
CSC509-S14-L4 Slide1

CSC 509 Lecture Notes Week 4

Using Formal Specs to Support Testing (Monday)

Class Project Proposals (Wednesday)



CSC509-S14-L4 Slide2

I. Quick Notes about "How to Read a Paper"

A. A useful little ditty.

B. Particularly like observation about literature
search: "... if you are lucky, [you’ll find] a pointer
to a recent survey paper [and then] you are done."



CSC509-S14-L4 Slide3

II. Very common refrains about manual test case
generation, as performed by humans:

A. It’s tedious.

B. It’s boring.

C. It’s error prone.

D. It may leave important things untested.

E. There’s got to be a better way.



CSC509-S14-L4 Slide4

III. Questions about the readings:

A. In the overall field of software testing, how signif-
icant is the subject matter in the survey paper?

B. How does the JML tools paper relate to the sur-
vey paper?

C. How does the jmlunitng paper relate to the gen-
eral JML tools paper?



CSC509-S14-L4 Slide5

IV. Answers, using a cosmologic metaphor:

A. literature outlined in Lecture Notes 1 covers the
galaxy of software testing.

B. Survey paper covers rather remotegalactic
neighborhood of auto test gen from specs.



CSC509-S14-L4 Slide6

Software testing cosmology, cont’d

C. The JML tools paper talks aboutone small solar
system in the larger neighborhood.

1. Note that in 75 pages survey paper only men-
tions Java a few times in passing.

2. It never references JML specifically.

3. Survey authors evidently don’t think much of
the JML solar system.



CSC509-S14-L4 Slide7

Software testing cosmology, cont’d

4. The jmlunitng paper talks aboutone pretty
small planet in the JML solar system, still in
its formative stages.



CSC509-S14-L4 Slide8

V. My impressions of the survey paper.

A. I rather disagree with their statement at the outset
that "Traditionally formal methods and software
testing have been seen as rivals"

1. I think this invokes some rather old "traditions".

2. Authors go on to say that in a fact for some time
"these approaches are seen as complementary"



CSC509-S14-L4 Slide9

Impressions of survey paper, cont’d

B. Otherwise, I very strongly agree with the authors
statements in the paper introduction, including in
particular these:

1. combined formal analysis of specification and
test could provide very strong guarantees of cor-
rectness

2. information gathered by testing may assist when
using a formal specification



CSC509-S14-L4 Slide10

Impressions of survey paper, cont’d

3. testing can be used in order to provide initial
confidence in a system before effort is expended
in attempting to prove correctness

4. Where it is not cost-effective to produce a proof
of conformance, the developers may gain confi-
dence in the SUT through systematic testing.



CSC509-S14-L4 Slide11

Impressions of survey paper, cont’d

5. this might be complemented by proofs that criti-
cal properties hold

6. a proof of correctness might also use information
derived during testing



CSC509-S14-L4 Slide12

Impressions of survey paper, cont’d

7. Finally, a proof of correctness relies upon a
model of the underlying system and dynamic
testing might be used to indirectly check that
this model holds.

8. An interesting challenge is to generate tests that
are likely to be effective in detecting errors in
the assumptions inherent in a proof.



CSC509-S14-L4 Slide13

Impressions of survey paper, cont’d

C. Overall, they’re espousing one of my favorite
themes in software development --multiple views
of the same artifact can be very helpful indeed

D. in this context we have these multiple views

1. the spec

2. the generated test cases

3. the code

4. a proof of correctness



CSC509-S14-L4 Slide14

VI. "Heavyweight" versus "Lightweight" methods.

A. Heavyweight methods are fully formal, based on
fully mechanized logics such as

1. theorem provers

2. resolution-based model checkers

3. constraint solvers



CSC509-S14-L4 Slide15

Heavyweight versus Lightweight, cont’d

B. Leightweigh methods based on a formal spec, but
lec they do not employ fully or at all the mecha-
nized logics of the heavyweight methods;

1. instead, the lightweight approaches provide some
form of implementation that uses the specifica-
tion as a data structure from which a non-
exhaustive but "good" set of tests are generated.



