
CSC509-L10 Slide1

CSC 509 Lecture Notes Week 9, Part 2

Details of
Formal Program Verification

CSC509-L10 Slide2

I. Introductory definitions

CSC509-L10 Slide3

I. Introductory definitions

A. Testing:show that a program is correct for
some finite set of inputs.

CSC509-L10 Slide4

I. Introductory definitions

A. Testing:show that a program is correct for
some finite set of inputs.

B. Verification: prove that a program is correct
for all possible inputs.

CSC509-L10 Slide5

II. The problems with testing

CSC509-L10 Slide6

II. The problems with testing

A. Cannot cover all possible cases

CSC509-L10 Slide7

II. The problems with testing

A. Cannot cover all possible cases

B. Never 100% sure that system is correct.

CSC509-L10 Slide8

II. The problems with testing

A. Cannot cover all possible cases

B. Never 100% sure that system is correct.

C. For some systems, this is not good enough.

CSC509-L10 Slide9

II. The problems with testing

A. Cannot cover all possible cases

B. Never 100% sure that system is correct.

C. For some systems, this is not good enough.

D. Enter program verification.

CSC509-L10 Slide10

III. Practical applications.

A. Proof-carrying code.

1. There are potential problems with code sent
between machines.

a. Code wants to run on foreign host.

b. Host wants to know if code works properly.

CSC509-L10 Slide11

Proof-carrying code, cont’d

2. Terminology:

a. Code producerhas code that wants to run
on foreign host.

b. Code consumeris the host.

c. Code producer may violatepoliciesof code
consumer.

CSC509-L10 Slide12

Proof-carrying code, cont’d

CSC509-L10 Slide13

Proof-carrying code, cont’d

3. To solve problem:

a. Code producer compilesand provescode.

b. Proof based on formal policies, defined by
consumer.

c. Producer sends code to consumer.

d. Consumer checks that proof still holds.

CSC509-L10 Slide14

Proof-carrying code, cont’d

CSC509-L10 Slide15

B. Model checking.

1. Large software exhibits complex behavior.

2. Idea is to prove properties of a model before
it’s implemented.

3. Noteworthy recent work in avionics.

4. E.g., Rushby’s proof of redundancy model
related to Byzantine failures.

CSC509-L10 Slide16

C. Formalizing user mental models.

1. With model checking, complex software can
get more reliable.

2. Problems still arise in human user errors.

CSC509-L10 Slide17

Formalizing mental models, cont’d

3. E.g., modern aircraft systems are increas-
ingly reliable.

a. 70% of problems are human error.

b. Cockpits are highly automated.

c. Pilots can be surprised by system behavior.

CSC509-L10 Slide18

Formalizing mental models, cont’d

4. Formal methods used for this problem:

a. Cockpit control system formalized

b. Pilot mental model formalized

c. Model checking verifies consistency.

d. Inconsistencies help explain human failures
and point to ways to improve system.

CSC509-L10 Slide19

Formalizing mental models, cont’d

5. Used to diagnose a real-life pilot error.

a. It helped explain a (non-fatal) mishap that
had otherwise gone undiagnosed.

b. It pointed to two important improvements
in the cockpit control model.

CSC509-L10 Slide20

IV. From the Sublime to the Trivial ...

A. Previous examples address real problems.

B. Proofs are non-trivial.

C. But how the heck do they really work?

D. We’l l hav ea look at a very simple example.

CSC509-L10 Slide21

V. A very simple example function.

/*
* Compute factorial of x, for
* positive x, using iteration.
*
* pre: x >= 0
*
* post: return == x!
*
*/

CSC509-L10 Slide22

Example, cont’d

int factorial(int x) {
int y;
y = 1;
while (x > 0) {

x = x - 1;
y = y * x;

}
return y;

}

Question: Is this correct?

