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CSC 509 Lecture Notes Week 9, Part 2

Details of
Formal Program Verification
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I. Introductory definitions
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some finite set of inputs.
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I. Introductory definitions

A. Testing:show that a program is correct for
some finite set of inputs.

B. Verification: prove that a program is correct
for all possible inputs.
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II. The problems with testing
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II. The problems with testing

A. Cannot cover all possible cases

B. Never 100% sure that system is correct.

C. For some systems, this is not good enough.

D. Enter program verification.
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III. Practical applications.

A. Proof-carrying code.

1. There are potential problems with code sent
between machines.

a. Code wants to run on foreign host.

b. Host wants to know if code works properly.
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Proof-carrying code, cont’d

2. Terminology:

a. Code producerhas code that wants to run
on foreign host.

b. Code consumeris the host.

c. Code producer may violatepoliciesof code
consumer.
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Proof-carrying code, cont’d
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Proof-carrying code, cont’d

3. To solve problem:

a. Code producer compilesand provescode.

b. Proof based on formal policies, defined by
consumer.

c. Producer sends code to consumer.

d. Consumer checks that proof still holds.
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Proof-carrying code, cont’d
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B. Model checking.

1. Large software exhibits complex behavior.

2. Idea is to prove properties of a model before
it’s implemented.

3. Noteworthy recent work in avionics.

4. E.g., Rushby’s proof of redundancy model
related to Byzantine failures.
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C. Formalizing user mental models.

1. With model checking, complex software can
get more reliable.

2. Problems still arise in human user errors.
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Formalizing mental models, cont’d

3. E.g., modern aircraft systems are increas-
ingly reliable.

a. 70% of problems are human error.

b. Cockpits are highly automated.

c. Pilots can be surprised by system behavior.
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Formalizing mental models, cont’d

4. Formal methods used for this problem:

a. Cockpit control system formalized

b. Pilot mental model formalized

c. Model checking verifies consistency.

d. Inconsistencies help explain human failures
and point to ways to improve system.
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Formalizing mental models, cont’d

5. Used to diagnose a real-life pilot error.

a. It helped explain a (non-fatal) mishap that
had otherwise gone undiagnosed.

b. It pointed to two important improvements
in the cockpit control model.
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IV. From the Sublime to the Trivial ...

A. Previous examples address real problems.

B. Proofs are non-trivial.

C. But how the heck do they really work?

D. We’l l hav ea look at a very simple example.
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V. A very simple example function.

/*
* Compute factorial of x, for
* positive x, using iteration.
*
* pre: x >= 0
*
* post: return == x!
*
*/
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Example, cont’d

int factorial(int x) {
int y;
y = 1;
while (x > 0) {

x = x - 1;
y = y * x;

}
return y;

}

Question: Is this correct?
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VI. Symbolic evaluation

A. In testing schemes, inputs and outputs are
concretevalues.

B. Consider how we’d test factorial.

C. Table 1 shows typical unit test plan.
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Symbolic evaluation, cont’d

Test No. Input Expected Results

1 x = -1 ERROR
2 x = 0  return = 1
3 x = 1  return = 1
4 x = 4  return = 24
5 x = 6  return = 120
6 x = 70 return > 10**100
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Symbolic evaluation, cont’d

D. To test, feed in concrete values and check
results (which reveals the bug).

E. Tw o important questions ...

1. Where do we get expected results?

2. Does it workfor all inputs?
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Symbolic evaluation, cont’d

F. One way to answer these questions is to use
symbolicinput and output.

1. Instead of concrete values for input x,
just use the symbol "x".

2. Run the program several times to see what
symbolic formula emerges.
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Symbolic evaluation, cont’d

G. We’l l use the corrected program:

public int factorial(int x) {
int y;
y = 1;
while (x > 0) {

y = y * x;
x = x - 1;

}
return y;

}
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Symbolic evaluation, cont’d

H. Details (again, forcorrectedprogram):

1. Start with symbolic input value "x".

2. Then start running the function body:

y = 1;
while (x > 0) { // true symbolically

y = y * x;

which gives symbolic value ofy = 1 * x,
which simplifies to justy = x.
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Symbolic evaluation, cont’d

3. Some more symbolic computation:

x = x - 1;
}
while (x > 0) { // true symbolically

y = y * x;

4. Results in symbolic valuex * (x - 1) for y.
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Symbolic evaluation, cont’d

5. A bit more

x = x - 1;
}
while (x > 0) { // true symbolically

y = y * x;
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Symbolic evaluation, cont’d

which results in y’s symbolic value of

x * (x - 1) * ((x - 1) - 1)

which simplifies to

x * (x - 1) * (x - 2)



