
CSC509-S14-L9 Slide1

CSC 509 Lecture Notes Week 9

The Dream of Formal Verification

or is it Delusion?



CSC509-S14-L9 Slide2

I. Administrati ve Matters

A. Recap of Remaining work:

1. Assignment 6 -- last set of readings.

2. Assignment 7 -- in-class presentations.

3. Assignment 8 -- final project/paper.



CSC509-S14-L9 Slide3

Administrati ve Matters, cont’d

B. Presentation scheduling:

1. See wiki.

2. Note no diff between one and two-person teams.



CSC509-S14-L9 Slide4

Administrati ve Matters, cont’d

C. Final Project Deliverables:

1. See wiki.

2. Tune up brief summary if necessary.



CSC509-S14-L9 Slide5

-- Now onto the Dream--



CSC509-S14-L9 Slide6

II. Mathematical Foundations of Computing

A. Computer hardware and software are both based
on mathematical logic.

B. Founders of computer science were logicians.

C. So were inventors of programming language con-
cepts still in use today.



CSC509-S14-L9 Slide7

III. How does program verification fit into
the scheme of things?

A. Began with modern programming languages.

B. John McCarthy’s 1962 paper
"Towards a mathematical

theory of computation"

C. Robert Floyd’s 1967
"Assigning Meaning to Programs"



CSC509-S14-L9 Slide8

How verification fits in, cont’d

D. Hoare’s 1969
"An Axiomatic Basis for

Computer Programming"

E. Hoare and Wirth’s 1973
"An Axiomatic Definition of the

Programming Language PASCAL"



CSC509-S14-L9 Slide9

IV. How Does Verification Relate to Testing?

A. Testing:show that a program is correct forn
some finite set of inputs.

B. Verification: prove that a program is correct for
all possible inputs.



CSC509-S14-L9 Slide10

Now onto the
"Reliable Without Proof" and

"Verified Software Initiative" papers

Fi rst the 1996 "Without Proof"



CSC509-S14-L9 Slide11

V. Noteworthy citations from the "Reliable" paper:

A. Hmm, he didn’t giv e any.

B. Can he get away with that?



CSC509-S14-L9 Slide12

VI. Who is Hoare guy, anyway?

A. "Sir Tony" to his friends.

B. Among other things:

1. Inventor of Quicksort.

2. Co-Inventor of program verification.

3. Inventor of CSP (mentioned in Week 4 notes).

4. 1980 ACM Turing award winner.



CSC509-S14-L9 Slide13

VII. Some Starter Questions

A. Does Hoare like testing OK, or does he still pine
for formal verification?

B. Back in 1996, how prescient was Hoare about the
TDD thing?



CSC509-S14-L9 Slide14

Some Starter Questions, cont’d

C. Overall, how do Hoare’s analyses say square with
Agile-style testing?

D. Does Hoare say that we can do without formal
methods altogether, or just the proof stuff?

E. We’l l consider these and other questions further ...



CSC509-S14-L9 Slide15

VIII. Section 1 -- Introduction

A. "... in spite of appearances, modern software
engineering practice owes a great deal to the the-
oretical concepts"



CSC509-S14-L9 Slide16

Section 1 -- Introduction, cont’d

B. The plain fact --"the current state of industrial
practice lags behind the research we did in the
past. Twenty years perhaps?"

C. Twenty yearsat least!



CSC509-S14-L9 Slide17

IX. Section 2 -- Management

A. "Above all, the strictest management is needed to
prevent premature commitment to start program-
ming as soon as possible."

B. "This can only lead to a volume of code of
unknown and untestable utility,"

C. Do these statement contradict agile testing??



CSC509-S14-L9 Slide18

Management, cont’d

D. "... inspections, walk throughs, reviews and gates
are required to define important transitions
between all subsequent phases in the project ..."

E. This is precisely SCRUM, though Hoare may
have envisioned it happening monthly rather than
daily.



CSC509-S14-L9 Slide19

Management, cont’d

F. And there’s this -- "... there is now increasing
experience of the benefits of introducing abstract
mathematical concepts and reasoning methods
into the process, right from the beginning."

G. See, e.g., 2009 IEEE Computer article:
"Formal Versus Agile: Survival of the Fittest?"



CSC509-S14-L9 Slide20

Management, cont’d

H. The gist of the paper:

"Success in the use of mathematics for specifica-
tion, design and code reviews does not require
strict formalization of all the proofs."



CSC509-S14-L9 Slide21

Management, cont’d

I. Some appropriate humility:

"It [formal reasoning] is not immune from fail-
ure; for example simple misprints can be surpris-
ingly hard to detect by eye. Fortunately, these are
exactly the kind of error that can be removed by
early tests."



CSC509-S14-L9 Slide22

Management, cont’d

J. Still a bit of a dream

"Informal reasoning among those who are fluent
in the idioms of mathematics is extremely effi-
cient, and remarkably reliable."



