaction that ismabiquitous in window-based com-
puter Uls.
Goodreasons to use a direct manipulation Ul.

1. Anaction can more efficiently orfettively be performed, e.g., dnéng a graphic shape with a mouse,
rather than typing in i§ geometric coordinates.

2. Adirect-manipulation Ul can be easier to learn.

Reasonsiot to use a direct manipulation Ul.

1. Ittakes (substantially) longer than a simple command, e.g., manual search-and-repkcea Vchange-
all" command.

2. Asufficiently expert user community can be more prodaaiith a command-language Ul.

XIl. Exploring Interfaces (Pages 75-83).

A.
B.
C.

D.

Theseinclude virtual environments, or physical contewtage environments.
Theseare relatvely new forms of interaction, about which designers stillhauch to learn.

Virtual Uls hare keen efective in a rumber of areas, including games, architectuxplagation, and lager-
scale exploration of geographic regions.

They haveyet to tale df in other areas, e.g., "smart homes".

XIll. Theories, models, and frameworks (Section 2.4).

A.

B.

C.

D.

A theory is a high legel explanation of human-computer interaction, based in particular on theories of human
behavior and cognition.

A model is an abstraction of human-computer interaction, typically of a specific aspect, designedd® pro
the basis for design andatuation.

A framework is a prescriptie st of principles and genizational guidelines, designed to provide a broader
view of how to gpproach design andriauation.

Subsequertiook chapters a@r these subjects in further detail.