CSC509-L10 Slide23

VI. Symbolic evaluation

A. In testing schemes, inputs and outputs are
concretevalues.

B. Consider how we’d test factorial.

C. Table 1 shows typical unit test plan.

CSC509-L10 Slide24

Symbolic evaluation, cont’d

Test No. Input Expected Results

1 x = -1 ERROR
2 x = 0 return = 1
3 x = 1 return = 1
4 x = 4 return = 24
5 x = 6 return = 120
6 x = 70 return > 10**100

CSC509-L10 Slide25

Symbolic evaluation, cont’d

D. To test, feed in concrete values and check
results (which reveals the bug).

E. Tw o important questions ...

1. Where do we get expected results?

2. Does it workfor all inputs?

CSC509-L10 Slide26

Symbolic evaluation, cont’d

F. One way to answer these questions is to use
symbolicinput and output.

1. Instead of concrete values for input x,
just use the symbol "x".

2. Run the program several times to see what
symbolic formula emerges.

CSC509-L10 Slide27

Symbolic evaluation, cont’d

G. We’l l use the corrected program:

public int factorial(int x) {
int y;
y = 1;
while (x > 0) {

y = y * x;
x = x - 1;

}
return y;

}

CSC509-L10 Slide28

Symbolic evaluation, cont’d

H. Details (again, forcorrectedprogram):

1. Start with symbolic input value "x".

2. Then start running the function body:

y = 1;
while (x > 0) { // true symbolically

y = y * x;

which gives symbolic value ofy = 1 * x,
which simplifies to justy = x.

CSC509-L10 Slide29

Symbolic evaluation, cont’d

3. Some more symbolic computation:

x = x - 1;
}
while (x > 0) { // true symbolically

y = y * x;

4. Results in symbolic valuex * (x - 1) for y.

CSC509-L10 Slide30

Symbolic evaluation, cont’d

5. A bit more

x = x - 1;
}
while (x > 0) { // true symbolically

y = y * x;

CSC509-L10 Slide31

Symbolic evaluation, cont’d

which results in y’s symbolic value of

x * (x - 1) * ((x - 1) - 1)

which simplifies to

x * (x - 1) * (x - 2)

CSC509-L10 Slide32

Symbolic evaluation, cont’d

6. The idea is we treat input values as
symbols, not concrete values.

CSC509-L10 Slide33

Symbolic evaluation, cont’d

I. After N times through the loop:

y = 1
↓

y = 1 * x
↓

y = x * (x-1)
↓

y = x * (x-1) * (x-1-1)
↓

CSC509-L10 Slide34

In factorial, cont’d

↓
y = x * (x-1) * (x-2) * ((x-2)-1)

↓
...

after N times through
factorial loop symbolically

↓
y = x * (x-1) * ... * (x-N)

CSC509-L10 Slide35

Symbolic evaluation, cont’d

J. An informative symbolic pattern develops.

K. Also interesting is the erroneous case.

CSC509-L10 Slide36

Symbolic evaluation, cont’d

y = 1
↓

y = 1 * (x-1)
↓

y = (x-1) * ((x-1)-1)
↓

y = (x-1) * (x-2) * (x-3)
...
↓

y = (x-1) * (x-2) * ... * (x-1-N)

CSC509-L10 Slide37

Symbolic evaluation, cont’d

L. Here an incorrect formula emerges.

M. Symbolic evaluation by hand is way tedious

N. A number of automated tools exist, e.g, the
KeY project from Karlsruhe university:

/www.key-project.org/

CSC509-L10 Slide38

VII. Moving on to formal verification

A. Symbolic eval inv olves informal analysis.

B. We want mathematical certitude.

C. I.e., a proof that program meets its spec.

CSC509-L10 Slide39

On to formal verification, cont’d

D. General steps:

1. Defineaxiomaticsemantics for program-
ming language.

2. Define general procedure to assign mean-
ing a program.

CSC509-L10 Slide40

On to formal verification, cont’d

E. Given semantics and verification procedure,
state formal pre and post conditions for all
functions (i.e., methods).

CSC509-L10 Slide41

On to formal verification, cont’d

F. The desired result is

pre ⊃ post,through the function

G. New notation is

pre {function body} post

H. Called a "Hoare triple".

CSC509-L10 Slide42

On to formal verification, cont’d

I. Final step is to prove termination condition
(more later).

J. We will now look at a set of verification
rules for a very simple programming lan-
guage.

CSC509-L10 Slide43

VIII. Simple Flowchart Programs

A. Graphical flowchart form.

B. Helpful form for presenting proof rules.

CSC509-L10 Slide44

Simple Flowchart Programs, cont’d

C. Basic constructs are:

1. assignment

2. if-then-else

3. loop

4. function call

CSC509-L10 Slide45

IX. Semantic rules for SFPs

A. The rule of assignment

var = expr

P(..., expr, ...)