CSC509-S14-L9 Slide23

Management, cont’d

K. And finally

"More formal calculation can be reserved for the
most crucial issues, ..., where bugs would be most
dangerous, expensive, and most difficult to diag-
nose by tests."



CSC509-S14-L9 Slide24

X. Section 3 -- Testing

A. "Thorough testing is touchstone of reliability"

B. "Tests are applied as early as possible"

C. "They are designed rigorously"

D. "If a test fails, it is not enough to mend the faulty
product."



CSC509-S14-L9 Slide25

XI. So, how do does testing work so well?

A. Skeptics may still say it doesn’t

B. Per E.W. Dijkstra "program testing can reveal
only the presence of bugs, never their absence"

C. And QA folks say "you cannot test quality into a
product". How then can testing contribute to reli-
ability of programs, theories and products?

D. Is the confidence it gives illusory?



CSC509-S14-L9 Slide26

XII. But it evidently does work.

A. "The resolution of the paradox is well known in
the theory of quality control."

B. "It is to ensure that a test made on a product is
not a test of the product itself, but rather of the
methods that have been used to produce it"



CSC509-S14-L9 Slide27

But it does work., cont’d

C. "The first lesson is that the test strategy must be
laid out in advance."

D. "The real value of tests is not that they detect
bugs in the code, but that they detect inadequacy
in the methods, ... and skills of those who design
and produce the code"



CSC509-S14-L9 Slide28

But it does work., cont’d

E. He goes on to point out the specific benefits of
black box and regression testing (remember this
is 1996).



CSC509-S14-L9 Slide29

XIII. Section 4 -- Debugging

A. He presents a cute Mosquito analogy.

B. Vicious biting mosquitos are killed quickly.

C. Gentle non-biting ones lurk on.

D. Cf. the known "gentle" bugs in, e.g.,gcc



CSC509-S14-L9 Slide30

XIV. Coverage

A. Hoare preaches the virtue of coverage.

B. Did he read an early version of the 1997 Zhu
paper?



CSC509-S14-L9 Slide31

Coverage, cont’d

C. A bit early to have read a draft of the 2009 MS
research paper, but he boldly states their conclu-
sions anyway:

"Equally unfortunately, total coverage is found to
be necessary: more errors continue to be discov-
ered right up to the last line tested."



CSC509-S14-L9 Slide32

Coverage, cont’d

D. He also gets in his bit about OPs --

"... most general-purpose programs are only used
in highly stereotyped ways ..."



CSC509-S14-L9 Slide33

Coverage, cont’d

E. And some more from 2009 --

"Suppose a hundred new errors of this kind are
detected each year. Crude extrapolation suggests
that there must be about half a million such
errors in the code. [Undetected errors] play the
same role as the swarms of the gentle kind of
mosquito that hardly ever bites."



CSC509-S14-L9 Slide34

Coverage, cont’d

F. Ah, but

"The less fortunate corollary is that if all the
errors that are detected are immediately cor-
rected, it would take a thousand years to reduce
the error rate by twenty percent."



CSC509-S14-L9 Slide35

Coverage, cont’d

G. And how little we seemed to have progressed in
the last 20ish years:

"Unfortunately, before that stage is reached, it
often happens that a new version of the system is
delivered, and the error rate shoots up again."



CSC509-S14-L9 Slide36

XV. Section 5 -- Over-engineering

A. He mentionsdefensive programming

B. Also software audits, which are nowadays called
"code reviews".

C. In general, he considers over-engineering to be a
sub-optimal tactic for reliability.



CSC509-S14-L9 Slide37

XVI. Section 6 -- Programming Methodology

A. Things are bit dated here.

B. He talks aboutstructured programming

C. Also the benefits of strong typing (Python folks,
are you listening?)



CSC509-S14-L9 Slide38

’Programming, cont’d

D. And don’t forgetinformation hiding

E. He (tries) to argue that more languages have
ev olved from formally specified progenitor (e.g.,
Algol 60) as opposed to less formal ones (e.g.,
COBOL). Alas,he’s left C out of the mix."



CSC509-S14-L9 Slide39

XVII. Section 7 -- Conclusions

A. He notes again the 20 year gap (at least) between
theory and industrial practice.

B. He laments the fragmentation of researchers into
competing tribes.

C. He describes, in so many concluding words what
will be his 2009 manifesto



CSC509-S14-L9 Slide40

Now onto "Verified Software Initiative"



CSC509-S14-L9 Slide41

XVIII. The 1996 paper conclusions are the direct
lead-in to the 2009 manifesto.

A. What’s needed to make verification happen?



CSC509-S14-L9 Slide42

What’ s needed, cont’d

1. Researcher collaboration.

2. Tools.

3. Industrial partners.

4. More edgimicashun.


