# CSC 509 Lecture Notes Week 9, Part 2

# Details of Formal Program Verification

# I. Introductory definitions

### I. Introductory definitions

A. *Testing:* show that a program is correct for some finite set of inputs.

### I. Introductory definitions

A. *Testing:* show that a program is correct for some finite set of inputs.

B. Verification: prove that a program is correct for all possible inputs.

# II. The problems with testing

### II. The problems with testing

A. Cannot cover all possible cases

#### II. The problems with testing

A. Cannot cover all possible cases

B. Never 100% sure that system is correct.

#### II. The problems with testing

- A. Cannot cover all possible cases
- B. Never 100% sure that system is correct.
- C. For some systems, this is not good enough.

#### II. The problems with testing

- A. Cannot cover all possible cases
- B. Never 100% sure that system is correct.
- C. For some systems, this is not good enough.
- D. Enter program verification.

# III. Practical applications.

# A. Proof-carrying code.

- 1. There are potential problems with code sent between machines.
  - a. Code wants to run on foreign host.
  - b. Host wants to know if code works properly.

- 2. Terminology:
  - a. Code producer has code that wants to run on foreign host.
  - **b.** Code consumer is the host.
  - c. Code producer may violate *policies* of code consumer.



- 3. To solve problem:
  - a. Code producer compiles and proves code.
  - b. Proof based on formal policies, defined by consumer.
  - c. Producer sends code to consumer.
  - d. Consumer checks that proof still holds.



# B. Model checking.

- 1. Large software exhibits complex behavior.
- 2. Idea is to prove properties of a model before it's implemented.
- 3. Noteworthy recent work in avionics.
- 4. E.g., Rushby's proof of redundancy model related to Byzantine failures.

### C. Formalizing user mental models.

1. With model checking, complex software can get more reliable.

2. Problems still arise in human user errors.

### Formalizing mental models, cont'd

- 3. E.g., modern aircraft systems are increasingly reliable.
  - a. 70% of problems are human error.
  - b. Cockpits are highly automated.
  - c. Pilots can be surprised by system behavior.

### Formalizing mental models, cont'd

- 4. Formal methods used for this problem:
  - a. Cockpit control system formalized
  - b. Pilot mental model formalized
  - c. Model checking verifies consistency.
  - d. Inconsistencies help explain human failures and point to ways to improve system.

### Formalizing mental models, cont'd

- 5. Used to diagnose a real-life pilot error.
  - a. It helped explain a (non-fatal) mishap that had otherwise gone undiagnosed.
  - b. It pointed to two important improvements in the cockpit control model.

#### IV. From the Sublime to the Trivial ...

A. Previous examples address real problems.

- B. Proofs are non-trivial.
- C. But how the heck do they really work?
- D. We'll have a look at a very simple example.

# V. A very simple example function.

```
/ *
  Compute factorial of x, for
 * positive x, using iteration.
 *
 * pre: x >= 0
 *
 * post: return == x!
 *
 * /
```

#### Example, cont'd

```
int factorial(int x) {
    int y;
    y = 1;
    while (x > 0) {
        x = x - 1;
        y = y * x;
    return y;
```

Question: Is this correct?

### VI. Symbolic evaluation

A. In testing schemes, inputs and outputs are *concrete* values.

- B. Consider how we'd test factorial.
- C. Table 1 shows typical unit test plan.

| Test No. | Input            | <b>Expected Results</b> |
|----------|------------------|-------------------------|
| 1        | x = -1           | ERROR                   |
| 2        | $\mathbf{x} = 0$ | return = 1              |
| 3        | x = 1            | return = 1              |
| 4        | x = 4            | return = 24             |
| 5        | x = 6            | return = 120            |
| 6        | x = 70           | return > 10**100        |

- D. To test, feed in concrete values and check results (which reveals the bug).
- E. Two important questions ...
  - 1. Where do we get expected results?
  - 2. Does it work for all inputs?

- F. One way to answer these questions is to use *symbolic* input and output.
  - 1. Instead of concrete values for input x, just use the symbol "x".
  - 2. Run the program several times to see what *symbolic formula* emerges.