CSC509-L10 Slide32

Symbolic evaluation, cont’d

6. The idea is we treat input values as
symbols, not concrete values.
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Symbolic evaluation, cont’d

I. After N times through the loop:

y = 1
↓

y = 1 * x
↓

y = x * (x-1)
↓

y = x * (x-1) * (x-1-1)
↓
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In factorial, cont’d

↓
y = x * (x-1) * (x-2) * ((x-2)-1)

↓
...

after N times through
factorial loop symbolically

↓
y = x * (x-1) * ... * (x-N)
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Symbolic evaluation, cont’d

J. An informative symbolic pattern develops.

K. Also interesting is the erroneous case.
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Symbolic evaluation, cont’d

y = 1
↓

y = 1 * (x-1)
↓

y = (x-1) * ((x-1)-1)
↓

y = (x-1) * (x-2) * (x-3)
...
↓

y = (x-1) * (x-2) * ... * (x-1-N)
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Symbolic evaluation, cont’d

L. Here an incorrect formula emerges.

M. Symbolic evaluation by hand is way tedious

N. A number of automated tools exist, e.g, the
KeY project from Karlsruhe university:

/www.key-project.org/
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VII. Moving on to formal verification

A. Symbolic eval inv olves informal analysis.

B. We want mathematical certitude.

C. I.e., a proof that program meets its spec.
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On to formal verification, cont’d

D. General steps:

1. Defineaxiomaticsemantics for program-
ming language.

2. Define general procedure to assign mean-
ing a program.
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On to formal verification, cont’d

E. Given semantics and verification procedure,
state formal pre and post conditions for all
functions (i.e., methods).
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On to formal verification, cont’d

F. The desired result is

pre ⊃ post,through the function

G. New notation is

pre {function body} post

H. Called a "Hoare triple".
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On to formal verification, cont’d

I. Final step is to prove termination condition
(more later).

J. We will now look at a set of verification
rules for a very simple programming lan-
guage.
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VIII. Simple Flowchart Programs

A. Graphical flowchart form.

B. Helpful form for presenting proof rules.
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Simple Flowchart Programs, cont’d

C. Basic constructs are:

1. assignment

2. if-then-else

3. loop

4. function call
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IX. Semantic rules for SFPs

A. The rule of assignment

var = expr

P(..., expr, ...)

P(...,  var, ...)
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Semantic rules, cont’d

1. Defines meaning in terms of variable sub-
stitution.

2. Precond is derived from postcond by sys-
tematically substitutingvar with expr.
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Semantic rules, cont’d

B. if-then-else

P(. . .) Q(. . .)

expr

if expr then P(. . .)   or
if not expr then Q(. . .)

true false

R(. . .)

R(. . .) R(. . .)

computation1 computation2
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Semantic rules, cont’d

1. If-then-else defined as logical implication.

2. Syntactically sugared logical implication,

if X then Y

is equivalent to

X implies Y

3. PredicatesP(...), Q(...)derived fromR(...)
by applying proof rules for computation1
and computation2, resp.
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Semantic rules, cont’d

C. The rule for loops

expr

true

. . .false

. .
 .

. .
 .

programmer-supplied loop condition,
and derived verification conditions
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Semantic rules, cont’d

1. Loop rule requires programmer to supply
loop invariant.

2. It’s in addition to pre- and postconds.

3. Invariant is true throughout loop body.

4. Stated in terms of variables used and modi-
fied in loop body.
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X. Application of semantic rules

A. Goal is to prove

pre {function body} post

B. Precond implies postcondthroughbody.

C. Semantic rules allow us to push predicates
througha program.
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XI. Backwards substitution technique

A. A kind of symbolic evaluation.

B. Evaluating predicates rather than values.

C. In theory, we can evaluate either forward or
backward
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Backwards substitution, cont’d

D. The steps:

1. Annotate program with pre and post conds.

2. At each loop, provide invariant.

3. Take postcond andpush it throughpro-
gram.
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Semantic rules, cont’d

4. When a "pushed-through" predicate "runs
into" a supplied predicate, we have a
verification condition (VC).

5. After all VCs are proved, program proof is
complete, except for termination.

6. We won’t deal with proof of termination.
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XII. A stunning result

A. Here’s the program:

int Duh() {
/*
* Add 2 to 2 and return
* the result.
*
* pre: ;
* post: return == 4;
*
*/
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Stunning result, cont’d

int x,y;

x = 2;
y = x + 2;
return y;