P(..., var, ...)

CSC509-L10 Slide46

Semantic rules, cont’d

1. Defines meaning in terms of variable sub-
stitution.

2. Precond is derived from postcond by sys-
tematically substitutingvar with expr.

CSC509-L10 Slide47

Semantic rules, cont’d

B. if-then-else

P(. . .) Q(. . .)

expr

if expr then P(. . .) or
if not expr then Q(. . .)

true false

R(. . .)

R(. . .) R(. . .)

computation1 computation2

CSC509-L10 Slide48

Semantic rules, cont’d

1. If-then-else defined as logical implication.

2. Syntactically sugared logical implication,

if X then Y

is equivalent to

X implies Y

3. PredicatesP(...), Q(...)derived fromR(...)
by applying proof rules for computation1
and computation2, resp.

CSC509-L10 Slide49

Semantic rules, cont’d

C. The rule for loops

expr

true

. . .false

. .
 .

. .
 .

programmer-supplied loop condition,
and derived verification conditions

CSC509-L10 Slide50

Semantic rules, cont’d

1. Loop rule requires programmer to supply
loop invariant.

2. It’s in addition to pre- and postconds.

3. Invariant is true throughout loop body.

4. Stated in terms of variables used and modi-
fied in loop body.

CSC509-L10 Slide51

X. Application of semantic rules

A. Goal is to prove

pre {function body} post

B. Precond implies postcondthroughbody.

C. Semantic rules allow us to push predicates
througha program.

CSC509-L10 Slide52

XI. Backwards substitution technique

A. A kind of symbolic evaluation.

B. Evaluating predicates rather than values.

C. In theory, we can evaluate either forward or
backward

CSC509-L10 Slide53

Backwards substitution, cont’d

D. The steps:

1. Annotate program with pre and post conds.

2. At each loop, provide invariant.

3. Take postcond andpush it throughpro-
gram.

CSC509-L10 Slide54

Semantic rules, cont’d

4. When a "pushed-through" predicate "runs
into" a supplied predicate, we have a
verification condition (VC).

5. After all VCs are proved, program proof is
complete, except for termination.

6. We won’t deal with proof of termination.

CSC509-L10 Slide55

XII. A stunning result

A. Here’s the program:

int Duh() {
/*
* Add 2 to 2 and return
* the result.
*
* pre: ;
* post: return == 4;
*
*/

CSC509-L10 Slide56

Stunning result, cont’d

int x,y;

x = 2;
y = x + 2;
return y;

}

CSC509-L10 Slide57

Stunning result, cont’d

B. Here are the steps of the proof:

CSC509-L10 Slide58

x = 2

Pre: true

y = x + 2

return = y

Post: return == 4

CSC509-L10 Slide59

x = 2

Pre: true

y = x + 2

return = y

Post: return == 4

y == 4

CSC509-L10 Slide60

x = 2

Pre: true

y = x + 2

return = y

Post: return == 4

y == 4

x+2 == 4

CSC509-L10 Slide61

x = 2

2+2 == 4

x+2 == 4

y = x + 2

y == 4

return = y

Post: return == 4

Pre: true

VC: if true then 2+2 == 4

CSC509-L10 Slide62

XIII. A stunned result

A. Let’s try to prove

int ReallyDuh() {
/*
* Add 2 to 3 and return
* the result.
*
* pre: ;
* post: return == 4;
*/

CSC509-L10 Slide63

Stunned result, cont’d

int x,y;
x = 2;
y = x + 3;
return = y;

}

CSC509-L10 Slide64

Stunned result, cont’d

B. Here’s the proof attempt

CSC509-L10 Slide65

x = 2

2+3 == 4

x+3 == 4

y = x + 3

y == 4

return = y

Post: return == 4

Pre: true

VC: if true then 2+3 == 4

CSC509-L10 Slide66

Stunned result, cont’d

C. We are left with the VC

true ⊃ 4 == 2 + 3 ==>
true ⊃ false

which is false.