#### Symbolic evaluation, cont'd

G. We'll use the corrected program:

```
public int factorial(int x) {
    int y;
    y = 1;
    while (x > 0) {
        y = y * x;
        x = x - 1;
    return y;
```

### Symbolic evaluation, cont'd

- H. Details (again, for corrected program):
  - 1. Start with symbolic input value "x".
  - 2. Then start running the function body:

```
y = 1;
while (x > 0) { // true symbolically y = y * x;
```

which gives symbolic value of y = 1 \* x, which simplifies to just y = x.

#### Symbolic evaluation, cont'd

3. Some more symbolic computation:

```
x = x - 1;
}
while (x > 0) { // true symbolically y = y * x;
```

4. Results in symbolic value x \* (x - 1) for y.

### Symbolic evaluation, cont'd

5. A bit more

# Symbolic evaluation, cont'd

which results in y's symbolic value of

$$x * (x - 1) * ((x - 1) - 1)$$

which simplifies to

$$x * (x - 1) * (x - 2)$$

### Symbolic evaluation, cont'd

6. The idea is we treat input values as *symbols*, not concrete values.

# Symbolic evaluation, cont'd

I. After *N* times through the loop:

$$y = 1$$

$$y = 1 * x$$

$$y = x * (x-1)$$

$$y = x * (x-1) * (x-1-1)$$

$$\downarrow$$

#### In factorial, cont'd

$$y = x * (x-1) * (x-2) * ((x-2)-1)$$
...

after N times through
factorial loop symbolically
$$y = x * (x-1) * ... * (x-N)$$

#### Symbolic evaluation, cont'd

J. An informative symbolic pattern develops.

K. Also interesting is the erroneous case.

$$y = 1$$

$$\downarrow$$

$$y = 1 * (x-1)$$

$$\downarrow$$

$$y = (x-1) * ((x-1)-1)$$

$$\downarrow$$

$$y = (x-1) * (x-2) * (x-3)$$

$$\vdots$$

$$y = (x-1) * (x-2) * ... * (x-1-N)$$

## Symbolic evaluation, cont'd

L. Here an incorrect formula emerges.

- M. Symbolic evaluation by hand is way tedious
- N. A number of automated tools exist, e.g, the KeY project from Karlsruhe university:

/www.key-project.org/

## VII. Moving on to formal verification

A. Symbolic eval involves informal analysis.

B. We want mathematical certitude.

C. I.e., a proof that program meets its spec.

## On to formal verification, cont'd

- D. General steps:
  - 1. Define *axiomatic* semantics for programming language.
  - 2. Define general procedure to assign meaning a program.

## On to formal verification, cont'd

E. Given semantics and verification procedure, state formal pre and post conditions for all functions (i.e., methods).

## On to formal verification, cont'd

F. The desired result is pre ⊃ post, *through the function* 

G. New notation is
pre {function body} post

H. Called a "Hoare triple".

## On to formal verification, cont'd

- I. Final step is to prove *termination condition* (more later).
- J. We will now look at a set of verification rules for a very simple programming language.

## VIII. Simple Flowchart Programs

A. Graphical flowchart form.

B. Helpful form for presenting proof rules.

## Simple Flowchart Programs, cont'd

- C. Basic constructs are:
  - 1. assignment
  - 2. if-then-else
  - 3. loop
  - 4. function call

#### IX. Semantic rules for SFPs

## A. The rule of assignment



## Semantic rules, cont'd

1. Defines meaning in terms of variable substitution.

2. Precond is derived from postcond by systematically substituting var with expr.

## Semantic rules, cont'd



## Semantic rules, cont'd

- 1. If-then-else defined as logical implication.
- 2. Syntactically sugared logical implication, if X then Y is equivalent toX implies Y
- 3. Predicates P(...), Q(...) derived from R(...) by applying proof rules for computation<sub>1</sub> and computation<sub>2</sub>, resp.

## Semantic rules, cont'd

# C. The rule for loops



## Semantic rules, cont'd

1. Loop rule requires programmer to supply *loop invariant*.

- 2. It's in addition to pre- and postconds.
- 3. Invariant is true throughout loop body.
- 4. Stated in terms of variables used and modified in loop body.

## X. Application of semantic rules

- A. Goal is to provepre {function body} post
- B. Precond implies postcond *through* body.
- C. Semantic rules allow us to *push predicates through* a program.

