CSC509-L10 Slidd

CSC 509 Lectue Notes Week 9, Part 2

Detalls of
Formal Program Verification

CSC509-L10 Slide

|. Introductory definitions

CSC509-L10 Slidg

|. Introductory definitions

A. Testing: shav that a program is correct for
some finite set of inputs.

CSC509-L10 Slidé

|. Introductory definitions

A. Testing: shav that a program is correct for
some finite set of inputs.

B. Veification: prove that a program Is correct
for all possible inputs.

CSC509-L10 Slidé

Il. The problems with testing

CSC509-L10 Slidé

Il. The problems with testing

A. Cannot coer all possible cases

CSC509-L10 Slid¢

Il. The problems with testing
A. Cannot coer all possible cases

B. Never 100% sure that system is correct.

CSC509-L10 Slid8&

Il. The problems with testing
A. Cannot coer all possible cases
B. Never 100% sure that system is correct.

C. For some systems, this is not good enough.

CSC509-L10 Slid®

Il. The problems with testing
A. Cannot coer all possible cases
B. Never 100% sure that system is correct.
C. For some systems, this is not good enough.

D. Enter program verification.

CSC509-L10 Slidd0

Ill. Practical applications.
A. Proof-carrying code.

1. There are potential problems with code sent
between machines.

a. Code wants to run on foreign host.

b. Host wants to kn@ if code works properly.

CSC509-L10 Slidd1

Proof-carrying code, cont'd

2. Terminology:

a. Code producehas code that wants to run
on foreign host.

b. Code consumas the host.

c. Code producer may violapmliciesof code
consumer.

CSC509-L10 Slidd 2

Proof-carrying code, cont'd

Code Producer Code Consumer
Does
F1o
Native Code arm?
Source load r3, 4(r2)
Program add 12,1411

\ store 1, 0(r7)

store r1, 4(r7)
Compiler [T add r7,0,r3 >

P add 17,817 Execute
beq r3, .-20

CSC509-L10 Slidd3

Proof-carrying code, cont’d
3. To lve problem:
a. Code producer compilesd povescode.

b. Proof based on formal policies, defined by
consumer.

c. Producer sends code to consumer.

d. Consumer checks that proof still holds.

CSC509-L10

Proof-carrying code, cont'd

Code Producer

Source

Pro&ram

Certifying

Compiler

Hints

Native Code C

load r3, 4(r2)
add r2,rd.r1
store 1, 0(r7)
store 1, 4(r7)

Code Consumer

add r7,0.r3 >
add r7.8.17 EXECUTE
beq r3, .-20
A
OK

Safety Proof
of safe(C)

d-i ¢
¥-i(...
—-r |

Prover

> S N

}
)

——p| Checker

Slidd4

CSC509-L10 Slidd5

B. Model checking.
1. Large software exhibits compidehavior.

2. |ldea Is to proe poperties of a model before
It's iImplemented.

3. Noteworthy recent work in avionics.

4. E.g., Rushbys proof of redundangmodel
related to Byzantine failures.

CSC509-L10 Slidd6

C. Formalizing user mental models.

1. With model checking, comptesoftware can
get more reliable.

2. Problems still arise in human user errors.

CSC509-L10 Slida7

Formalizing mental models, cont'd
3. E.g., modern aircraft systems are increas-
iIngly reliable.
a. 70% of problems are human error.
b. Cockpits are highly automated.

c. Pilots can be surprised by system behavior.

CSC509-L10 Slidé 8

Formalizing mental models, cont'd

4. Formal methods used for this problem:
a. Cockpit control system formalized
b. Pilot mental model formalized
c. Model checking verifies consistenc

d. Inconsistencies help explain human failures
and point to ways to impve g/stem.

CSC509-L10 Slidd9

Formalizing mental models, cont'd

5. Used to diagnose a real-life pilot error.

a. It helped explain a (non-fatal) mishap that
had otherwise gone undiagnosed.

b. It pointed to tvo Important impregements
In the cockpit control model.

CSC509-L10 Slideo

V. From the Sublime to the Trivial ...
A. Previous examples address real problems.
B. Proofs are non-trivial.

C. But how the heck do thereally work?

D. We'll havea look at a very simple example.

CSC509-L10 Slidel

V. Avery simple example function.

/*

* Compute factorial of x, for
* positive X, using iteration.
*

* pre: x >= 0

*

* post: return == x|

*

*

CSC509-L10 Slide2

Example, cont’d

Int factorital (int x) {

Nt vy;

y = 1,

while (x > 0) {
X = x - 1
y =y * X

}

return vy,

}

Question: Is this correct?