D. In general, proofs will go wrong at VC
nearest to statement in which error occurs.

CSC509-L10 Slide67

XIV. Implication proofs

A. Recall truth table for logical implication.

B. p ⊃ q is only false ifp is true andq is false.

C. In program verification, we assumep is
true.

D. Hence, VC proof will fail ifq is false.

CSC509-L10 Slide68

XV. Proof of factorial example.

A. The (correct) definition:

int factorial(int N) {
/*
* Compute factorial of x, for
* positive x, using iteration.
*
* pre: N >= 0
*
* post: return == N!
*
*/

CSC509-L10 Slide69

Proof of factorial, cont’d

int x,y; /* Temp vars */

x = N;
y = 1;
while (x > 0) {

y = y * x;
x = x - 1;

}
return y;

}

CSC509-L10 Slide70

Proof of factorial, cont’d

B. Slightly different than earlier version.

C. Figure 1 outlines the proof.

CSC509-L10 Slide71

VC1: if N >= 0 then 1 * N! == N! and N >= 0

x > 0

true

false

Loop: y * x! == N! and x >= 0

x = N

1 * x! == N! and x >= 0

y = 1

y * x * (x-1)! == N! and (x-1) >= 0

y = y * x

y * (x-1)! == N! and (x-1) >= 0

x = x - 1

1 * N! == N! and N >= 0

return = y

VC2: if y * x! == N! and x >= 0 then
 if x > 0 then y * x * (x-1)! == N! and (x-1) >= 0

VC3: if y * x! == N! and x >= 0 then
 if x<= 0 then y == N!

Post: return == N!y == N!

Pre: N >= 0

Programmer-Supplied Condition
Verification Condition

Derived Asserition

FONT LEGEND:

CSC509-L10 Slide72

XVI. Logical derivation of ‘‘y * x! = N!’’

A. At top of loops, what relationship should
exist between loop variables?

B. Characterizes themeaningof the loop.

C. For fact, meaning is something like
‘‘ y approximatesN!’’.

CSC509-L10 Slide73

Derivation of ‘‘y * x! = N!’’, cont’d

D. More precisely,

y R f(x) = N!

for some relation R; in this case,
R is multiplication, i.e.,

y * f (X) = N!

E. So what is f(x)? I.e., how much shy of N! is
y at some arbitrary point k through the
loop?

CSC509-L10 Slide74

Derivation of ‘‘y * x! = N!’’, cont’d

It looks like y is growing by a multiplicative
factor of x each time through,

y = x * (x-1) * (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!

F. I.e., y * x! = N!

CSC509-L10 Slide75

Derivation of ‘‘y * x! = N!’’, cont’d

G. This reasoning is typical for loop assertions.

H. An alternative is to use symbolic evaluation.

CSC509-L10 Slide76

XVII. Further tips on doing proofs

A. Often, VC proofs not that difficult.

B. Use simple algebraic formula reduction.

C. 141 book has rules.

CSC509-L10 Slide77

Further tips on doing proofs, cont’d

D. Some rules:

1. if t then P1 else P2 <=>
(t ⊃ P1) and (not t⊃ P2)

2. if t then t and P <=>
if t then P

3. if t1 then if t2 then P <=>
if t1 and t2 then P

4. t and (if t then P) => P(modus ponens)

CSC509-L10 Slide78

XVIII. Factorial VC’s

A. Obligated to prove each VC.

B. VC1 is trivial.

C. Proof of factorial VC2:

if (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N!
and (x-1)>=0 =>

if (y*x! == N! and x>=0) then if (x>0) y*x! == N! and x>=1 =>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! =>
if (y*x! == N! and x>=0) then y*x! == N! and x>0 =>
true

CSC509-L10 Slide79

Factorial VC’s, cont’d

D. Proof of factorial VC3:

if (y*x! == N and x>=0) then if (x<=0) then y==N! =>
if (y*x! == N! and x==0) then y==N! =>
if (y*0! == N!) then y==N! =>
if (y*1 == N!) then y==N! =>
true

CSC509-L10 Slide80

XIX. Possible errors in factorial

A. Transpose loop body statements.

B. We’l l get erroneous VC3:

y * x! = N ! and x≥0 and x>0 ⊃ y * (x-1) * (x-1)! = N!
and x-1≥ 0 =>

y * x! = N ! and x>0 ⊃ y * (x-1) * (x-1)! = N! =>
no go

CSC509-L10 Slide81

Possible errors, cont’d

C. ‘‘ x ≥ 0’’ (instead of strictly > 0)

y * x! = N ! and x≥0 and ¬ (x≥0) ⊃ y = N! =>
y * x! = N ! and x≥0 and x<0 ⊃ y = N! =>
no go

CSC509-L10 Slide82

XX. Automatic derivation of loop invariants

A. A mechanical technique

B. Looks like this:

CSC509-L10 Slide83

Automatic loop invariants, cont’d

y = N!
↓

y * x = N!
↓

y * x * (x-1) = N!
↓

y * x * (x-1) * (x-2) = N!
↓

y * x * (x-1) * (x-2) * (x-3)= N!
↓
...