## XI. Backwards substitution technique

- A. A kind of symbolic evaluation.
- B. Evaluating predicates rather than values.
- C. In theory, we can evaluate either forward or backward

## Backwards substitution, cont'd

- D. The steps:
  - 1. Annotate program with pre and post conds.
  - 2. At each loop, provide invariant.
  - 3. Take postcond and *push it through* program.

## Semantic rules, cont'd

- 4. When a "pushed-through" predicate "runs into" a supplied predicate, we have a *verification condition (VC)*.
- 5. After all VCs are proved, program proof is complete, except for termination.
- 6. We won't deal with proof of termination.

## XII. A stunning result

A. Here's the program:

```
int Duh() {
     * Add 2 to 2 and return
     * the result.
     *
     * pre: ;
     * post: return == 4;
     *
     * /
```

## Stunning result, cont'd

```
int x,y;

x = 2;
y = x + 2;
return y;
```

# Stunning result, cont'd

B. Here are the steps of the proof:









#### XIII. A stunned result

```
A. Let's try to prove
   int ReallyDuh() {
   /*
    * Add 2 to 3 and return
    * the result.
    *
    * pre: ;
    * post: return == 4;
    * /
```

## Stunned result, cont'd

```
int x,y;
x = 2;
y = x + 3;
return = y;
```

## Stunned result, cont'd

B. Here's the proof attempt



## Stunned result, cont'd

C. We are left with the VC

true 
$$\supset 4 == 2 + 3 ==>$$

true ⊃ false

which is false.

D. In general, proofs will go wrong at VC nearest to statement in which error occurs.

## XIV. Implication proofs

A. Recall truth table for logical implication.

- **B.**  $p \supset q$  is only false if p is true and q is false.
- **C**. In program verification, we assume *p* is true.
- **D**. Hence, VC proof will fail if q is false.

## XV. Proof of factorial example.

A. The (correct) definition:

```
int factorial(int N) {
/ *
 * Compute factorial of x, for
 * positive x, using iteration.
 *
 * pre: N >= 0
 *
 * post: return == N!
 *
```

## Proof of factorial, cont'd

```
int x,y; /* Temp vars */
x = N;
y = 1;
while (x > 0) {
    y = y * x;
    x = x - 1;
return y;
```

## Proof of factorial, cont'd

B. Slightly different than earlier version.

**C.** Figure 1 outlines the proof.



## XVI. Logical derivation of "y \* x! = N!"

- A. At top of loops, what relationship should exist between loop variables?
- B. Characterizes the *meaning* of the loop.
- C. For fact, meaning is something like "y approximates N!".

# Derivation of "y \* x! = N!", cont'd

D. More precisely,

$$y \mathbf{R} f(x) = N!$$

for some relation R; in this case,

**R** is multiplication, i.e.,

$$y * f(X) = N!$$

E. So what is f(x)? I.e., how much shy of N! is y at some arbitrary point k through the loop?

# Derivation of "y \* x! = N!", cont'd

It looks like y is growing by a multiplicative factor of x each time through,

$$y = x * (x-1) * (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!$$

F. I.e., 
$$y * x! = N!$$

# Derivation of "y \* x! = N!", cont'd

G. This reasoning is typical for loop assertions.

H. An alternative is to use symbolic evaluation.

## XVII. Further tips on doing proofs

A. Often, VC proofs not that difficult.

B. Use simple algebraic formula reduction.

C. 141 book has rules.

# Further tips on doing proofs, cont'd

- D. Some rules:
  - 1. if t then P1 else P2  $\langle = \rangle$  (t  $\supset$  P1) and (not t  $\supset$  P2)
  - 2. if t then t and P <=> if t then P
  - 3. if t1 then if t2 then P <=> if t1 and t2 then P
  - 4. t and (if t then P) => P (modus ponens)

#### XVIII. Factorial VC's

A. Obligated to prove each VC.

B. VC1 is trivial.

#### C. Proof of factorial VC2:

```
if (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N! and (x-1)>=0 =>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! and x>=1 =>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! =>
if (y*x! == N! and x>=0) then y*x! == N! and x>0 =>
true
```