CSC509-S14-L4 Slide16

VII. On the weightiness of the three papers

A. The survey is pure heavyweight stuff.

B. The JML tools paper talks about some moderately
heavy weight, medium weight, and lightweight
tools.

C. The JMLUnitNG paper self describes its tool as
"extremely lightweight".



CSC509-S14-L4 Slide17

VIII. Snarky swipe at "noweight" informal testing.

A. Based on an ad hoc "think clearly about it" test
generation methodology.

B. Use an ad hoc oracle definition.

C. Use test coverage tools to mitigate ad hocness,
often without full satisfaction.



CSC509-S14-L4 Slide18

IX. Some Highlights of the Survey Paper --

A. Centerpiece of the survey is the focus on five dif-
ferent styles of formal specification:

1. Model-based

2. State machines

3. Concurrency formalisms

4. Hybrid digital/analog

5. Algebraic



CSC509-S14-L4 Slide19

X. Model-Based, e.g., Z, JML

A. Most directly relevant to software in the systems
and information processing domains typical for
end-user applications.

B. Most accessible to programmers.



CSC509-S14-L4 Slide20

XI. FSMs, e.g., State Charts

A. Used in communication systems and other forms
of apps that can be aptly characterized using
FSMs

B. I personally find this form of specification obtuse,
tedious, and not relevant for many forms of end-
user software.



CSC509-S14-L4 Slide21

XII. Concurrency formalisms, e.g., CSP

A. An essential formalism for modeling and testing
concurrent systems.

B. A single-thread formalism such as Z and JML
simply must have some additional mathematical
representation to deal effectively with multi-
threaded software architectures.

C. Another approach to this not mentioned in the
survey is Lamport’stemporal logic.



CSC509-S14-L4 Slide22

XIII. Hybrid math models, e.g., CHARON

A. As a practical mater, this style is more applicable
to systems-level and embedded software than
end-user software.

B. Testing approaches focus on the use of simula-
tion.

C. The survey paper questions the practicality of this
approach in general, and I agree particularly for
end-user software.



CSC509-S14-L4 Slide23

XIV. Algebraic, e.g., OBJ, Maude

A. This is a powerful and elegant approach to speci-
fication.

B. Among other things, the specification is itself
fully executable

1. an execution and a proof are the same thing

2. execution is performed by term reduction in
essentially the same form as term reduction is
used in mechanized algebraic proofs



CSC509-S14-L4 Slide24

Algebraic specs, cont’d

C. The specification is 100% "model free", in that
are are no concrete data models defined.

D. Behavior is defined entirely in terms of an equal-
ity definition of operation behavior, with the only
data model per se being that of aterm.



CSC509-S14-L4 Slide25

Algebraic specs, cont’d

E. To test an algebraic specification, one can use the
same form of inductive partition of inputs as for
model-based specification

F. The fundamental problem with algebraic specs is
that the mapping from the specification to a con-
ventional sequentially-executing program is not at
all straightforward.



CSC509-S14-L4 Slide26

1. With model-based specs, the specification is
predicative annotation that is directly attached to
the program.

2. With a algebraic specification, the specification
is associated the the program at the class level.



CSC509-S14-L4 Slide27

Algebraic specs, cont’d

G. And alas, the mathematics involved in this form
of specification is sufficiently dense and inacces-
sible to most software developers as to render this
approach to specification and subsequently test-
ing impractical.