}
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Stunning result, cont’d

B. Here are the steps of the proof:
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x = 2

Pre: true

y = x + 2

return = y

Post: return == 4
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x = 2

Pre: true

y = x + 2

return = y

Post: return == 4

y == 4
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x = 2

Pre: true

y = x + 2

return = y

Post: return == 4

y == 4

x+2 == 4
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x = 2

2+2 == 4

x+2 == 4

y = x + 2

y == 4

return = y

Post: return == 4

Pre: true

VC: if true then 2+2 == 4
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XIII. A stunned result

A. Let’s try to prove

int ReallyDuh() {
/*
* Add 2 to 3 and return
* the result.
*
* pre: ;
* post: return == 4;
*/
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Stunned result, cont’d

int x,y;
x = 2;
y = x + 3;
return = y;

}
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Stunned result, cont’d

B. Here’s the proof attempt
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x = 2

2+3 == 4

x+3 == 4

y = x + 3

y == 4

return = y

Post: return == 4

Pre: true

VC: if true then 2+3 == 4
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Stunned result, cont’d

C. We are left with the VC

true ⊃ 4 == 2 + 3  ==>
true ⊃ false

which is false.

D. In general, proofs will go wrong at VC
nearest to statement in which error occurs.
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XIV. Implication proofs

A. Recall truth table for logical implication.

B. p ⊃ q is only false ifp is true andq is false.

C. In program verification, we assumep is
true.

D. Hence, VC proof will fail ifq is false.
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XV. Proof of factorial example.

A. The (correct) definition:

int factorial(int N) {
/*
* Compute factorial of x, for
* positive x, using iteration.
*
* pre: N >= 0
*
* post: return == N!
*
*/
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Proof of factorial, cont’d

int x,y; /* Temp vars */

x = N;
y = 1;
while (x > 0) {

y = y * x;
x = x - 1;

}
return y;

}
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Proof of factorial, cont’d

B. Slightly different than earlier version.

C. Figure 1 outlines the proof.
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VC1: if N >= 0 then 1 * N! == N! and N >= 0

x > 0

true

false

Loop:  y * x! == N! and x >= 0

x = N

1 * x! == N! and x >= 0

y = 1

y * x * (x-1)! == N! and (x-1) >= 0

y = y * x

y * (x-1)! == N! and (x-1) >= 0

x = x - 1

1 * N! == N! and N >= 0

return =  y

VC2: if y * x! == N! and x >= 0 then
               if x > 0 then y * x * (x-1)! == N! and (x-1) >= 0

VC3: if y * x! == N! and x >= 0 then
               if x<= 0 then y == N!

Post:  return == N!y == N!

Pre:  N >= 0

Programmer-Supplied Condition
Verification Condition

Derived Asserition

FONT LEGEND:
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XVI. Logical derivation of ‘‘y * x! = N!’’

A. At top of loops, what relationship should
exist between loop variables?

B. Characterizes themeaningof the loop.

C. For fact, meaning is something like
‘‘ y approximatesN!’’.
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Derivation of ‘‘y * x! = N!’’, cont’d

D. More precisely,

y R f(x) = N!

for some relation R; in this case,
R is multiplication, i.e.,

y * f (X) = N!

E. So what is f(x)? I.e., how much shy of N! is
y at some arbitrary point k through the
loop?
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Derivation of ‘‘y * x! = N!’’, cont’d

It looks like y is growing by a multiplicative
factor of x each time through,

y = x * (x-1) * (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!

F. I.e., y * x! = N!
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Derivation of ‘‘y * x! = N!’’, cont’d

G. This reasoning is typical for loop assertions.

H. An alternative is to use symbolic evaluation.
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XVII. Further tips on doing proofs

A. Often, VC proofs not that difficult.

B. Use simple algebraic formula reduction.

C. 141 book has rules.



CSC509-L10 Slide77

Further tips on doing proofs, cont’d

D. Some rules:

1. if t then P1 else P2 <=>
(t ⊃ P1) and (not t⊃ P2)

2. if t then t and P <=>
if t then P

3. if t1 then if t2 then P <=>
if t1 and t2 then P

4. t and (if t then P) => P(modus ponens)
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XVIII. Factorial VC’s

A. Obligated to prove each VC.

B. VC1 is trivial.

C. Proof of factorial VC2:

if (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N!
and (x-1)>=0 =>

if (y*x! == N! and x>=0) then if (x>0) y*x! == N! and x>=1 =>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! =>
if (y*x! == N! and x>=0) then y*x! == N! and x>0 =>
true
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Factorial VC’s, cont’d