CSC509-L10 Slide3

VI. Symbolic esaluation

A. In testing schemes, inputs and outputs are
concretevalues.

B. Consider haw we'd test factorial.

C. Table 1 shows typical unit test plan.

CSC509-L10 Slide4

Symbolic esaluation, cont'd

Test No. Input EXxpected Results

1 Xx=-1 ERROR

2 Xx=0 return =1

3 Xx=1 return =1

4 X=4 return = 24

5 X=06 return = 120

6 Xx=70 | return > 10**100

CSC509-L10 Slide5

Symbolic esaluation, cont'd

D. To test, feed Iin concrete values and check
results (which reeals the bug).

E. Twoimportant questions ...
1. Where do we get expected results?

2. Does it workfor all inputs?

CSC509-L10 Slide6

Symbolic esaluation, cont'd

F. One way to answer these guestions Is to use
symbolicinput and output.

1. Instead of concrete values for input X,
just use the symbol "x".

2. Run the program seral times to see what
symbolic formula emerges.

CSC509-L10 Slide7

Symbolic esaluation, cont'd

G. We'll use the corrected program:
public int factorial (Int x) {

I nt vy;

y = 1;

while (x > 0) {
y =y * X,
X =X - 1;

}

return vy;

Symbolic esaluation, cont'd

H. Detalls (again, focorrectedprogram):
1. Start with symbolic input valuex™.

2. Then start running the function body:

y = 1,
while (x > 0) { // true symbolically
y =y * X

which gves symbolic value ofy =1 * x,
which simplifies to jusy = x.

CSC509-L10 Slide9

Symbolic esaluation, cont’d

3. Some more symbolic computation:

X = X - 1;

}

while (x > 0) { [/ truesymbolically
y =y * X

4. Results in symbolic value* (x - 1) fory.

CSC509-L10 Slid&0

Symbolic esaluation, cont’d

5. A bit more
X = x - 1;

}
while (x > 0) { [/ truesymbolically

y =y * X

CCCCCCCCCC

Symbolic esaluation, cont’d

which results in ys symbolic value of
x*(x-1)*((x-1)-1)

which simplifies to
X*(X-1)*(x-2)

CSC509-L10 Slidg2

Symbolic esaluation, cont’d

6. The idea Is we treat input values as
symbolsnot concrete values.

CSC509-L10 Slid&3

Symbolic esaluation, cont'd

|. After N times through the loop:

y=1
l
y=1%X
l
y =x*(x-1)
l
y=X*(x-1) * (x-1-1)
l

CCCCCCCCCC

In factorial, cont’d

!
y=x*(x-1) * (x-2) * (x-2)-1)
!

after N times through
factorial loop symbolically
!
y=X*(x-1) *...* (Xx-N)

CSC509-L10 Slid&5

Symbolic esaluation, cont'd

J. An informatve symbolic pattern deslops.

K. Also interesting Is the erroneous case.

CSC509-L10 Slid&6

Symbolic esaluation, cont'd

y=1
!

y=1*(x-1)
!
y = (x-1) * ((x-1)-1)
!
y =(x-1) * (x-2) * (x-3)
y=(X-1) * (X-2) * ... * (x-1-N)

CSC509-L10 Slidg7

Symbolic esaluation, cont'd
L. Here an incorrect formula emerges.
M. Symbolic aluation by hand is way tedious

N. A number of automated tools exist, e.g, the
KeY project from Karlsruhe uwersity:

[ww. key- proj ect. org/

CSC509-L10 Slida8

VIl. Moving on to formal verification
A. Symbolic al invdves informal analysis.
B. We want mathematical certitude.

C. l.e., a proof that program meets Its spec.

CSC509-L10 Slid&9

On to formal verification, cont’d
D. General steps:

1. Defineaxiomaticsemantics for program-
ming language.

2. Define general procedure to assign mean-
INg a program.

CSC509-L10 Slidd0

On to formal verification, cont’d

E. Given mantics and verification procedure,
state formal pre and post conditions for all
functions (i.e., methods).

CSC509-L10

On to formal verification, cont’d

F. The desired result is
pre L] post,through the function

G. New notation is
pre {function body} post

H. Called a "Hoare triple".

Slidé1

CSC509-L10 Slidé2

On to formal verification, cont’d

|. Final step Is to pnge termination condition
(more later).

