
CSC509-S14-L2 Slide1

CSC 509 Lecture Notes Week 2

Assignment 1 Ideas

Concepts Underlying Testing Research

CSC509-S14-L2 Slide2

I. As described in assignment 1 writeup,
ev eryone briefly presents their selected paper.

CSC509-S14-L2 Slide3

II. After the paper presentations,we’ll finish up
testing terminology from Lecture Notes Week 1

CSC509-S14-L2 Slide4

III. Some more specific testing terminology.

A. Consider last five years of ISSTA pubs.

B. There have been 140 papers over these years.

C. Here are the top five keywords used:

CSC509-S14-L2 Slide5

Top ISSTA K eywords, cont’d

1. [automated] test [case] generation (27 times)

2. static analysis (18 times)

3. symbolic execution (11 times)

4. dynamic analysis (10 times)

5. coverage (8 times)

CSC509-S14-L2 Slide6

D. Majority of papers describe testingtools.

1. Many tools generate executable tests.

2. Others perform analysis before, during, after, or
instead of tests.

CSC509-S14-L2 Slide7

IV. So how does a testing tool do these things?

CSC509-S14-L2 Slide8

IV. So how does a testing tool do these things?

A. At the core is aprogram compiler.

CSC509-S14-L2 Slide9

IV. So how does a testing tool do these things?

A. At the core is aprogram compiler.

B. It generates anannotated parse tree,
or comparable structure.

CSC509-S14-L2 Slide10

IV. So how does a testing tool do these things?

A. At the core is aprogram compiler.

B. It generates anannotated parse tree,
or comparable structure.

C. It also generates ansymbol table.

CSC509-S14-L2 Slide11

IV. So how does a testing tool do these things?

A. At the core is aprogram compiler.

B. It generates anannotated parse tree,
or comparable structure.

C. It also generates ansymbol table.

D. The generation, analysis, execution, or coverage
proceduretraverses the tree.

CSC509-S14-L2 Slide12

IV. So how does a testing tool do these things?

A. At the core is aprogram compiler.

B. It generates anannotated parse tree,
or comparable structure.

C. It also generates ansymbol table.

D. The generation, analysis, execution, or coverage
proceduretraverses the tree.

E. During the traversal,tool-specificrules are
applied for the problem at hand.

CSC509-S14-L2 Slide13

V. Consider the following example:

public class Example {
/**
* Return true if the given integer is
* positive and even.
*/

/*@
ensures \result == i > 0 && i % 2 == 0

@*/
public static boolean isPositiveEven(int i) {
if (i > 0 && i % 2 == 0)
return true;

else
return false;

}
}

CSC509-S14-L2 Slide14

VI. (Symbolic) Execution

A. Parse program code.

B. At each node, apply execution rule.

C. E.g., to evaluate ’>’ operator, do this:

CSC509-S14-L2 Slide15

(Symbolic) Execution, cont’d

public Value evalGreaterThan(
TreeNode expr, SymbolTable symtab) {

Value v1 = eval(expr.child1, symtab);
Value v2 = eval(expr.child2, symtab);

return new BooleanValue(v1.val > v2.val)
}

CSC509-S14-L2 Slide16

(Symbolic) Execution, cont’d

D. Difference between regular and symbolic --

1. For regular, lookup var value in symbol table.

2. For symbolic, use string var name, produce
result with string concatenation.

3. E.g., tosymbolicallyevaluate ’>’ operator:

CSC509-S14-L2 Slide17

(Symbolic) Execution, cont’d

public Value evalGreaterThan(
TreeNode expr, SymbolTable symtab) {

Value v1 = eval(expr.child1, symtab);
Value v2 = eval(expr.child2, symtab);

if (isLiteral(v1) && isLiteral(v2)
return new BooleanValue(v1.val > v2.val)

else
return new StringValue(

v1.val + ">" + v2.val);
}

CSC509-S14-L2 Slide18

VII. Blackbox Test Case Generation

A. Apply well-known rules for test cases.

B. E.g., five cases for a numeric range:

1. well below bound

2. 1 below bound

3. at bound

4. 1 above bound

5. well above bound

CSC509-S14-L2 Slide19

Blackbox Test Case Generation, cont’d

C. To implement, e.g. range tests

1. parsepre and post-conditions

2. traverse tree

3. for inequality of the form "x < C", eject test
code like this for each rule-based value:

x = nextRuleBasedValue();
assertTrue(validatePostcond(x,C));

CSC509-S14-L2 Slide20

VIII. Whitebox Test Case Generation

A. Apply similar well-know rules to blackbox.

B. Parsecode& traverse tree.

C. Similar code ejection to blackbox.

CSC509-S14-L2 Slide21

IX. Coverage

A. Annotate program tree with line numbers.

B. Execute tree.

C. At each tree node with line number, increment
it’s execution countannotation.

D. Do post-execution analysis for coverage report.

CSC509-S14-L2 Slide22

X. Static Analysis, e.g., for Smart Regression

A. Trav erse changed portion of parse tree.

B. Determine for each method in symbol table if it
is reachable.

C. If so, mark its tests as requiring re-execution.

CSC509-S14-L2 Slide23

XI. Dynamic Analysis, E.g., Smart Regression

A. Parse test code.

B. For each called test method, memoize its results.

C. If test method called again, use memoized value.

