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CSC 509 Lectue Notes Week 9, Part 2

Detalls of
Formal Program Verification
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|. Introductory definitions

A. Testing: shav that a program is correct for
some finite set of inputs.

B. Veification: prove that a program Is correct
for all possible inputs.
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Il. The problems with testing
A. Cannot coer all possible cases
B. Never 100% sure that system is correct.
C. For some systems, this is not good enough.

D. Enter program verification.
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Ill. Practical applications.
A. Proof-carrying code.

1. There are potential problems with code sent
between machines.

a. Code wants to run on foreign host.

b. Host wants to kn@ if code works properly.
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Proof-carrying code, cont'd

2. Terminology:

a. Code producehas code that wants to run
on foreign host.

b. Code consumas the host.

c. Code producer may violapmliciesof code
consumer.
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Proof-carrying code, cont'd

Code Producer Code Consumer
Does
F1o
Native Code arm?
Source load r3, 4(r2)
Program add 12,1411

\ store 1, 0(r7)

store r1, 4(r7)
Compiler [T add r7,0,r3 >

P add 17,817 Execute
beq r3, .-20
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Proof-carrying code, cont’d
3. To lve problem:
a. Code producer compilesd povescode.

b. Proof based on formal policies, defined by
consumer.

c. Producer sends code to consumer.

d. Consumer checks that proof still holds.
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Proof-carrying code, cont'd

Code Producer

Source

Pro&ram

Certifying

Compiler

Hints

Native Code C

load r3, 4(r2)
add r2,rd.r1
store 1, 0(r7)
store 1, 4(r7)

Code Consumer

add r7,0.r3 >
add r7.8.17 EXECUTE
beq r3, .-20
A
OK

Safety Proof
of safe(C)

d-i ¢
¥-i(...
—-r |

Prover

> S N

}
)

——p| Checker

Slidd4
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B. Model checking.
1. Large software exhibits compidehavior.

2. |ldea Is to proe poperties of a model before
It's iImplemented.

3. Noteworthy recent work in avionics.

4. E.g., Rushbys proof of redundangmodel
related to Byzantine failures.



CSC509-L10 Slidd6

C. Formalizing user mental models.

1. With model checking, comptesoftware can
get more reliable.

2. Problems still arise in human user errors.
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Formalizing mental models, cont'd
3. E.g., modern aircraft systems are increas-
iIngly reliable.
a. 70% of problems are human error.
b. Cockpits are highly automated.

c. Pilots can be surprised by system behavior.
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Formalizing mental models, cont'd

4. Formal methods used for this problem:
a. Cockpit control system formalized
b. Pilot mental model formalized
c. Model checking verifies consistenc

d. Inconsistencies help explain human failures
and point to ways to impve g/stem.
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Formalizing mental models, cont'd

5. Used to diagnose a real-life pilot error.

a. It helped explain a (non-fatal) mishap that
had otherwise gone undiagnosed.

b. It pointed to tvo Important impregements
In the cockpit control model.
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V. From the Sublime to the Trivial ...
A. Previous examples address real problems.
B. Proofs are non-trivial.

C. But how the heck do thereally work?

D. We'll havea look at a very simple example.
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V. Avery simple example function.

/*

* Compute factorial of x, for
* positive X, using iteration.
*

* pre: x >= 0

*

* post: return == x|

*

*
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Example, cont’d

Int factorital (int x) {

Nt vy;

y = 1,

while (x > 0) {
X = x - 1
y =y * X

}

return vy,

}

Question: Is this correct?
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VI. Symbolic esaluation

A. In testing schemes, inputs and outputs are
concretevalues.

B. Consider haw we'd test factorial.

C. Table 1 shows typical unit test plan.
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Symbolic esaluation, cont'd

Test No. Input  EXxpected Results

1 Xx=-1 ERROR

2 Xx=0 return =1

3 Xx=1 return =1

4 X=4 return = 24

5 X=06 return = 120

6 Xx=70 | return > 10**100
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Symbolic esaluation, cont'd

D. To test, feed Iin concrete values and check
results (which reeals the bug).

E. Twoimportant questions ...
1. Where do we get expected results?

2. Does it workfor all inputs?
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Symbolic esaluation, cont'd

F. One way to answer these guestions Is to use
symbolicinput and output.

1. Instead of concrete values for input X,
just use the symbol "x".

2. Run the program seral times to see what
symbolic formula emerges.
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Symbolic esaluation, cont'd

G. We'll use the corrected program:
public int factorial (Int x) {

I nt vy;

y = 1;

while (x > 0) {
y =y * X,
X =X - 1;

}

return vy;