J. We will now look at a set of verification
rules for a very simple programming lan-
guage.

CSC509-L10 Slidé3

VIII. Simple Flowchart Programs
A. Graphical flowchart form.

B. Helpful form for presenting proof rules.

CSC509-L10 Slidé4

Simple Flowchart Programs, cont’d
C. Basic constructs are:

1. assignment

2. If-then-else

3. loop

4. function call

CSC509-L10 Slidé5

IX. Semantic rules for SFPs

A. The rule of assignment

l £ P(..., expr, ...)

var = expr

l £ P(..., var, ...

CSC509-L10 Slidé6

Semantic rules, cont'd

1. Defines meaning in terms of variable sub-
stitution.

2. Precond is deved from postcond by sys-
tematically substitutingar with expr .

CSC509-L10

Semantic rules, cont'd

B. if-then-else

true

y

computation1

— Z—— P

— ifexprthenP(...) or

expr

)

if not expr then Q(. . .)

Y

computation2

- L Q(.

— Z— _R(.

- L—R(..)
Tﬁ— R(...)

Slidé7

)

Semantic rules, cont’d
1. If-then-else defined as logical implication.

2. Syntactically sugared logical implication,
If XthenY
IS equvalent to
Ximplies Y

3. Predicate#$(...), Q(...)derved fromR(...)
by applying proof rules for computatipn

and computatiop) resp.

CSC509-L10 Slidé9

Semantic rules, cont'd

C. The rule for loops

Y . .
»@ ——— programmer-supplied loop condition,

and derived verification conditions

0 false
e

true

CSC509-L10 Slid&0

Semantic rules, cont'd

1. Loop rule requires programmer to supply
loop Invariant

2. It's in adition to pre- and postconds.
3. Invariant is true throughout loop body.

4. Stated In terms of variables used and modi-
fled In loop body.

CSC509-L10 Slidé1

X. Application of semantic rules

A. Goal Is to pree
pre {function body} post

B. Precond implies postcordroughbody.

C. Semantic rules all@ us b push predicates
througha program.

CSC509-L10 Slidé2

X|. Backwards substitution technique
A. A kind of symbolic galuation.
B. Evaluating predicates rather than values.

C. In theory we can evaluate either forward or
backward

CSC509-L10 Slidé3

Backwards substitution, cont’d
D. The steps:
1. Annotate program with pre and post conds.
2. At each loop, provide wariant.

3. Take postcond angush it throughpro-
gram.

CSC509-L10 Slidé4

Semantic rules, cont'd
4. When a "pushed-through" predicate "runs
Into" a supplied predicate, wevma
verification condition (VC)

5. After all VCs are preed, program proof Is
complete, except for termination.

6. We won'’t deal with proof of termination.

CSC509-L10 Slidé5

XIl. A stunning result

A. Here’s the program:

I nt Duh() {
/*
* Add 2 to 2 and return
the result.

pre: ;
post: return == 4;

* ok ok * Ok *

CSC509-L10 Slid&6

Stunning result, cont'd

Nt X,V,;

X = 2
y = X + 2;
return vy,

CSC509-L10 Slid&7

Stunning result, cont'd

B. Here are the steps of the proof:

CSC509-L10 Slid&8

l Z Pre: true

X
[
N

y=X+2
return =y

l z Post: return ==

CSC509-L10 Slid&9

Pre: true
X=2
Y
y=X+2
l ; y p——
return =y

l . Post: return ==

CSC509-L10 Slid&0

£ Pre: true

X=2
4 X+2 ==
Y
y=X+2
return =y

lﬁ Post: return ==

CSC509-L10 Sidel

z Pre: true
: VC: if true then 2+2 ==
/ 2+2 ==
Y
X=2
l : X+2 ==
y=X+2
l y —_
return =y

l / Post: return ==

CSC509-L10 Slidé2

XIIl. A stunned result

A. Let's try to prove

I nt Real | yDuh() {
/*

* Add 2 to 3 and return
the result.

pre: ;
post: return == 4;
/

* ok F Kk *

CSC509-L10 Slidé3

Stunned result, cont’'d

Nt X,V,;
X = 2
y = X + 3;

return = vy;

CSC509-L10 Slidé4

Stunned result, cont’'d

B. Here’s the proof attempt

CSC509-L10 Sides

z Pre: true
: VC: if true then 2+3 ==
/ 2+3 ==
Y
X=2
l : X+3 ==
y=x+3
l y —_
return =y

l / Post: return ==

CSC509-L10 Slidé6

Stunned result, cont’'d

C. We ae left with the VC

truelJ4=2+3 =>
true] false

which Is false.