H. This is a shame really, giv en the supreme ele-
gance of algebraic specification.



CSC509-S14-L4 Slide28

-- Quick Highlights of JML Tools Paper --

A. It describes what’s on offer from the JMl crowd
in addition to automated testing.

B. The majority of high-end research is on verifica-
tion and other forms of static and dynamic analy-
sis.



CSC509-S14-L4 Slide29

-- Highlights of the JMLUnitNG Paper --

A. Describes a tool that generates JUnit-style tests
from JML specs.

B. There are three aspects to such a tool, as outlined
in the survey paper and embodied in this particu-
lar tool (among many others):



CSC509-S14-L4 Slide30

JMLUnitNG, cont’d

1. Choose a spec language -- JML in this case.

2. Choose a well-known test generation technique
-- exhaustive range and input combination in
this case

3. Implement in a existing spec language transla-
tion environment -- java4c in this case



CSC509-S14-L4 Slide31

-- Highlights of Three Different Spec Languages --

XV. There’s clearly a "tower of babel" problem with
the diversity of different specification languages,
all of which do the same thing

A. We’l l look at two model-based languages -- Z and
JML

B. We’l l also have a quick look at an algebraic lan-
guage -- OBJ



CSC509-S14-L4 Slide32

Spec language tower of babel, cont’d

C. There’s no question that the diversity and obtuse-
ness of spec languages is at least one important
factor in the lack of wide-spread adoption.



CSC509-S14-L4 Slide33

XVI. A sample Z spec
paper handout, online at classes/509/examples/lecture4/Stack.z.pdf

XVII. The equivalent JML spec
paper handout, online at classes/509/examples/lecture4/Stack.java

XVIII. JML & Z side-by-side comparison
paper handout, online at classes/509/examples/lecture4/StackZ.java

XIX. The equivalent OBJ spec
paper handout, online at classes/509/examples/lecture4/Stack.obj



CSC509-S14-L4 Slide34

XX. 509 projects in this area

A. I continue to be interested in having an auto-test
generation tool that is usable CSC 307 and 309.

B. The jmlunitng tool is the closest I’ve seen to such
a tool so far.

C. In order to be deployable in 309, in needs some
key improvements:



CSC509-S14-L4 Slide35

Key improvements to jmlunitng, cont’d

1. Upgrade from Java 5 to Java 7 or 8.

2. Eliminate the combinatorially explosive number
of test cases using well-known techniques intro-
duced by Weyuker.

Provide support for full oracle executability,
adapting ideas from a Cal Poly MS thesis by
Paul Corwin.



CSC509-S14-L4 Slide36

Key improvements to jmlunitng, cont’d

D. Summary of the approach to full execution:

1. Refine jmlunitng notion of using constructor
tests to create "worlds" of test fixture objects,
specifically having worlds for each defined data
type.



CSC509-S14-L4 Slide37

Key improvements to jmlunitng, cont’d

2. As in Corwin thesis, implement executability of
unbounded quantifiers by substituting a finite
number of values from type-specific worlds to
bound the range of any unbounded quantifier



CSC509-S14-L4 Slide38

Key improvements to jmlunitng, cont’d

3. E.g.,forall (Stack s ...) is bounded
by the number Stack objects otherwise created
for test generation

4. Another is program transformation of unbounded
quantification to a bounded form, using patterns
employed by humans

5. When such pattern-based transformation cannot
be achieved, then fall back on "finite-world"
mechanism.



CSC509-S14-L4 Slide39

XXI. Review of well-know test generation rules

A. The rules are surprisingly straightforward.

B. They’re employed explicitly or implicitly by
humans when generating tests.

C. Mechanizing them is straightforward as well, one
you’re into the details of the spec language trans-
lation environment.

D. An overview of the rules follows.



CSC509-S14-L4 Slide40

XXII. Black box testing rules



CSC509-S14-L4 Slide41

XXII. Black box testing rules

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.