Symbolic esaluation, cont'd

H. Detalls (again, focorrectedprogram):
1. Start with symbolic input valuex™.

2. Then start running the function body:

y = 1,
while (x > 0) { // true symbolically
y =y * X

which gves symbolic value ofy =1 * x,
which simplifies to jusy = x.
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Symbolic esaluation, cont’d

3. Some more symbolic computation:

X = X - 1;

}

while (x > 0) { [/ truesymbolically
y =y * X

4. Results in symbolic value* (x - 1) fory.
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Symbolic esaluation, cont’d

5. A bit more
X = x - 1;

}
while (x > 0) { [/ truesymbolically

y =y * X
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Symbolic esaluation, cont’d

which results in ys symbolic value of
x*(x-1)*((x-1)-1)

which simplifies to
X*(X-1)*(x-2)
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Symbolic esaluation, cont’d

6. The idea Is we treat input values as
symbolsnot concrete values.
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Symbolic esaluation, cont'd

|. After N times through the loop:

y=1
l
y=1%X
l
y =x*(x-1)
l
y=X*(x-1) * (x-1-1)
l
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In factorial, cont’d

!
y=x*(x-1) * (x-2) * (x-2)-1)
!

after N times through
factorial loop symbolically
!
y=X*(x-1) *...* (Xx-N)
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Symbolic esaluation, cont'd

J. An informatve symbolic pattern deslops.

K. Also interesting Is the erroneous case.
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Symbolic esaluation, cont'd

y=1
!

y=1*(x-1)
!
y = (x-1) * ((x-1)-1)
!
y =(x-1) * (x-2) * (x-3)
y=(X-1) * (X-2) * ... * (x-1-N)
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Symbolic esaluation, cont'd
L. Here an incorrect formula emerges.
M. Symbolic aluation by hand is way tedious

N. A number of automated tools exist, e.g, the
KeY project from Karlsruhe uwersity:

[ ww. key- proj ect. org/
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VIl. Moving on to formal verification
A. Symbolic al invdves informal analysis.
B. We want mathematical certitude.

C. l.e., a proof that program meets Its spec.
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On to formal verification, cont’d
D. General steps:

1. Defineaxiomaticsemantics for program-
ming language.

2. Define general procedure to assign mean-
INg a program.
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On to formal verification, cont’d

E. Given mantics and verification procedure,
state formal pre and post conditions for all
functions (i.e., methods).
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On to formal verification, cont’d

F. The desired result is
pre L] post,through the function

G. New notation is
pre {function body} post

H. Called a "Hoare triple".

Slidé1
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On to formal verification, cont’d

|. Final step Is to pnge termination condition
(more later).

J. We will now look at a set of verification
rules for a very simple programming lan-
guage.
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VIII. Simple Flowchart Programs
A. Graphical flowchart form.

B. Helpful form for presenting proof rules.
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Simple Flowchart Programs, cont’d
C. Basic constructs are:

1. assignment

2. If-then-else

3. loop

4. function call
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IX. Semantic rules for SFPs

A. The rule of assignment

l £ P(..., expr, ...)

var = expr

l £ P(..., var, ...
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Semantic rules, cont'd

1. Defines meaning in terms of variable sub-
stitution.

2. Precond is deved from postcond by sys-
tematically substitutingar with expr .
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Semantic rules, cont'd

B. if-then-else

true

y

computation1

— Z—— P

—  ifexprthenP(...) or

expr

)

if not expr then Q(. . .)

Y

computation2

- L Q(.

— Z— _R(.

- L—R(..)
Tﬁ— R(...)

Slidé7

)



Semantic rules, cont’d
1. If-then-else defined as logical implication.

2. Syntactically sugared logical implication,
If XthenY
IS equvalent to
Ximplies Y

3. Predicate#$(...), Q(...)derved fromR(...)
by applying proof rules for computatipn

and computatiop) resp.
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Semantic rules, cont'd

C. The rule for loops

Y . .
»@ ———  programmer-supplied loop condition,

and derived verification conditions

0 false
e

true
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Semantic rules, cont'd

1. Loop rule requires programmer to supply
loop Invariant

2. It's in adition to pre- and postconds.
3. Invariant is true throughout loop body.

4. Stated In terms of variables used and modi-
fled In loop body.
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X. Application of semantic rules

A. Goal Is to pree
pre {function body} post

B. Precond implies postcordroughbody.

C. Semantic rules all@ us b push predicates
througha program.
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X|. Backwards substitution technique
A. A kind of symbolic galuation.
B. Evaluating predicates rather than values.

C. In theory we can evaluate either forward or
backward
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Backwards substitution, cont’d
D. The steps:
1. Annotate program with pre and post conds.
2. At each loop, provide wariant.