CSC509-L10 Slide84

Automatic loop invariants, cont’d

...
↓

y * x * (x-1) * ... * (x-N) = N!

CSC509-L10 Slide85

Automatic loop invariants, cont’d

C. Inspecting result, notice relationship
y * x! = N !.

D. This is theloop invariant.

E. Also interesting to look at erroneous case.

CSC509-L10 Slide86

Automatic loop invariants, cont’d

y = N!
↓

y * (x-1) = N!
↓

y * (x-1) * (x-2) = N!
↓

y * (x-1) * (x-2) * (x-3) = N!
↓
...

CSC509-L10 Slide87

Automatic loop invariants, cont’d

...
↓

y * (x-1) * (x-2) * ... * (x-N) = N!

CSC509-L10 Slide88

Automatic loop invariants, cont’d

F. In erroneous case, symbolic eval leads to
wrong loop invariant.

G. Will ultimately cause verification to fail.

CSC509-L10 Slide89

XXI. Verification rule for function calls

var = f(...);

Pre(f) and P(..., Post(f), ...)

P(..., Post(var), ...)

wherePost(var) is postcond of function f in
whichvar appears;Post(f) is postcond of f
with appropriate variable substitution.

CSC509-L10 Slide90

Rule for function calls, cont’d

A. Substituting function precond for postcond.

B. Recall two methods to ensure precond is
met:

1. Exceptions thrown by function.

2. Verify function will never be called if is
precond is false.

C. We’re now in a position to do the latter.

CSC509-L10 Slide91

XXII. Verify that factorial is never called
with false precond.

CSC509-L10 Slide92

y = fact(x)

P2

y = x

P3

x>=0
true false

P1

P1 P1

P5

Pre

P4

x = readint()

Post

return = y

VC

CSC509-L10 Slide93

Details of the proof:

Label Predicate

VC: true => forall (x: integer)
if (x>=0) then x!==x! else x==x

=>
true Induction

Pre: true

P5: forall (x: integer)
if (x>=0) then x!==x! else x==x

CSC509-L10 Slide94

Details of proof, cont’d:

P4: if (x>=0) then
if (x>=0) then x!==x! else x!==x

else
if (x>=0) then y==x! else x==x

=>
if (x>=0) then x!==x! else x==x

P3: if (x>=0) then y==x! else x==x

CSC509-L10 Slide95

Details of proof, cont’d:

P2: if (x>=0) then x!==x! else x!==x

P1: if (x>=0) then y==x! else y==x

Post: if (x>=0) then return==x! else return==x

CSC509-L10 Slide96

XXIII. Partial versus total correctness

A. Preceding methodology demonstratespar-
tial correctness.

B. Program is correct,if and only it termi-
nates.

C. Total correctness requires additional proof
of termination.

D. Generally involves an induction.

CSC509-L10 Slide97

XXIV. Verif ’n and programming style

A. Certain stylistic rules must be obeyed.

B. A summary:

1. Functions cannot have side effects.

2. Input parameters cannot be modified.

3. Restricted control flow constructs.

CSC509-L10 Slide98

XXV. Some critical questions

A. Can it scale up?

B. Why hasn’t it caught on yet?

C. When will it catch on?

CSC509-L10 Slide99

Critical questions, cont’d

1. when software engineers receive adequate
training in formal methods

2. when production-quality tools become
available

3. when software users get sufficiently sick of
crappy products

CSC509-L10 Slide100

Critical questions, cont’d

D. Verification tools include:

1. formal spec languages

2. automatic invariant generators

3. automatic theorem provers

E. Tools used by researchers and a few com-
mercial developers.

CSC509-L10 Slide101

XXVI. Optimistic conclusion -- it will happen,

when some or all of above conditions are
met.