D. Proof of factorial VC3:

if (y*x! == N and x>=0) then if (x<=0) then y==N! =>
if (y*x! == N! and x==0) then y==N! =>
if (y*0! == N!) then y==N! =>
if (y*1 == N!) then y==N! =>
true
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XIX. Possible errors in factorial

A. Transpose loop body statements.

B. We’l l get erroneous VC3:

y * x! = N ! and x≥0 and x>0 ⊃ y * (x-1) * (x-1)! = N!
and x-1≥ 0 =>

y * x! = N ! and x>0 ⊃ y * (x-1) * (x-1)! = N! =>
no go
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Possible errors, cont’d

C. ‘‘ x ≥ 0’’ ( instead of strictly > 0)

y * x! = N ! and x≥0 and ¬ (x≥0) ⊃ y = N! =>
y * x! = N ! and x≥0 and x<0 ⊃ y = N! =>
no go
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XX. Automatic derivation of loop invariants

A. A mechanical technique

B. Looks like this:
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Automatic loop invariants, cont’d

y = N!
↓

y * x = N!
↓

y * x * ( x-1) = N!
↓

y * x * ( x-1) * (x-2) = N!
↓

y * x * ( x-1) * (x-2) * (x-3)= N!
↓
...
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Automatic loop invariants, cont’d

...
↓

y * x * ( x-1) * ... * (x-N) = N!
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Automatic loop invariants, cont’d

C. Inspecting result, notice relationship
y * x! = N !.

D. This is theloop invariant.

E. Also interesting to look at erroneous case.
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Automatic loop invariants, cont’d

y = N!
↓

y * (x-1) = N!
↓

y * (x-1) * (x-2) = N!
↓

y * (x-1) * (x-2) * (x-3) = N!
↓
...
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Automatic loop invariants, cont’d

...
↓

y * (x-1) * (x-2) * ... * (x-N) = N!
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Automatic loop invariants, cont’d

F. In erroneous case, symbolic eval leads to
wrong loop invariant.

G. Will ultimately cause verification to fail.
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XXI. Verification rule for function calls

var = f(...);

Pre(f) and P(..., Post(f), ...)

P(...,  Post(var), ...)

wherePost(var) is postcond of function f in
whichvar appears;Post(f) is postcond of f
with appropriate variable substitution.
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Rule for function calls, cont’d

A. Substituting function precond for postcond.

B. Recall two methods to ensure precond is
met:

1. Exceptions thrown by function.

2. Verify function will never be called if is
precond is false.

C. We’re now in a position to do the latter.
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XXII. Verify that factorial is never called
with false precond.
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y = fact(x)

P2

y = x

P3

x>=0
true false

P1

P1 P1

P5

Pre

P4

x = readint()

Post

return = y

VC
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Details of the proof:

Label Predicate

VC: true => forall (x: integer)
if (x>=0) then x!==x! else x==x

=>
true Induction

Pre: true

P5: forall (x: integer)
if (x>=0) then x!==x! else x==x
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Details of proof, cont’d:

P4: if (x>=0) then
if (x>=0) then x!==x! else x!==x

else
if (x>=0) then y==x! else x==x

=>
if (x>=0) then x!==x! else x==x

P3: if (x>=0) then y==x! else x==x
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Details of proof, cont’d:

P2: if (x>=0) then x!==x! else x!==x

P1: if (x>=0) then y==x! else y==x

Post: if (x>=0) then return==x! else return==x
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XXIII. Partial versus total correctness

A. Preceding methodology demonstratespar-
tial correctness.

B. Program is correct,if and only it termi-
nates.

C. Total correctness requires additional proof
of termination.

D. Generally involves an induction.
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XXIV. Verif ’n and programming style

A. Certain stylistic rules must be obeyed.

B. A summary:

1. Functions cannot have side effects.

2. Input parameters cannot be modified.

3. Restricted control flow constructs.
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XXV. Some critical questions

A. Can it scale up?

B. Why hasn’t it caught on yet?

C. When will it catch on?
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Critical questions, cont’d

1. when software engineers receive adequate
training in formal methods

2. when production-quality tools become
available

3. when software users get sufficiently sick of
crappy products
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Critical questions, cont’d

D. Verification tools include:

1. formal spec languages

2. automatic invariant generators

3. automatic theorem provers

E. Tools used by researchers and a few com-
mercial developers.
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XXVI. Optimistic conclusion -- it will happen,

when some or all of above conditions are
met.