## Factorial VC's, cont'd

#### D. Proof of factorial VC3:

```
if (y*x! == N and x>=0) then if (x<=0) then y==N! =>
if (y*x! == N! and x==0) then y==N! =>
if (y*0! == N!) then y==N! =>
if (y*1 == N!) then y==N! =>
true
```

#### XIX. Possible errors in factorial

A. Transpose loop body statements.

B. We'll get erroneous VC3:

```
y * x! = N! and x \ge 0 and x > 0 \supset y * (x-1) * (x-1)! = N! and x-1 \ge 0 => y * x! = N! and x > 0 \supset y * (x-1) * (x-1)! = N! => no go
```

#### Possible errors, cont'd

C. " $x \ge 0$ " (instead of strictly > 0)

```
y * x! = N! and x \ge 0 and \neg (x \ge 0) \supset y = N! => y * x! = N! and x \ge 0 and x < 0 \supset y = N! => no go
```

## XX. Automatic derivation of loop invariants

A. A mechanical technique

B. Looks like this:

#### Automatic loop invariants, cont'd

$$y = N!$$

$$y * x = N!$$

$$y * x * (x-1) = N!$$

$$y * x * (x-1) * (x-2) = N!$$

$$y * x * (x-1) * (x-2) * (x-3) = N!$$

$$\downarrow$$
...

# Automatic loop invariants, cont'd

$$y * x * (x-1) * ... * (x-N) = N!$$

#### Automatic loop invariants, cont'd

C. Inspecting result, notice relationship y \* x! = N!.

- **D**. This is the *loop invariant*.
- E. Also interesting to look at erroneous case.

#### Automatic loop invariants, cont'd

$$y = N!$$
 $\downarrow$ 
 $y * (x-1) = N!$ 
 $\downarrow$ 
 $y * (x-1) * (x-2) = N!$ 
 $\downarrow$ 
 $\downarrow$ 
 $y * (x-1) * (x-2) * (x-3) = N!$ 
 $\downarrow$ 
...

#### Automatic loop invariants, cont'd

$$y * (x-1) * (x-2) * ... * (x-N) = N!$$

#### Automatic loop invariants, cont'd

F. In erroneous case, symbolic eval leads to wrong loop invariant.

G. Will ultimately cause verification to fail.

#### XXI. Verification rule for function calls



where *Post(var)* is postcond of function f in which *var* appears; *Post(f)* is postcond of f with appropriate variable substitution.

#### Rule for function calls, cont'd

- A. Substituting function precond for postcond.
- B. Recall two methods to ensure precond is met:
  - 1. Exceptions thrown by function.
  - 2. Verify function will never be called if is precond is false.
- C. We're now in a position to do the latter.

# XXII. Verify that factorial is never called with false precond.



#### **Details of the proof:**

```
Predicate
Label
VC:
        true => forall (x: integer)
            if (x>=0) then x!==x! else x==x
        =>
        true
Pre:
    true
P5:
        forall (x: integer)
            if (x>=0) then x!==x! else x==x
```

# Details of proof, cont'd:

## Details of proof, cont'd:

```
P2:     if (x>=0) then x!==x! else x!==x

P1:     if (x>=0) then y==x! else y==x

Post:     if (x>=0) then return==x! else return==
```

#### XXIII. Partial versus total correctness

- A. Preceding methodology demonstrates *partial* correctness.
- B. Program is correct, if and only it terminates.
- C. *Total* correctness requires additional proof of termination.
- D. Generally involves an induction.

#### XXIV. Verif'n and programming style

A. Certain stylistic rules must be obeyed.

- B. A summary:
  - 1. Functions cannot have side effects.
  - 2. Input parameters cannot be modified.
  - 3. Restricted control flow constructs.

#### XXV. Some critical questions

- A. Can it scale up?
- B. Why hasn't it caught on yet?
- C. When will it catch on?

#### Critical questions, cont'd

- 1. when software engineers receive adequate training in formal methods
- 2. when production-quality tools become available
- 3. when software users get sufficiently sick of crappy products

## Critical questions, cont'd

- D. Verification tools include:
  - 1. formal spec languages
  - 2. automatic invariant generators
  - 3. automatic theorem provers

E. Tools used by researchers and a few commercial developers.

# XXVI. Optimistic conclusion -- it will happen,

when some or all of above conditions are met.