3. Take postcond angush it throughpro-
gram.
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Semantic rules, cont'd
4. When a "pushed-through" predicate "runs
Into" a supplied predicate, wevma
verification condition (VC)

5. After all VCs are preed, program proof Is
complete, except for termination.

6. We won'’t deal with proof of termination.
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XIl. A stunning result

A. Here’s the program:

I nt Duh() {
/*
* Add 2 to 2 and return
the result.

pre: ;
post: return == 4;

* ok ok * Ok *
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Stunning result, cont'd

Nt X,V,;

X = 2
y = X + 2;
return vy,
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Stunning result, cont'd

B. Here are the steps of the proof:
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l Z Pre: true

X
[
N

y=X+2
return =y

l z Post: return ==
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Pre: true
X=2
Y
y=X+2
l ; y p——
return =y

l . Post: return ==
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£ Pre: true

X=2
4 X+2 ==
Y
y=X+2
return =y

lﬁ Post: return ==
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z Pre: true
: VC: if true then 2+2 ==
/ 2+2 ==
Y
X=2
l : X+2 ==
y=X+2
l y —_
return =y

l / Post: return ==
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XIIl. A stunned result

A. Let's try to prove

I nt Real | yDuh() {
/*

* Add 2 to 3 and return
the result.

pre: ;
post: return == 4;
/

* ok F Kk *
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Stunned result, cont’'d

Nt X,V,;
X = 2
y = X + 3;

return = vy;
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Stunned result, cont’'d

B. Here’s the proof attempt
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z Pre: true
: VC: if true then 2+3 ==
/ 2+3 ==
Y
X=2
l : X+3 ==
y=x+3
l y —_
return =y

l / Post: return ==
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Stunned result, cont’'d

C. We ae left with the VC

truelJ4=2+3 =>
true ] false

which Is false.

D. In general, proofs will go wrong at VC
nearest to statement in which error occurs.
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XIV. Implication proofs
A. Recall truth table for logical implication.
B. pUgis only false ifp Is true andj is false.

C. In program verification, we assumes
true.

D. Hence, VC proof will fail ifq is false.
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XV. Proof of factorial example.
A. The (correct) definition:

Int factorial (int N) {
/*
* Compute factorial of x, for

* positive X, using iteration.
*

* pre: N>=0

*

* post: return == N

*

*
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Proof of factorial, cont’d

Int x,y; /* Tenp vars */

X = N

y = 1;

while (x > 0) {
y =Y X,
X = x - 1;

]

return vy,
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Proof of factorial, cont'd
B. Slightly different than earlier version.

C. Figure 1 outlines the proof.
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T Z— VCLlL:ifN>=0thenl*N!'==Nland N>=0
T Z—— 1*NI==N!'andN>=0

|

x=N

T Z—— 1*xI==Nland x>=0

=i v Loop: y * xI'==N! and x>=0

T Z—__ vC2ify*x!==N!and x >= 0 then
if x>0theny*x*(x-1)! == Nl'and (x-1) >=0

T Z—_ VC3ify*x!'==N!and x >= 0 then
if x<= 0 theny == N!

// y == N! // Post: return == N!

return=y |——»

true

T L——— y*x*(x-1)! == Nland (x-1) >= 0

y=y*x

T Z——— y*(x-1)!==N!and (x-1) >= 0

x=x-1 FONT LEGEND: - —
e Programmer-Supplied Condition

@ Verification Condition

@ Derived Asserition
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XVI. Logical derivation of “y * xI = N!”

A. At top of loops, what relationship should
exist between loop variables?

B. Characterizes theeaningof the loop.

C. For fact, meaning is something like
“y approximatedN!”.



CSC509-L10 Slidé3

Derivation of “y * x! = N!”, cont’d

D. More precisely,
y R f(X) = N!
for some relation R; In this case,
R Is multiplication, I.e.,
y *f(X) = NI

E. Sowhatis f(x)? l.e., Mmuch sly of N! is
y at /me arbitrary point k through the
loop?
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Derivation of “y * x! = N!”, cont’d

It looks like y Is gowing by a multiplicatre
factor of x each time through,

y=X*(x-1)* (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!

F. lLe.,y*x! =N!
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Derivation of “y * x! = N!”, cont’d

G. This reasoning is typical for loop assertions.

H. An alternatve is to tlse symbolic eauation.
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XVII. Further tips on doing proofs
A. Often, VC proofs not that difficult.
B. Use simple algebraic formula reduction.