D. In general, proofs will go wrong at VC
nearest to statement in which error occurs.

CSC509-L10 Slidé&7

XIV. Implication proofs
A. Recall truth table for logical implication.
B. pUgis only false ifp Is true andj is false.

C. In program verification, we assumes
true.

D. Hence, VC proof will fail ifq is false.

CSC509-L10 Slidé8

XV. Proof of factorial example.
A. The (correct) definition:

Int factorial (int N) {
/*
* Compute factorial of x, for

* positive X, using iteration.
*

* pre: N>=0

*

* post: return == N

*

*

CSC509-L10 Slidé&9

Proof of factorial, cont’d

Int x,y; /* Tenp vars */

X = N

y = 1;

while (x > 0) {
y =Y X,
X = x - 1;

]

return vy,

CSC509-L10 Slidg0

Proof of factorial, cont'd
B. Slightly different than earlier version.

C. Figure 1 outlines the proof.

CSC509-L10 ——2 Pre: N>=0 Slidg1

T Z— VCLlL:ifN>=0thenl*N!'==Nland N>=0
T Z—— 1*NI==N!'andN>=0

|

x=N

T Z—— 1*xI==Nland x>=0

=i v Loop: y * xI'==N! and x>=0

T Z—__ vC2ify*x!==N!and x >= 0 then
if x>0theny*x*(x-1)! == Nl'and (x-1) >=0

T Z—_ VC3ify*x!'==N!and x >= 0 then
if x<= 0 theny == N!

// y == N! // Post: return == N!

return=y |——»

true

T L——— y*x*(x-1)! == Nland (x-1) >= 0

y=y*x

T Z——— y*(x-1)!==N!and (x-1) >= 0

x=x-1 FONT LEGEND: - —
e Programmer-Supplied Condition

@ Verification Condition

@ Derived Asserition

CSC509-L10 Slidg2

XVI. Logical derivation of “y * xI = N!”

A. At top of loops, what relationship should
exist between loop variables?

B. Characterizes theeaningof the loop.

C. For fact, meaning is something like
“y approximatedN!”.

CSC509-L10 Slidé3

Derivation of “y * x! = N!”, cont’d

D. More precisely,
y R f(X) = N!
for some relation R; In this case,
R Is multiplication, I.e.,
y *f(X) = NI

E. Sowhatis f(x)? l.e., Mmuch sly of N! is
y at /me arbitrary point k through the
loop?

CSC509-L10 Slidg4

Derivation of “y * x! = N!”, cont’d

It looks like y Is gowing by a multiplicatre
factor of x each time through,

y=X*(x-1)* (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!

F. lLe.,y*x! =N!

CSC509-L10 Slidg5

Derivation of “y * x! = N!”, cont’d

G. This reasoning is typical for loop assertions.

H. An alternatve is to tlse symbolic eauation.

CSC509-L10 Slidg6

XVII. Further tips on doing proofs
A. Often, VC proofs not that difficult.
B. Use simple algebraic formula reduction.

C. 141 book has rules.

CSC509-L10 Slidg7

Further tips on doing proofs, cont’d

D. Some rules:

1. if tthen P1 else P2 <=>
(t L P1) and (not 1 P2)

2. Iftthentand P <=>
Iftthen P

3. iIftl then if t2 then P <=>
If t1 and t2 then P

4. tand (if t then P) => P(modus ponens)

CSC509-L10

XVIIl. Factorial VC's

Slidé8

A. Obligated to pree each VC.

B. VC1 is trivial.

C. Proof of factorial VC2:

If (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N!
and (x-1)>=0 =>

If (y*x! == NI anc
If (y*x! == NI anc

If (y*x! == NI anc
true

x>=0) t
x>=0) t
x>=0) t

nen if (x>0) y*x! == Nl and x>=1 =>
nen if (x>0) y*x! == NI =>

nen y*x! == N!and x>0 =>

CSC509-L10 Slidg9

Factorial VC’s, cont’d

D. Proof of factorial VC3:

If (y*x!' == N and x>=0) then if (x<=0) then y==N! =>
If (y*x! == N! and x==0) then y==N! =>