CSC509-S14-L4 Slide42

XXII. Black box testing rules

A. Provide inputs where the precondition is true,
varying inputs to exercise precond logic.

B. Provide inputs where the precond is false,
if not a by-contract method.



CSC509-S14-L4 Slide43

Black box rules, cont’d

B. For data ranges:



CSC509-S14-L4 Slide44

Black box rules, cont’d

B. For data ranges:

1. Provide inputs below, within, above each pre-
cond range.



CSC509-S14-L4 Slide45

Black box rules, cont’d

B. For data ranges:

1. Provide inputs below, within, above each pre-
cond range.

2. Provide inputs that produce outputs at bottom,
within, at top of each postcond range.



CSC509-S14-L4 Slide46

Black box rules, cont’d



CSC509-S14-L4 Slide47

Black box rules, cont’d

C. With and/or logic, provide test cases that fully
exercise logic.



CSC509-S14-L4 Slide48

Black box rules, cont’d

C. With and/or logic, provide test cases that fully
exercise logic.

1. Provide an input that makes each clause both
true and false.



CSC509-S14-L4 Slide49

Black box rules, cont’d

C. With and/or logic, provide test cases that fully
exercise logic.

1. Provide an input that makes each clause both
true and false.

2. This means 2n test cases, wheren is number of
logical terms.



CSC509-S14-L4 Slide50

Black box rules, cont’d



CSC509-S14-L4 Slide51

Black box rules, cont’d

D. For collection classes:



CSC509-S14-L4 Slide52

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.



CSC509-S14-L4 Slide53

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.

2. Test with one, two elements.



CSC509-S14-L4 Slide54

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.



CSC509-S14-L4 Slide55

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.



CSC509-S14-L4 Slide56

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.



CSC509-S14-L4 Slide57

Black box rules, cont’d

D. For collection classes:

1. Test empty collection.

2. Test with one, two elements.

3. Add substantial number of elements.

4. Delete each element.

5. Repeat add/del sequence.

6. Stress test with order of magnitude greater than
expected size.



CSC509-S14-L4 Slide58

XXIII. 509 Projects in Spec-Based Testing

A. Recap of improvements to JMLUnit[NG]:

1. Reduce combintorially explosive number of test
cases by applying preceding rules.

2. Improve postcond executability (Corwin thesis).

3. Memoize test execution results (Bolef thesis).



CSC509-S14-L4 Slide59

B. Other ideas for a 509 projects in this area:

1. Provide"syntactically sugared" GUI.

2. Provide testing of both spec and code.

3. Generate tests for multiple languages.



CSC509-S14-L4 Slide60

Other ideas, cont’d

4. Translate pseudo-code test cases into compilable
xUnit code (IBM Rex Tool)

5. Generate specs from test cases (requires AI).

6. Generate specs from descriptions (requires
mucho AI, NLP).



CSC509-S14-L4 Slide61

A sample UI for a spec-based testing tool



CSC509-S14-L4 Slide62

Delete Case

Operation: 

Test Plan:

Precondition: 

Postcondition: 

Validate Case Validate All

Description:

Edit Case ...New Case ...

Inputs Outputs Remarks ResultsCase

Spec Validator Spec file: none

Load Spec ... Load Tests ... Save

Browse ...



CSC509-S14-L4 Slide63

Delete Case

Operation: 

Test Plan:

Precondition: 

Postcondition: 

Validate Case Validate All

Description:

Edit Case ...New Case ...

Inputs Outputs Remarks ResultsCase

Spec Validator Spec file: none

Load Spec ... Load Tests ... Save

Browse ...

Enter complete spec here

Generate complete tests here



CSC509-S14-L4 Slide64

Delete Case

Operation: 

Test Plan:

Precondition: 

Postcondition: 

Validate Case Validate All

Description:

Edit Case ...New Case ...

Inputs Outputs Remarks ResultsCase

Spec Validator Spec file: none

Load Spec ... Load Tests ... Save

Browse ...

Generate complete spec here

Enter complete tests here



CSC509-S14-L4 Slide65

Delete Case

Operation: 

Test Plan:

Precondition: 

Postcondition: 

Validate Case Validate All

Description:

Edit Case ...New Case ...

Inputs Outputs Remarks ResultsCase

Spec Validator Spec file: none

Load Spec ... Load Tests ... Save

Browse ...

Enter formalized description here

Generate completish spec here

Generate completish tests here



CSC509-S14-L4 Slide66

XXIV. Additional reading for 509 project.

A. We yruker paper

B. Corwin thesis

C. Korat paper

D. Executable JML specs paper



CSC509-S14-L4 Slide67