C. 141 book has rules.
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Further tips on doing proofs, cont’d

D. Some rules:

1. if tthen P1 else P2 <=>
(t L P1) and (not 1 P2)

2. Iftthentand P <=>
Iftthen P

3. iIftl then if t2 then P <=>
If t1 and t2 then P

4. tand (if t then P) => P(modus ponens)
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XVIIl. Factorial VC's

Slidé8

A. Obligated to pree each VC.

B. VC1 is trivial.

C. Proof of factorial VC2:

If (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N!
and (x-1)>=0 =>

If (y*x! == NI anc
If (y*x! == NI anc

If (y*x! == NI anc
true

x>=0) t
x>=0) t
x>=0) t

nen if (x>0) y*x! == Nl and x>=1 =>
nen if (x>0) y*x! == NI =>

nen y*x! == N!and x>0 =>
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Factorial VC’s, cont’d

D. Proof of factorial VC3:

If (y*x!' == N and x>=0) then if (x<=0) then y==N! =>
If (y*x! == N! and x==0) then y==N! =>

If (y*O! == N!) then y==N! =>

If (y*1 == N!) then y==N! =>

true
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XIX. Possible errors in factorial
A. Transpose loop body statements.

B. We'll get erroneous VC3:

y*xI'=N! and x>0 and x>0 J y *(x-1) * (x-1)! = N!
and x-1>0 =

y*xI'=N!and x>00 y*(x-1) * (x-1)! = N! =>

no go
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Possible errors, cont’d

C. “x=0" (instead of strictly > 0)

y*xI=N!and x0 and - (x=0) L y=N! =>
y*xI=N! and x>0 and x<O0 J y=N! =>
no go
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XX. Automatic derivation of loop invariants
A. A mechanical technique

B. Looks like this:
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Automatic loop invariants, cont’'d

y = NI
l
y *x=N!
l
y*X*(x-1) = N!
l
y*X*(x-1)* (x-2) = N!
l
y*x*(x-1) * (x-2) * (x-3)= N!
l
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Automatic loop invariants, cont’'d

l
y*X*(x-1)* ... * (X-N) = N!
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Automatic loop invariants, cont’'d

C. Inspecting result, notice relationship
y*xI'=NL

D. This is theloop invariant.

E. Also interesting to look at erroneous case.
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Automatic loop invariants, cont’'d

y = N!

y* (x-ll) = N!
y*(x-1) *l(x-2) = N!
y*(x-1)* (X-lZ) *(x-3) = N!
l
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Automatic loop invariants, cont’'d

l
y* (X'l) * (X-2) *LLx (X-N) = N!
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Automatic loop invariants, cont’'d

F. In erroneous case, symboliakl eads to
wrong loop ivariant.

G. Will ultimately cause verification to falil.
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XXI. Verification rule for function calls

l Z Pre(f) and P(..., Post(f), ...)
var = f(...);
l . P(..., Post(var), ...)

wherePost(var)is postcond of function f In
whichvar appearsPost(f) Is postcond of f
with appropriate variable substitution.
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Rule for function calls, cont’d
A. Substituting function precond for postcond.

B. Recall two methods to ensure precond is
met:

1. Exceptions thrown by function.

2. Verify function will never be @lled if is
precond Is false.

C. Were now In a position to do the latter.
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XXII.  Verify that factorial is never called
with false precond.
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true

return =y

l T Z— post
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Detalls of the proof:

Label Predi cate
VC. true => forall (x: 1nteger)
| f (x>=0) then x!==x! else x==x
=>
true
Pre: true
P5: forall (x: 1nteger)

| f (x>=0) then x!==x! else x==
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Detalls of proof, cont'd:

P4 1 f (x>=0) then
1 f (x>=0) then x!==x! else x!==
el se
1 f (x>=0) then y==x! el se x==x
=>
1 f (x>=0) then x!==x! else x==x

P3: 1 f (x>=0) then y==x! el se x==x
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Detalls of proof, cont'd:

P2: | f (x>=0) then x!==x! else x!==x
P1: 1 f (x>=0) then y==x! el se y==x

Post : | f (x>=0) then return==x! else return==



CSC509-L10 Slid®6

XXIII. Partial versus total correctness

A. Preceding methodology demonstrgias-
tial correctness.

B. Program is correctf and only it termi-
nates

C. Total correctness requires additional proof
of termination.

D. Generally ivolves an induction.
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XXIV. Verif’'n and programming style
A. Certain stylistic rules must be obeyed.

B. A summary:
1. Functions cannot a sde effects.
2. Input parameters cannot be modified.

3. Restricted control fMy constructs.
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XXV. Some critical questions
A. Can it scale up?
B. Why hasnt it caught on yet?

C. When will it catch on?
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Critical questions, cont’d

1. when software engineers regeiaequate
training in formal methods

2. when production-quality tools become
avallable

3. when software users get sufficiently sick of
crapy products
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Critical questions, cont’d

D. Verification tools include:
1. formal spec languages
2. automatic inariant generators

3. automatic theorem pvers

E. Tools used by researchers andwa tem-
mercial deelopers.
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XXVI. Optimistic conclusion-- it will happen,

when some or all of abe mnditions are
met.