If (y*O! == N!) then y==N! =>

If (y*1 == N!) then y==N! =>

true

CSC509-L10 Slid&0

XIX. Possible errors in factorial
A. Transpose loop body statements.

B. We'll get erroneous VC3:

y*xI'=N! and x>0 and x>0 J y *(x-1) * (x-1)! = N!
and x-1>0 =

y*xI'=N!and x>00 y*(x-1) * (x-1)! = N! =>

no go

CSC509-L10 Slidé1

Possible errors, cont’d

C. “x=0" (instead of strictly > 0)

y*xI=N!and x0 and - (x=0) L y=N! =>
y*xI=N! and x>0 and x<O0 J y=N! =>
no go

CSC509-L10 Slid82

XX. Automatic derivation of loop invariants
A. A mechanical technique

B. Looks like this:

CSC509-L10 Slid83

Automatic loop invariants, cont’'d

y = NI
l
y *x=N!
l
y*X*(x-1) = N!
l
y*X*(x-1)* (x-2) = N!
l
y*x*(x-1) * (x-2) * (x-3)= N!
l

CSC509-L10 Slidé4

Automatic loop invariants, cont’'d

l
y*X*(x-1)* ... * (X-N) = N!

CSC509-L10 Slid85

Automatic loop invariants, cont’'d

C. Inspecting result, notice relationship
y*xI'=NL

D. This is theloop invariant.

E. Also interesting to look at erroneous case.

CSC509-L10 e

Automatic loop invariants, cont’'d

y = N!

y* (x-ll) = N!
y*(x-1) *l(x-2) = N!
y*(x-1)* (X-lZ) *(x-3) = N!
l

CSC509-L10 e

Automatic loop invariants, cont’'d

l
y* (X'l) * (X-2) *LLx (X-N) = N!

CSC509-L10 Slid88

Automatic loop invariants, cont’'d

F. In erroneous case, symboliakl eads to
wrong loop ivariant.

G. Will ultimately cause verification to falil.

CSC509-L10 Slid&9

XXI. Verification rule for function calls

l Z Pre(f) and P(..., Post(f), ...)
var = f(...);
l . P(..., Post(var), ...)

wherePost(var)is postcond of function f In
whichvar appearsPost(f) Is postcond of f
with appropriate variable substitution.

CSC509-L10 Slid®0

Rule for function calls, cont’d
A. Substituting function precond for postcond.

B. Recall two methods to ensure precond is
met:

1. Exceptions thrown by function.

2. Verify function will never be @lled if is
precond Is false.

C. Were now In a position to do the latter.

CSC509-L10 Slid®1

XXII. Verify that factorial is never called
with false precond.

CSC509-L10 Slid®2

true

return =y

l T Z— post

CSC509-L10 Slid®3

Detalls of the proof:

Label Predi cate
VC. true => forall (x: 1nteger)
| f (x>=0) then x!==x! else x==x
=>
true
Pre: true
P5: forall (x: 1nteger)

| f (x>=0) then x!==x! else x==

CSC509-L10 Slid®4

Detalls of proof, cont'd:

P4 1 f (x>=0) then
1 f (x>=0) then x!==x! else x!==
el se
1 f (x>=0) then y==x! el se x==x
=>
1 f (x>=0) then x!==x! else x==x

P3: 1 f (x>=0) then y==x! el se x==x

CSC509-L10 Slid®5

Detalls of proof, cont'd:

P2: | f (x>=0) then x!==x! else x!==x
P1: 1 f (x>=0) then y==x! el se y==x

Post : | f (x>=0) then return==x! else return==

CSC509-L10 Slid®6

XXIII. Partial versus total correctness

A. Preceding methodology demonstrgias-
tial correctness.

B. Program is correctf and only it termi-
nates

C. Total correctness requires additional proof
of termination.

D. Generally ivolves an induction.

CSC509-L10 Slid®7

XXIV. Verif’'n and programming style
A. Certain stylistic rules must be obeyed.

B. A summary:
1. Functions cannot a sde effects.
2. Input parameters cannot be modified.

3. Restricted control fMy constructs.

CSC509-L10 Slid®8

XXV. Some critical questions
A. Can it scale up?
B. Why hasnt it caught on yet?

C. When will it catch on?

CSC509-L10 Slid®9

Critical questions, cont’d

1. when software engineers regeiaequate
training in formal methods

2. when production-quality tools become
avallable

3. when software users get sufficiently sick of
crapy products

CSC509-L10 Slidd.00

Critical questions, cont’d

D. Verification tools include:
1. formal spec languages
2. automatic inariant generators

3. automatic theorem pvers

E. Tools used by researchers andwa tem-
mercial deelopers.

CSC509-L10 Slidd01

XXVI. Optimistic conclusion-- it will happen,

when some or all of abe mnditions are
met.

